1
|
Kanwar B, Koli M, Singh SP. Antibiotic amoxicillin degradation by electrochemical oxidation process: effects of process parameters and degradation pathway at environmentally relevant concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:575-586. [PMID: 39695035 DOI: 10.1007/s11356-024-35780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Amoxicillin (AMX) is a common antibiotic used in both human and veterinary medicine in order to both cure and avoid bacterial infections. Traces of AMX have been found in ground and surface water, urban effluents, water, and wastewater treatment facilities due to its widespread use. The level of hazard and disposal of this class of micropollutants is the reason for concern. Advanced technology is required since conventional wastewater treatment plants are ineffective at eliminating these emerging contaminants. Electrochemical oxidation is a promising method of treating wastewater, which uses electrogenerated radicals to mineralize organic pollutants. This work investigated the detailed process mechanism for AMX degradation utilizing a low-cost, thin, flexible graphite sheet with lower AMX concentrations, initial pH value, voltage, electrolyte concentration, and wastewater matrix. The degradation of AMX by in situ generated hydroxyl radicals is a function of applied voltage and follows pseudo-first-order reaction kinetics. The removal efficiencies of AMX have been achieved up to 99% within 3 h. Moreover, intermediate by-products have been identified using liquid chromatography-mass spectrometry, and a plausible pathway has been proposed. This study could serve as a process reference for controlling AMX wastewater contamination via the electrochemical oxidation technique.
Collapse
Affiliation(s)
- Bhavana Kanwar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mitil Koli
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Excellence On Membrane Technologies for Desalination, Brine Management, and Water Recycling (DesaltM), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
Ighalo JO, Kurniawan SB, Khongthaw B, Buhari J, Chauhan PK, Georgin J, Pfingsten Franco DS. Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies. RSC Adv 2024; 14:35128-35162. [PMID: 39529868 PMCID: PMC11552486 DOI: 10.1039/d4ra05628k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol A (BPA) raises concerns among the scientific community as it is one of the most widely used compounds in industrial processes and a component of polycarbonate plastics and epoxy resins. In this review, we discuss the mechanism of BPA toxicity in food-grade plastics. Owing to its proliferation in the aqueous environment, we delved into the performance of various biological, physical, and chemical techniques for its remediation. Detailed mechanistic insights into these removal processes are provided. The toxic effects of BPA unravel as changes at the cellular level in the brain, which can result in learning difficulties, increased aggressiveness, hyperactivity, endocrine disorders, reduced fertility, and increased risk of dependence on illicit substances. Bacterial decomposition of BPA leads to new intermediates and products with lower toxicity. Processes such as membrane filtration, adsorption, coagulation, ozonation, and photocatalysis have also been shown to be efficient in aqueous-phase degradation. The breakdown mechanism of these processes is also discussed. The review demonstrates that high removal efficiency is usually achieved at the expense of high throughput. For the scalable application of BPA degradation technologies, removal efficiency needs to remain high at high throughput. We propose the need for process intensification using an integrated combination of these processes, which can solve multiple associated performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University P. M. B. 5025 Awka Nigeria
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC Calle 58 # 55-66 Barranquilla Atlántico Colombia
| | | |
Collapse
|
3
|
Safwat SM, Mohamed NY, El-Seddik MM. Performance evaluation and life cycle assessment of electrocoagulation process for manganese removal from wastewater using titanium electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116967. [PMID: 36493542 DOI: 10.1016/j.jenvman.2022.116967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Excess manganese (Mn) concentrations can pose environmental and health risks. Currently, research on Mn removal by electrocoagulation (EC) using transition metal electrodes and the determination of its potential environmental impacts is limited. This study aims to assess the electrocoagulation process's performance with a titanium electrode as a sacrificial anode while also performing a life cycle assessment (LCA) of the process. The initial pH, current density (CD), electrode spacings, electrolyte types, concentrations, and electrode arrangement were all examined. For synthetic wastewater, most of the experiments used a concentration of Mn of 2 mg/L and sodium chloride as a supporting electrolyte at a concentration of 1 g/L. LCA software (OpenLCA 1.11) was used to assess the potential environmental impacts. Optimal operating conditions within the experimental range were as follows: initial pH = 7, CD = 10 mA/cm2, gap distance = 2 cm, and 1 g/L NaCl. Under these conditions, the maximum Mn removal efficiency was 96.5% after 60 min. There was an improvement of 2% rise after 60 min when the temperature increased from 20 °C to 40 °C. For real wastewater, the highest removal efficiencies for Mn and chemical oxygen demand after 60 min were 91.3% and 92%, respectively. The pseudo second order model provides the highest coefficient of determination for expressing the experimental data. Global warming, human non-carcinogenic toxicity, and terrestrial ecotoxicity were the most important categories of impact examined in this work according to the LCA (0.00064 kg CO2 eq, 0.00018 kg 1,4-DCB, and 0.00028 kg 1,4-DCB, respectively). To effectively remove Mn using EC with Ti electrodes, it appears that a period of electrolysis of 10 min would be sufficient under most of the conditions investigated in this study. The reduction in the electrolysis time will lead to a reduction in the operating costs of the system.
Collapse
Affiliation(s)
- Safwat M Safwat
- Sanitary & Environmental Engineering Division, Public Works Department, Faculty of Engineering, Cairo University, Giza, 12316, Egypt.
| | | | - Mostafa M El-Seddik
- Sanitary and Environmental Engineering, Civil Engineering Department, Institute of Aviation Engineering & Technology, Giza, 12815, Egypt
| |
Collapse
|
4
|
Combined Effects of Polyamide Microplastics and Hydrochemical Factors on the Transport of Bisphenol A in Groundwater. SEPARATIONS 2023. [DOI: 10.3390/separations10020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Polyamide (PA) and bisphenol A (BPA) are selected as typical microplastic and endocrine-disrupting chemicals in this study. The adsorption of BPA on the surface of PA and the effect of PA on the transport behavior of BPA in groundwater are systematically investigated using a combination of batch experiments, column experiments and numerical models. The results of scanning electron microscope (SEM) and Fourier transform infrared spectra (FTIR) show that the surface of PA particles is changed significantly after adsorption of BPA. The isothermal adsorption process of BPA can be simulated by the Langmuir model and the Freundlich model. Kinetic adsorption, on the other hand, can be fitted by a quasi-first-order adsorption model, and the adsorption results indicate that the maximum adsorption of BPA on PA reaches 13 mg·g−1. The results of the column experiments suggest that the mass recovery rate of BPA decreases with PA content, and increases with flow velocity, while initial concentration has no apparent influence on BPA transport. In addition, due to the hydrolysis of BPA, the mass recovery rate of BPA does not change with pH under conditions of pH < 10.2 and increases substantially to 94% when pH > 10.2. Moreover, Ca2+ has a significant inhibitory effect on the transport of BPA, while Na+ has no apparent influence on the transport of BPA. The transport process of BPA in porous media is simulated using a single-point kinetic model, and the fitted mathematical relationships for the variation of kinetic parameters with environmental factors are obtained by regression analysis.
Collapse
|
5
|
Yun D, de Serrano V, Ghiladi RA. Oxidation of bisphenol A (BPA) and related compounds by the multifunctional catalytic globin dehaloperoxidase. J Inorg Biochem 2023; 238:112020. [PMID: 36272837 DOI: 10.1016/j.jinorgbio.2022.112020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Dehaloperoxidase (DHP) from the marine polychaete Amphitrite ornata is a multifunctional enzyme that possesses peroxidase, peroxygenase, oxidase and oxygenase activities. Herein, we investigated the reactivity of DHP B with bisphenol A (BPA) and related compounds (bisphenol E, bisphenol F, tetrachlorobisphenol A, 2,2'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and 3,3'-dibromo-4,4'-biphenol). As a previously unknown substrate for DHP B, BPA (as a representative substrate) is an endocrine disruptor widely used in polycarbonate and epoxy resins, thus resulting in human exposure. Reactivity studies with these substrates were investigated using high performance liquid chromatography (HPLC), and their corresponding oxidation products were determined by mass spectrometry (GC-MS/ LC-MS). BPA undergoes oxidation in the presence of DHP B and hydrogen peroxide yielding two cleavage products (4-isopropenylphenol and 4-(2-hydroxypropan-2-yl)phenol), and oligomers with varying degrees of oxidation. 18O-labeling studies confirmed that the O-atom incorporated into the products was derived exclusively from water, consistent with substrate oxidation via a peroxidase-based mechanism. The X-ray crystal structures of DHP bound with bisphenol E (1.48 Å), bisphenol F (1.75 Å), 2,2'-biphenol (1.90 Å) and 3,3'-biphenol (1.30 Å) showed substrate binding sites are in the distal pocket of the heme cofactor, similar to other previously studied DHP substrates. Stopped-flow UV-visible spectroscopy was utilized to investigate the mechanistic details and enzyme oxidation states during substrate turnover, and a reaction mechanism is proposed. The data presented here strongly suggest that DHP B can catalyze the oxidation of bisphenols and biphenols, thus providing evidence of how infaunal invertebrates can contribute to the biotransformation of these marine pollutants.
Collapse
Affiliation(s)
- Dongju Yun
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
6
|
Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120319. [PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Divya Bhushan
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Sun M, Ye Z, Xing D, Xu Z, Zhang C, Fu D. Rethinking electrochemical oxidation of bisphenol A in chloride medium: Formation of toxic chlorinated oligomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154825. [PMID: 35341842 DOI: 10.1016/j.scitotenv.2022.154825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Using boron-doped diamond (BDD) anodes to degrade bisphenol A (BPA) had been an active area of research interest within the past 20 years. A major concern about the process lie in the formation of toxic chlorinated aromatic by-products when chloride electrolytes were present in the reaction system. In this contribution, we highlighted the formation of complex poly-chlorinated oligomer by-products in electrochemical oxidation processes, which had often been overlooked in previous studies. Moreover, the distribution and complexity of the chlorinated oligomers were found to be strongly linked to the adopted initial chloride concentration. Formation of simple chlorinated by-products was ascribed to the electrophilic substitution reactions mediated by active chlorine species, while the oligomer by-products (including chlorinated dimers, trimers and tetramers) were generated through the coupling reactions between various chlorinated phenoxy radicals. The possible mechanisms describing the formation of these by-products were also proposed. The obtained results shed light on the possible risk of BDD technology in the treatment of phenolic wastewater containing chloride electrolytes.
Collapse
Affiliation(s)
- Minjia Sun
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyuan Ye
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Xing
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Advance Oxidation Process (AOP) of Bisphenol A Using a Novel Surface-Functionalised Polyacrylonitrile (PAN) Fibre Catalyst. WATER 2022. [DOI: 10.3390/w14040640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor in the environment which is not readily oxidised during wastewater treatment at Municipal Authorities. The aim of this work is to evaluate the environmental value of the wastewater treatment of a novel heterogeneous oxidation catalyst by means of the degradation of BPA, avoiding sewage sludge and its post-treatments. A surface-functionalised polyacrylonitrile (PAN) mesh has been produced by reaction of the cyano group of PAN with hydrazine and hydroxylamine salts. This surface-functionalised PAN is then exposed to iron (III) salt solution to promote the ligation of Fe(III) to the functional groups to form the active catalytic site. The experiments were set up in two different batch reactors at laboratory scale at different temperatures and initial pH. The degradation of BPA was detected by measuring the absorbance of BPA in Reverse Phase High Performance Liquid Chromatography at 280 nm. A total elimination of 75 ppm of BPA in less than 30 min was achieved under 300 ppm H2O2, 0.5 g PAN catalyst, initial pH 3 and 60 °C. Almost no adsorption of BPA on the catalyst was detected and there was no significant difference in activity of the catalyst after use for two cycles.
Collapse
|
9
|
Clematis D, Panizza M. Solid polymer electrolyte as an alternative approach for the electrochemical removal of herbicide from groundwater. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Hu X, Dong H, Zhang Y, Fang B, Jiang W. Mechanism of N, N-dimethylformamide electrochemical oxidation using a Ti/RuO 2-IrO 2 electrode. RSC Adv 2021; 11:7205-7213. [PMID: 35423280 PMCID: PMC8694957 DOI: 10.1039/d0ra10181h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
The compound N,N-dimethylformamide (DMF) is a widely used industrial chemical and a common environmental contaminant that has been found to be harmful to human health. In this study, electrochemical oxidation was adopted for the degradation of DMF. The effects of four kinds of electrodes on the removal rates of DMF and total organic carbon were compared, and based on the result, the Ti/RuO2–IrO2 electrode was selected as the operating electrode. The effects of three independent factors (current density, pH, and NaCl proportion) on the DMF degradation were investigated through single-factor experiments, and the experimental results were optimized by response surface methodology. The optimal experimental conditions were obtained as follows: current density = 47 mA cm−2, pH = 5.5, and NaCl proportion = 15%. The electrochemical oxidation of 50 mg L−1 DMF was performed under the optimal conditions; the degradation rate was 97.2% after 7 h, and the reaction followed the pseudo-first-order kinetic model. The degradation products under optimal conditions and chlorine-free conditions were analyzed, and four degradation pathways were proposed. The DMF degradation was more thorough under optimal conditions. DEMS as an emerging technology was used to investigate the degradation mechanism of DMF.![]()
Collapse
Affiliation(s)
- Xuyang Hu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Hao Dong
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Yinghao Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Baihui Fang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 China
| |
Collapse
|
11
|
Zhu Y, Zhu M, Xie J, Hu Y, Liu Y, Zhu C. Photochemical reaction kinetics and mechanism of bisphenol A with K 2S 2O 8 in aqueous solution: a laser flash photolysis study. CAN J CHEM 2021. [DOI: 10.1139/cjc-2019-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photochemical reaction kinetics and mechanism of bisphenol A (BPA) with potassium persulfate (K2S2O8) were investigated by using 266 nm laser flash photolysis and gas chromatography mass spectrum (GC-MS) technique. Sulfate radical (SO4•−), generated upon K2S2O8 photolysis, reacted with BPA with the overall rate constant of (1.61 ± 0.15) × 109 L mol−1 s−1, and two main reaction mechanisms were involved. One was addition channel to generate BPA–SO4•− adduct with a specific second-order rate constant of (1.09 ± 0.15) × 109 L mol−1 s−1. Molecular oxygen was involved in the decay of the BPA–SO4•− adduct with a rate constant of (1.28 ± 0.14) × 108 L mol−1 s−1. Another channel was the formation of BPA’s phenoxyl radical, likely derived from a deprotonation of the cation radical (BPA•+) generated from single electron transfer reactions. The specific rate constant of BPA’s phenoxyl radical formation was determined to be (6.16 ± 0.08) × 108 L mol−1 s−1. The overall rate constant was in line with the sum of aforementioned two specific rate constants for two main reaction channels. By comparing these rate constants, it was indicated that SO4•− addition channel accounted for ∼65% (1.09/1.61) to the overall reaction, and phenoxyl radical formation accounted for only ∼35% (0.62/1.61). The transformation products of BPA were identified by using GC-MS including 4-isopropylphenol, 4-isopropenylphenol, and 2,4-di-tert-butylphenol, and the reaction mechanism was proposed. These results may provide microscopic kinetics and mechanism information on BPA degradation using SO4•−-based advanced oxidation processes.
Collapse
Affiliation(s)
- Yongchao Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Mengyu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Jingjing Xie
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yadong Hu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Ying Liu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
12
|
Oguzie KL, Qiao M, Zhao X, Oguzie EE, Njoku VO, Obodo GA. Oxidative degradation of Bisphenol A in aqueous solution using cobalt ion-activated peroxymonosulfate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Synthesis and Characterization of Arsenic(III) Oxide Nanoparticles as Potent Inhibitors of MCF 7 Cell Proliferation through Proapoptotic Mechanism. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00726-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Elnakar H, Buchanan I. Soluble chemical oxygen demand removal from bypass wastewater using iron electrocoagulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136076. [PMID: 31862601 DOI: 10.1016/j.scitotenv.2019.136076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 05/15/2023]
Abstract
In-plant wastewater treatment strategies to handle bypass wastewater exceeding design capacity are insufficiently investigated in the scientific literature notwithstanding their importance in ensuring sustainable wastewater management. In this study, the effectiveness of iron electrocoagulation was investigated, for the first time, to enhance primary treatment capability in removing soluble chemical oxygen demand (sCOD) from bypass wastewater. In addition, the appropriate assumptions and experimental protocols for the application of adsorption isotherm models, widely used to describe the electrocoagulation process, were discussed in light of experimental results. Under neutral pH conditions, the bypass wastewater treatment was performed to test the effects of three preselected variables (electrolysis duration, current density, and temperature) on sCOD removal. Using a 15 mA/cm2 current density, an average 52% sCOD removal efficiency was achieved after 15 min at 23 °C while approximately 40 min were needed to attain comparable removal efficiency at 8 °C. sCOD removals of 74% and 87% were achieved after 40 min treatment using a 22 mA/cm2 current density at 8 °C and 23 °C, respectively. Experimental results and theory show that adsorption equilibrium was not reached in the electrocoagulation cell; consequently, variable-order-kinetic (VOK) models derived from Langmuir and Langmuir-Freundlich adsorption expressions were adapted to describe the process. These models were modified to account for the de facto estimation of ferric hydroxide (adsorbent) mass that accounts for the conversion of ferrous ion to particulate end products. The Langmuir-based VOK model was found to better describe sCOD removal under all the operating conditions tested and showed the sCOD removal mechanism to be consistent with chemisorption. This research shows the promising ability of iron electrocoagulation to achieve superior removal of sCOD as compared to established and emerging standalone bypass wastewater treatment technologies.
Collapse
Affiliation(s)
- Haitham Elnakar
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116 St. NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ian Buchanan
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116 St. NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
15
|
Liu Y, Liu H, Yao Z, Diao Y, Hu G, Zhang Q, Sun Y, Li Z. Fabrication, improved performance, and response mechanism of binary Ag–Sb alloy pH electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ibrahim S, El-Liethy MA, Elwakeel KZ, Hasan MAEG, Al Zanaty AM, Kamel MM. Role of identified bacterial consortium in treatment of Quhafa Wastewater Treatment Plant influent in Fayuom, Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:161. [PMID: 32020301 DOI: 10.1007/s10661-020-8105-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
This study was aimed to biologically treat domestic wastewater using identified bacterial consortium for chemical pollutants removal by treating/passing it through sand biofilters. The identification, toxicity test, and the optimum dose of the investigated bacterial consortium were carried out using Microtox analyzer and Batch biological treatment, respectively. Furthermore, application of sedimentation followed by gravel and sand biofilters for wastewater treatment was evaluated. The results showed that the bacterial consortium is composed of Pediococcus acidilactici, Pediococcus pentosaceus, Lactobacillus plantarum, and Bacillus subtilis. The optimum dose for wastewater treatment within 6 h of contact time is 2.5 mg/L, this dose (2.5 mg/L) has no toxic effect. The removal percentage of chemical oxygen demand (COD), biological oxygen demand (BOD), total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), ammonia, nitrate, total Kjeldahl nitrogen (TKN), and oil and grease reached 93.4, 83.5, 37.5, 49.2, 93.4, 100, 55.7, 76.6, and 76% in the effluent of the treated wastewater, respectively after the third sand biofilter filtration. It can be concluded that using bacterial consortium for domestic wastewater treatment could be a good tool for chemical pollutants removal. Moreover, this study provides low cost and eco-friendly tool for domestic wastewater treatment using simple multistage biofilters based on an identified bacterial consortium. This system can be upscaled for the treatment of larger volumes of wastewater.
Collapse
Affiliation(s)
- Salma Ibrahim
- Water and Wastewater Company, El-Fayoum Governorate, Fayuom, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Khalid Z Elwakeel
- College of Science, Department of Chemistry, University of Jeddah, Jeddah, Saudi Arabia.
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | | | - Ali Mahmoud Al Zanaty
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef Governorate, Beni Suef, Egypt
| | - Mohamed Mohamed Kamel
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
17
|
|
18
|
Dong J, Zhao W, Zhou S, Zhang C, Fu D. Transformation of bisphenol A by electrochemical oxidation in the presence of nitrite and formation of nitrated aromatic by-products. CHEMOSPHERE 2019; 236:124835. [PMID: 31549673 DOI: 10.1016/j.chemosphere.2019.124835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this contribution, the electrocatalytic abatement of bisphenol A (BPA) with boron-doped diamond (BDD) anode had been conducted in NaNO2 electrolytes. Central composite design was used as statistical multivariate method to optimize the operating parameters adopted (applied current density, flow rate, concentration of NaNO2 and initial pH). The results from response surface analysis indicated that pH was the most influential factor for TOC decay, and a maximum TOC decay of 63.7% was achieved under the optimized operating conditions (9.04 mA cm-2 of applied current density, 400 mL min-1 of flow rate, 10 mM of NaNO2, 4.0 of initial pH and 60 min of electrolysis time). Besides, LC/MS technique was applied to identify the main reaction intermediates, and plenty of nitrated oligomers were detected at the end of the degradation. These by-products were generated via the coaction of coupling reaction of nitrated phenol and electrophilic substitution mediated by nitrogen dioxide radicals. Moreover, our results showed that the degree of nitration depended heavily on the employed initial nitrite concentration. This was one of the very few investigations dealing with nitrophenolic by-products in nitrite medium, and thus the findings exhibited important implications for electrochemical degradation of BPA and its related phenolic pollutants.
Collapse
Affiliation(s)
- Jiayue Dong
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjia Zhao
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sihan Zhou
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
19
|
Degradation of Bisphenol A by CeCu Oxide Catalyst in Catalytic Wet Peroxide Oxidation: Efficiency, Stability, and Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234675. [PMID: 31771209 PMCID: PMC6926835 DOI: 10.3390/ijerph16234675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The CeCu oxide catalyst CC450 was prepared by citric acid complex method and the catalytic wet peroxide oxidation (CWPO) reaction system was established with bisphenol A (BPA) as the target pollutant. By means of characterization, this research investigated the phase structure, surface morphology, reducibility, surface element composition, and valence of the catalyst before and after reuse. The effects of catalyst dosage and pH on the removal efficiency of BPA were also investigated. Five reuse experiments were carried out to investigate the reusability of the catalyst. In addition, this research delved into the changes of pH value, hydroxyl radical concentration, and ultraviolet-visible spectra of BPA in CWPO reaction system. The possible intermediate products were analyzed by gas chromatography-mass spectrometry (GC-MS). The catalytic mechanism and degradation pathway were also discussed. The results showed that after reaction of 65 min, the removal of BPA and total organic carbon (TOC) could reach 87.6% and 77.9%, respectively. The catalyst showed strong pH adaptability and had high removal efficiency of BPA in the range of pH 1.6-7.9. After five reuses, the removal of BPA remained above 86.7%, with the structure of the catalyst remaining stable to a large extent. With the reaction proceeding, the pH value of the reaction solution increased, the concentration of OH radicals decreased, and the ultraviolet-visible spectrum of BPA shifted to the short wavelength direction, that is, the blue shift direction. The catalysts degraded BPA rapidly in CWPO reaction system and the C-C bond or O-H bond in BPA could be destroyed in a very short time. Also, there may have been two main degradation paths of phenol and ketone.
Collapse
|
20
|
Kaur M. Impact of Response Surface Methodology–Optimized Synthesis Parameters on In vitro Anti-inflammatory Activity of Iron Nanoparticles Synthesized using Ocimum tenuiflorum Linn. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00681-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Badakhshan S, Ahmadzadeh S, Mohseni-Bandpei A, Aghasi M, Basiri A. Potentiometric sensor for iron (III) quantitative determination: experimental and computational approaches. BMC Chem 2019; 13:131. [PMID: 31832628 PMCID: PMC6859631 DOI: 10.1186/s13065-019-0648-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/01/2019] [Indexed: 11/10/2022] Open
Abstract
The current work deals with fabrication and validation of a new highly Fe3+ selective sensor based on benzo-18-crown-6 (b-18C6) using the potentiometric method. The proposed sensor revealed satisfactory performance for quantitative evaluation of Fe3+ trace amount in environmental samples. The ratio of membrane ingredients optimized and the membrane with the composition of 4:30:65.5:0.5 mg of b-18C6:PVC:o-NPOE:KTpClPB exhibited the desirable Nernstian slope of 19.51 ± 0.10 (mV per decade of activity) over the pH range from 2.5 to 5.7 with an acceptable dynamic concentration range of 1.0 × 10-6 M to 1.0 × 10-1 M and lower detection limit of 8.0 × 10-7 M. The proposed sensor demonstrated an appropriate reproducibility with a rapid response time of 12 s and the suitable lifetime of 10 weeks. To validate the accurate response of the proposed sensor, AAS technique applied for the determination of Fe3+ in real aqueous mediums such as drinking tap water and hospital wastewater sample after treatment by electrocoagulation process. Theoretical studies carried out using DFT/B3LYP computational level with 6-311G basis set to optimize the adsorption sites of Fe+3 cationic species by b-18C6. The obtained adsorption energy with large negative value confirmed the formation of a stable complex.
Collapse
Affiliation(s)
- Somayeh Badakhshan
- 1Student research committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Ahmadzadeh
- 3Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319 Kerman, Iran.,4Food, Drug and Cosmetics Safety Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Anoushiravan Mohseni-Bandpei
- 5Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Aghasi
- 6Department of Environmental Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Basiri
- 7Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Botcha S, Prattipati SD. Callus Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization and Cytotoxicity Evaluation Against MDA-MB-231 and PC-3 Cells. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00683-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies. Int J Biol Macromol 2019; 155:1019-1029. [PMID: 31715227 DOI: 10.1016/j.ijbiomac.2019.11.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023]
Abstract
Recently, the presence of endocrine disrupting compounds in the environment has emerged as a global and ubiquitous problem. In this study, a novel synthesis of magnetically carbon nanotube modified with biological polymeric was successfully prepared. The effect of different parameters on the Bisphenol A (BPA) adsorption was studied. A prediction model for BPA adsorption was extended based on the Central Composite Design. Also, the prepared biopolymeric nanotubes were characterized by FT-IR, XRD, TEM, FE-SEM. The surface morphology of nanocomposite was observed, increased carbon nano tube size, and the levels after surface deposition were completely covered by chitosan proteins. The results of our experiments showed that optimum adsorption conditions was achieved at t = 76 min, BPA concentration 6.5 mg/L, adsorbent dosage 1 g/L and pH = 6.2.The data obtained in this study followed the Langmuir isotherm model and the pseudo-second order model. The maximum monolayer adsorption capacity of nanocomposite for BPA was 46.2 mg/g at 20 °C. This study showed that the adsorption of BPA onto nanocomposite was spontaneous and thermodynamically desirable.
Collapse
|
24
|
An innovative combination of electrochemical and photocatalytic processes for decontamination of bisphenol A endocrine disruptor form aquatic phase: Insight into mechanism, enhancers and bio-toxicity assay. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Mirzaee R, Darvishi Cheshmeh Soltani R, Khataee A, Boczkaj G. Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Oliveira Guimarães C, Boscaro França A, Lamas Samanamud GR, Prado Baston E, Zanetti Lofrano RC, Almeida Loures CC, Rezende Naves LL, Naves FL. Optimization of treating phenol from wastewater through the TiO 2-catalyzed advanced oxidation process and response surface methodology. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:349. [PMID: 31055670 DOI: 10.1007/s10661-019-7452-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The use of dispersed catalysts in aqueous medium inside reactors in advanced oxidative processes is common among researchers. However, due to the difficult separation of these species after treatment, in many cases, the treatment process is unfeasible. In this context, the main target of the work was the evaluation of degradation of the phenolic solution by ozonation titanium dioxide (TiO2/P25), supported on zeolite spheres. The process was investigated through the response surface methodology (RSM) and optimized by the generalized reduced gradient (GRG) algorithm. The effects of various operating parameters including pH, power ozone (O3) generation, flow rate, and treatment time were investigated, using as a response to removal of chemical oxygen demand (COD). It was made in optimum conditions the ratio of biochemical oxygen demand (BOD)/chemical oxygen demand to check the increasing biodegradability, aiming ozonation as preliminary treatment, with the possibility of subsequent biological treatments. There was an increase in this ratio from 0.17 to 0.50 in 48 min, which would facilitate the use of the subsequent biological process. The proposed model showed good fit to the experimental data with R2 and R2adj correlation coefficients of 0.9964 and 0.9932, respectively.
Collapse
Affiliation(s)
- Camila Oliveira Guimarães
- Chemical Engineering Department, Federal University of São João Del Rei, São João Del Rei, MG, Brazil
| | - Alexandre Boscaro França
- Chemical Engineering Department, Federal University of São João Del Rei, São João Del Rei, MG, Brazil
| | | | - Eduardo Prado Baston
- Chemical Engineering Department, Federal University of São João Del Rei, São João Del Rei, MG, Brazil
| | | | - Carla Cristina Almeida Loures
- Department of Mechanical Engineering (DEPMC), Federal Center for Technological Education, Angra dos Reis, RJ, Brazil
| | | | - Fabiano Luiz Naves
- Chemical Engineering Department, Federal University of São João Del Rei, São João Del Rei, MG, Brazil.
| |
Collapse
|
27
|
Bakr AR, Rahaman MS. Crossflow electrochemical filtration for elimination of ibuprofen and bisphenol a from pure and competing electrolytic solution conditions. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:615-621. [PMID: 30471576 DOI: 10.1016/j.jhazmat.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
For the first time, a crossflow electrochemical filtration system containing multiwalled carbon nanotubes (MWNTs) blended with buckypaper as a flat sheet dual membrane electrode was investigated for the removal of two contaminants of emerging concern, Ibuprofen and Bisphenol A. Breakthrough experiments revealed that a crossflow configuration could be highly efficient in eliminating both contaminants at applied DC potentials of 2 and 3 V over an extended period, from pure salt electrolyte as well as from synthetic secondary wastewater effluent. The shear flow provided consistent surface coverage resulting in excellent sorption performance. The long residence time of the two contaminants within the membrane (18.3 s) was sufficient enough to allow for almost complete degradation of phenolic aromatic products and quinoid rings and the resulting formation of aliphatic carboxylic acids, which was more evident at a higher applied potential (3 V). The formation of the non-toxic aliphatic carboxylic acids is a clear indication of the superior electrochemical performance of the crossflow mode over the dead-end flow-through system. Moreover, this study provides an in-depth understanding of different factors such as filter surface area and residence time that can greatly affect the removal of the contaminants considered.
Collapse
Affiliation(s)
- Ahmed Refaat Bakr
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Md Saifur Rahaman
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| |
Collapse
|
28
|
Yang B, Cheng Z, Gao X, Yuan T, Shen Z. Decomposition of 15 aromatic compounds in supercritical water oxidation. CHEMOSPHERE 2019; 218:384-390. [PMID: 30476770 DOI: 10.1016/j.chemosphere.2018.11.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Supercritical water oxidation (SCWO) of 15 aromatic compounds, including bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP), was investigated under temperature and reaction time ranged of 350-550 °C and 0.5-6 min, respectively, with 300% excess oxygen, resulted in the degradation rate constants of total organic carbon (kTOC) were 0.130-0.392 min-1. To further explore the relationship between TOC removal and molecular characteristics, density functional theory (DFT) method had been used to calculate the quantum descriptors of the 15 aromatic compounds. The result of correlation analysis showed that the most positive partial charge on the H atom, namely q(H)x, played a significant role in TOC removal, which implied the more q(H)x value was, the easier H atom could lose, resulted in higher kTOC constant. Different substituent groups in the phenyl ring could lead to different TOC removal efficiencies. It presented that the more F(0) value was, the more easily to be attacked by radicals, as a result, the kTOC followed the order that benzenesulfonic acid (BSA) > phenol > methylbenzene (MB) > 3-phenylpropionic acid (3-PPA), as well as BPA < OP < NP.
Collapse
Affiliation(s)
- Bowen Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoping Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
29
|
Wang X, Zhang L. Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system. RSC Adv 2018; 8:40632-40638. [PMID: 35557884 PMCID: PMC9091360 DOI: 10.1039/c8ra08511k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
A novel and simple apparatus for the continuous generation of hydroxyl radicals has been constructed for the first time. In this paper, we focused on the investigation into the kinetic study of hydroxyl radical formation in the preparation process. The effects of the process parameters (such as the electrolyte solution concentration, graphite dosage, the applied current strength, and air flow rate) on the concentration of hydroxyl radicals were investigated in detail. The concentration of hydroxyl radicals first increased with the concentration of sodium dodecyl benzene sulfonate electrolyte solution, graphite dosage, applied current strength, and air flow rate, and then decreased. The concentration of ·OH and time well fit a third-order model of {C(·OH) = B 1 × t + B 2 × t 2 + B 3 × t 3 + intercept}. The highest concentration of hydroxyl radicals was 7.98 × 10-3 mol L-1 under the following conditions: sodium dodecyl benzene sulfonate concentration 10.0% (w/v), graphite dosage 5.0 g, applied current strength 10 mA, and air flow rate 1.0 L h-1. Our hydroxyl radical generation method can achieve the preparation of higher-concentration hydroxyl radicals continuously without using strong acid reagents. Moreover, our method has low energy consumption by using milliampere-level current. It is a green and efficient method for the generation of hydroxyl radicals. The kinetic study of hydroxyl radical generation can quantitatively predict the concentration changes with process parameters and provide a good prediction of hydroxyl radical generation, which is crucially important in industrial applications.
Collapse
Affiliation(s)
- Xin Wang
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology Changchun Jilin 130012 P. R. China +8618686672766
- School of Petrochemical Technology, Jilin Institute of Chemical Technology Jilin 132022 P. R. China
| | - Long Zhang
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology Changchun Jilin 130012 P. R. China +8618686672766
| |
Collapse
|
30
|
Michałkiewicz M. Comparison of wastewater treatment plants based on the emissions of microbiological contaminants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:640. [PMID: 30338402 PMCID: PMC6208977 DOI: 10.1007/s10661-018-7035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/08/2018] [Indexed: 05/21/2023]
Abstract
This article presents the current and important results of bioaerosol studies which allow for the comparison of microbial contamination of air in 11 wastewater treatment plants (WWTPs), which differed in terms of capacity from 350 to 200,000 m3/day. The abundance of mesophilic bacteria, M+ and M- Staphylococcus, Pseudomonas fluorescens, Actinobacteria, coliform and psychrophilic bacteria, and microscopic fungi was determined. Additionally, the air temperature, relative humidity, wind velocity, and direction were also analyzed at each research station. The obtained very numerous results of bioaerosol and climate parameter studies were subjected to statistical analysis. The results regarding the minimum, maximum, and median abundance of the studied bacteria and microscopic fungi at 11 WWTPs and in background studies at control stations were presented in tables. Additionally, basic descriptive statistics for all studied microorganisms at specific seasons were presented. It was established that at the areas of WWTPs, the microscopic fungi were present that the highest concentrations (ranging from 0 to 1,148,530 CFU m-3), followed by psychrophilic bacteria (ranging from 40 to 225,000 CFU m-3) and mesophilic bacteria (ranging from 0 to 195,000 CFU m-3). The novel elaboration of bioaerosol study results based on cluster analysis and determination of a dendrogram allowed to compare the studied WWTPs. The similarity was decided based on the type of studied microorganisms and their dominance and abundance, while no similarities were observed in terms of capacity. In order to investigate the relation between the abundance of bacterial groups as well as microscopic fungi and microclimatic parameters (air temperature and humidity), a calculation of Spearman's range correlation coefficients was conducted.
Collapse
Affiliation(s)
- Michał Michałkiewicz
- Institute of Environmental Engineering, Poznan University of Technology, Berdychowo 4, 61-138, Poznan, Poland.
| |
Collapse
|
31
|
|
32
|
Safwat SM, Hamed A, Rozaik E. Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: A comparative study with aluminum electrodes. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1494744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Safwat M. Safwat
- Sanitary & Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Ahmed Hamed
- Purchasing & Procurement Department, Rowad Modern Engineering, Cairo, Egypt
| | - Ehab Rozaik
- Sanitary & Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
33
|
Ahmadzadeh S, Dolatabadi M. In situ generation of hydroxyl radical for efficient degradation of 2,4-dichlorophenol from aqueous solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:340. [PMID: 29748751 DOI: 10.1007/s10661-018-6697-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/24/2018] [Indexed: 05/04/2023]
Abstract
Since 2,4-dichlorophenol (2,4-DCP) as a priority pollutant is used in numerous industrial processes, its removal from the aqueous environment is of utmost importance and desire. Herein, the authors describe an electrochemical treatment process for efficient removal of 2,4-DCP from aqueous solutions using electro-Fenton (EF) process. Response surface methodology (RSM) was applied to optimize the operating parameters. Analysis of variance (ANOVA) confirmed the significance of the predicted model. The effect of independent variables on the removal of 2,4-DCP was investigated and the best removal efficiency of 98.28% achieved under the optimal experimental condition including initial pH of 3, H2O2 dosage of 80 μL, initial 2,4-DCP concentration of 3.25 mg L-1, current density of 3.32 mA cm-2, and inter-electrode distance of 5.04 cm. The predicted removal efficiency was in satisfactory agreement with the obtained experimental removal efficiency of 99.21%. According to the obtained polynomial model, H2O2 dosage revealed the most significant effect on degradation process. The kinetic investigation revealed that the first-order model with the correlation coefficient of 0.9907 and rate constant (Kapp) of 0.831 min-1 best fitted with the experimental results. Generation of the hydroxyl radicals throughout the EF process controlled the degradation process.
Collapse
Affiliation(s)
- Saeid Ahmadzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Dolatabadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|