1
|
Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Selvaraj R, Al-Muhtaseb A. Emerging Nanomaterials for Drinking Water Purification: A New Era of Water Treatment Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1707. [PMID: 39513787 DOI: 10.3390/nano14211707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO2 NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water. This, it is hoped, will provide the water treatment sector with efficient materials that can be applied successfully in the water purification process to help in addressing the worldwide water scarcity issue.
Collapse
Affiliation(s)
- Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | | | - Ala'a Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat 123, Oman
- Sustainable Energy Research Centre, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
2
|
Gao B, Liu K, Li F, Fang L. A chrysotile-based Fe/Ti nanoreactor enables efficient arsenic capture for sustainable environmental remediation. WATER RESEARCH 2023; 231:119613. [PMID: 36682237 DOI: 10.1016/j.watres.2023.119613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Iron-based materials for arsenic (As) immobilization in practical groundwater and soil remediation suffer from a low removal capacity and an insufficient long-term stability. Herein, a unique chrysotile-based nanoreactor has been developed by incorporating iron/titanium oxides into the cylindrical cavity of chrysotile (TiFe-Chy), providing sufficient internal reaction sites for As immobilization. Results reveal that the adsorption capacities of TiFe-Chy for As(III) and As(V) are considerably higher than the commonly used amendments, i.e., layered double hydroxide (LDH) and Phoslock®, respectively. More importantly, TiFe-Chy exhibits a strong anti-interference capability of As immobilization in soils compared to those commercial products due to this unique incorporation approach. Fixed-bed leaching experiments indciate that this TiFe-Chy nanoreactor can efficiently decrase the As(III) and As(V) concentrations by 81.8-87.3% within a period of ten years, significantly improving the long-term stability of As immobilization in soils. Life cycle assessment analysis reveals that TiFe-Chy can reduce negative environmental impacts (such as carbon emissions), resulting in a low cost for soils and groundwater remediation. The findings of this work open a new avenue for sustainable heavy metal(loid)s remediation in groundwater and soils.
Collapse
Affiliation(s)
- Baolin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
3
|
López YC, Ortega GA, Reguera E. Hazardous ions decontamination: From the element to the material. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
4
|
Akha NZ, Salehi S, Anbia M. Removal of arsenic by metal organic framework/chitosan/carbon nanocomposites: Modeling, optimization, and adsorption studies. Int J Biol Macromol 2022; 208:794-808. [PMID: 35367270 DOI: 10.1016/j.ijbiomac.2022.03.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
In this work removal of the arsenic (As) spiked in water through adsorption using synthesized nanocomposites as a adsorbent. The Zn-BDC@chitosan/carbon nanotube (Zn-BDC@CT/CNT) and Zn-BDC@chitosan/graphene oxide (Zn-BDC@CT/GO) were synthesized from metal organic framework, carbon nanotube/graphene oxide and natural polysaccharide. Results of adsorption experiments showed that the Zn-BDC@CT/GO possessed a higher adsorption capacity than that of the Zn-BDC@CT/CNT. A study on the adsorption of As onto Zn-BDC@CT/GO was conducted and the process parameters were optimized by response surface methodology (RSM). A five-level, four-factor central composite design (CCD) has been used to determine the effect of various process parameters on As uptake from aqueous solution. By using this design a total of 20 adsorption experimental data were fitted. The regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination (R2) value of 0.9997 and model F-value of 1099.97. The adsorption matched with the pseudo-second-order model and the Freundlich model. The thermodynamic parameters revealed that the nature of adsorption was feasible, spontaneous and endothermic process. Adsorption of As in the presence of other competitive ions was not significantly affected The effective adsorption performance also sustained even after ten adsorption-desorption cycles, indicating favorable reusability.
Collapse
Affiliation(s)
- Nastaran Zare Akha
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Samira Salehi
- Health, Safety and Environment Department, Petropars Company, Farhang Blvd, Saadat-Abad, P.O. Box 19977-43881, Tehran, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
5
|
Ajith MP, Aswathi M, Priyadarshini E, Rajamani P. Recent innovations of nanotechnology in water treatment: A comprehensive review. BIORESOURCE TECHNOLOGY 2021; 342:126000. [PMID: 34587582 DOI: 10.1016/j.biortech.2021.126000] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution from organic and inorganic pollutants poses a threat to the ecosystem. Pollutant's prevalence and persistence have increased significantly in recent years. In order to enhance the quality of naturally accessible water to a level suitable for human consumption, a number of techniques have been employed. In this context, the use of cutting-edge nanotechnology to classical process engineering paves the way for technical encroachments in advanced water and wastewater technology. Nanotechnology has the potential to ameliorate the quality, availability, and viability of water supplies in the long run by facilitating reuse, recycling and remediation of water. The promising role of nanotechnology in wastewater remediation is highlighted in this paper, which also covers current advancements in nanotechnology-mediated remediation systems. Moreover, nano-based materials such as nano-adsorbents, photocatalysts, nano-metals and nanomembranes are discussed in this review of recent breakthroughs in nanotechnologies for water contaminant remediation.
Collapse
Affiliation(s)
- M P Ajith
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - M Aswathi
- Department of Biomedical Engineering, Indian Institute of Technology -Hyderabad, Hyderabad 502285, India
| | - Eepsita Priyadarshini
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Engineered Magnetic Carbon-Based Adsorbents for the Removal of Water Priority Pollutants: An Overview. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9917444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the preparation, characterization, and application of magnetic adsorbents obtained from carbon-based sources and their application in the adsorption of both inorganic and organic pollutants from water. Different preparation routes to obtain magnetic adsorbents from activated carbon, biochar, hydrochar, graphene, carbon dots, carbon nanotubes, and carbon nanocages, including the magnetic phase incorporated on the solid surface, are described and discussed. The performance of these adsorbents is analyzed for the removal of fluoride, arsenic, heavy metals, dyes, pesticides, pharmaceuticals, and other emerging and relevant water pollutants. Properties of these adsorbents and the corresponding adsorption mechanisms have been included in this review. Overall, this type of magnetic adsorbents offers an alternative for facing the operational problems associated to adsorption process in water treatment. However, some gaps have been identified in the proper physicochemical characterization of these adsorbents, the development of green and low-cost preparation methods for their industrial production and commercialization, the regeneration and final disposal of spent adsorbents, and their application in the multicomponent adsorption of water pollutants.
Collapse
|
7
|
Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13105717] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As the world human population and industrialization keep growing, the water availability issue has forced scientists, engineers, and legislators of water supply industries to better manage water resources. Pollutant removals from wastewaters are crucial to ensure qualities of available water resources (including natural water bodies or reclaimed waters). Diverse techniques have been developed to deal with water quality concerns. Carbon based nanomaterials, especially carbon nanotubes (CNTs) with their high specific surface area and associated adsorption sites, have drawn a special focus in environmental applications, especially water and wastewater treatment. This critical review summarizes recent developments and adsorption behaviors of CNTs used to remove organics or heavy metal ions from contaminated waters via adsorption and inactivation of biological species associated with CNTs. Foci include CNTs synthesis, purification, and surface modifications or functionalization, followed by their characterization methods and the effect of water chemistry on adsorption capacities and removal mechanisms. Functionalized CNTs have been proven to be promising nanomaterials for the decontamination of waters due to their high adsorption capacity. However, most of the functional CNT applications are limited to lab-scale experiments only. Feasibility of their large-scale/industrial applications with cost-effective ways of synthesis and assessments of their toxicity with better simulating adsorption mechanisms still need to be studied.
Collapse
|
8
|
Gao S, Wang Q, Nie J, Poon CS, Yin H, Li JS. Arsenate(V) removal from aqueous system by using modified incinerated sewage sludge ash (ISSA) as a novel adsorbent. CHEMOSPHERE 2021; 270:129423. [PMID: 33401069 DOI: 10.1016/j.chemosphere.2020.129423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Adsorption methods have been widely used in wastewater treatment due to its high removal efficiency, easy operation and handling, economic efficiency and little secondary pollution to the environment. In this paper, a high-iron containing incineration sewage sludge ash (ISSA) was modified by combined acid leaching and precipitation processes to improve its adsorption capacity of As(V). The effects of pH, time, temperature and ionic strength on the adsorption of As(V) were investigated by batch adsorption experiments. The results indicated that iron (mainly present as hematite) in the ISSA was rearranged to Fe(SO4)OH. The modified ISSA showed an excellent adsorption potential for As(V) under acidic conditions and the adsorption capacity was around 9 times of the unmodified ISSA at pH 2-3. The adsorption process was fast during the first 2 h and reached an equilibrium at around 6 h. The Freundlich model could well fit the adsorption isotherm data, the presence of NO3- and Cl- had a negligible influence on the As(V) removal by the modified ISSA, while PO43- and SO42- could significantly suppress As(V) removal via competitive adsorption. After 3 cycles of regeneration, the modified ISSA still showed a satisfying adsorption capacity. As(V) was removed by the modified ISSA mainly through ligand exchange reaction with hydroxyl oxygen (OH-) to form inner-sphere complexes. Therefore, the modified ISSA can be a promising material for As(V) removal from wastewater in particular due to the waste recycling potential.
Collapse
Affiliation(s)
- Shengya Gao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiming Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong
| | - Jing Nie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, China
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong.
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Dutta D, Dubey R, Borah JP, Puzari A. Smart pH-Responsive Polyaniline-Coated Hollow Polymethylmethacrylate Microspheres: A Potential pH Neutralizer for Water Purification Systems. ACS OMEGA 2021; 6:10095-10105. [PMID: 34056164 PMCID: PMC8153678 DOI: 10.1021/acsomega.1c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Smart materials with potential pH controllability are gaining widespread concern due to their versatile applicability in water purification systems. A study presented here demonstrates a successful synthesis of smart pH-responsive polyaniline (PANI)-coated hollow polymethylmethacrylate microspheres (PHPMs) using a combination of solvent evaporation and in situ coating techniques. The material was characterized by using conventional techniques. Images recorded by an optical microscope displayed clear evidence in support of the coating, which was further supported by the SEM images. Surface roughness due to the coating was distinct in the SEM images. The PANI coating has enabled the microsphere to effectively neutralize the pH of water in water purification systems, which is very important in tackling the excessive acidic or basic problem of water resources. This study introduces a simple, facile, and cost-effective synthetic route to develop polyaniline-coated hollow polymethylmethacrylate microspheres with high performance as a pH-responsive material for water purification. The low density of the material and relatively large surface area compared to conventionally used chemicals further enhance the application prospect of the material.
Collapse
Affiliation(s)
- Dhiraj Dutta
- National
Institute of Technology Nagaland, Chumukedima, Dimapur 797103, Nagaland, India
| | - Rama Dubey
- Defence
Research Laboratory, Post Bag No.
2, Tezpur 784001, Assam, India
| | - Jyoti Prasad Borah
- National
Institute of Technology Nagaland, Chumukedima, Dimapur 797103, Nagaland, India
| | - Amrit Puzari
- National
Institute of Technology Nagaland, Chumukedima, Dimapur 797103, Nagaland, India
| |
Collapse
|
10
|
Gong XJ, Li YS, Dong YQ, Li WG. Arsenic adsorption by innovative iron/calcium in-situ-impregnated mesoporous activated carbons from low-temperature water and effects of the presence of humic acids. CHEMOSPHERE 2020; 250:126275. [PMID: 32113091 DOI: 10.1016/j.chemosphere.2020.126275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Innovative iron/calcium in-situ-impregnated mesoporous activated carbons (GL100 and GL200) have been prepared by iron/calcium in-situ-impregnation and Multistage Depth-Activation. Arsenic adsorption kinetics, isotherms, thermodynamics, and re-usability were investigated. Effects of surface-absorbed (ST-HA) and dissolved states humic acid (DHA) on the arsenic adsorption were also determined. Results suggested in-situ iron/calcium impregnation caused the well-development of mesoporous structures during ranges of 2.0-5.0 nm in GL100 and 5.0-50 nm in GL200, respectively. The increase of iron/calcium ensured surface basicity and high ash contents on GL100/GL200, and As(III)/As(V) can be better adsorbed in neutral conditions with higher kinetics in comparison with regular mesoporous carbon XHIT. Maximum adsorption capacities of As(III)/As(V) by GL100 and GL200 were 2.985/3.385 mg/g and 2.516/2.807 mg/g, respectively. Arsenic desorption and carbon re-usability of GL100/200 was improved. As(III)(As (V)) adsorption capacities by GL100 and GL200 were 2.437(1.672) mg/g and 1.740(1.308) mg/g, respectively, after eight cycles. Arsenic adsorption capacities on GL100 were proved to be promoted with the presence of low-level of ST-HA or DHA, and be inhibited at a high-level. As(V) was bound more strongly than As(III) in the presence of ST-HA. As(III)/As(V) uptakes increased slightly and decrease gradually to 1.75/1.86 mg/g in the presence of DHA (0-10 mg DOC/L). Physisorption and chemisorption mechanisms dominant in arsenic adsorption on GL100 in presence of humic acid, forming inner-sphere complexation with metallic oxide, functional groups on carbon surface and humic acid structure, or ternary surface complexation via cationic metal ions as cation bridge.
Collapse
Affiliation(s)
- Xu-Jin Gong
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Yu-Shu Li
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Yu-Qi Dong
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Wei-Guang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
11
|
Akbari H, Gholami M, Akbari H, Adibzadeh A, Taghavi L, Hayati B, Nazari S. Poly (amidoamine) generation 6 functionalized Fe 3O 4@SiO 2/GPTMS core-shell magnetic NPs as a new adsorbent for Arsenite adsorption: kinetic, isotherm and thermodynamic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:253-265. [PMID: 32399237 PMCID: PMC7203406 DOI: 10.1007/s40201-020-00461-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/19/2020] [Indexed: 05/28/2023]
Abstract
In this survey a new route has been developed the preparation of poly (amidoamine) generation 6 (PAMAM-G6) dendrimer functionalized Fe3O4/SiO2 nanoparticle and was used for arsenite (As (III)) adsorption. SiO2 was first grafted onto the surface of Fe3O4 to formation a core-shell structure. Then the introduction of epoxy rings were done by hydrolysis of methylsilane groups of 3-Glycidoxypropyltrimethoxysilane (GPTMS) on OH groups of SiO2 and afterwards, PAMAM-G6 reacted with epoxy rings of GPTMS to obtain a multiamino magnetic adsorbent. The as-prepared nanocomposite was characterized by TEM, Zeta potential, FESEM, VSM, FTIR, Raman and XPS techniques. The effects of reaction time from 5 to 50 min, initial As (III) concentration in the range of 1-10 mgL-1, initial adsorbent concentration in the range of 10-50 mgL-1 and initial pH in the range 3-8 were studied. The resulting of kinetic and isotherm models displays high adsorption affinity (233 mg/g) for As (III) and the adsorbent can reach the adsorbent can reach the adsorption equilibrium at a neutral pH (7). The As (III) loaded nanocomposite could be separated readily from aqueous solution by magnetic and regenerated simply via NaOH. The study of the adsorption procedure showed that the pseudo-second order kinetics and Langmuir isotherm well-fitted with the experimental data of As (III) adsorption onto nanocomposite.
Collapse
Affiliation(s)
- Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Lobat Taghavi
- Department of Environmental Pollution, Faculty of Natural Resources and Environment, Science and research Branch, Islamic Azad University, Tehran, Iran
| | - Bagher Hayati
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Shahram Nazari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Chen T, Quan X, Ji Z, Li X, Pei Y. Synthesis and characterization of a novel magnetic calcium-rich nanocomposite and its remediation behaviour for As(III) and Pb(II) co-contamination in aqueous systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135122. [PMID: 31841845 DOI: 10.1016/j.scitotenv.2019.135122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 05/22/2023]
Abstract
Herein, a novel magnetic calcium-rich biochar (MCRB), prepared by loading Fe3O4 nanoparticles (Fe3O4 NPs) on crab shell-derived biochar, was studied for remediation of arsenic and lead co-contamination. Characteristics of the MCRB demonstrated that Fe3O4 NPs adhered on the biochar matrix uniformly. Batch experiments on the effects of pH, contact time and initial concentrations revealed that for both metals, removal by the MCRB was pH-dependent with an optimal pH of 6, and that the MCRB had a strong ability for removing arsenic and lead with maximum removal capacities of 15.8 and 62.4 mg g-1, respectively. The mechanisms of the simultaneous removal of arsenic and lead involved both competitive and synergistic effects. The As(III) addition enhanced Pb(II) removal by 5.4-18.8%, while the presence of Pb(II) suppressed As(III) removal by 5.8-17.8%. Competitive complexation of the two metals with biochar was responsible for the suppression, while the enhancement was due mainly to the formation of the Pb(II)-As(III)-FeO ternary surface complex with As(III) as the bridging molecule. These new insights can further our understanding of the application of MCRB as a potential material for use in the treatment of arsenic and lead co-contamination.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xiangchun Quan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zehua Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xiuqing Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
13
|
ZabihiSahebi A, Koushkbaghi S, Pishnamazi M, Askari A, Khosravi R, Irani M. Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. Int J Biol Macromol 2019; 140:1296-1304. [DOI: 10.1016/j.ijbiomac.2019.08.214] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023]
|
14
|
Modified Leach Residues from Processing Deep-Sea Nodules as Effective Heavy Metals Adsorbents. METALS 2019. [DOI: 10.3390/met9040472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possible use of leaching residue from leaching deep-sea nodules in SO2/H2SO4/H2O medium as a low-cost adsorbent of heavy metals (Pb(II), Cd(II), Cu(II), Ni(II), Co(II), As(V)) was studied. The leaching residue was found to be an effective adsorbent for all of the tested elements; however, it was inactive in the solution containing As(V). The chemical activation of adsorbent in 10 vol. % HCl resulted in the greatest improvement of adsorption properties, while the activation in 10 vol. % HNO3 and heat treatment at 250 °C did not significantly affect the sorption characteristics of treated adsorbents compared with the original leaching residue. After HCl activation, the maximal adsorption capacities for lead (12.0 mg/g at pH 5.0 after 1 h), nickel (3.1 mg/g at pH 5.5 after 4 h) and cobalt (2.0 mg/g at pH 5.0 after 2 h) were achieved. Additional mechanical treatment connected with HCl activation provided the highest adsorption capacities for cadmium (11.5 mg/g at pH 4.0) and copper (5.7 mg/g at pH 4.5). Coprecipitation of Fe/Al-based particles on the surface of the leaching residue increased As(V) removal of the adsorbent. Surface coating based on AlIII was extremely effective, causing the increase of the adsorption capacity from 0 with the original leaching residue, to 28.1 mg/g (pH 7.0, 24 min). Kinetics studies showed the rapid progress of adsorption for Pb(II), Cd(II), and As(V) in tens of minutes, while the adsorption of Cu(II), Ni(II) and Co(II) approached a steady state after 2 h.
Collapse
|
15
|
Adsorption of Gold(I) and Gold(III) Using Multiwalled Carbon Nanotubes. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Carbon nanotubes are materials that have been investigated for diverse applications including the adsorption of metals. However, scarce literature has described their behavior in the case of the adsorption of precious metals. Thus, this work reports the efficient adsorption of gold from cyanide or chloride media on multiwalled carbon nanotubes (MWCNTs). In a cyanide medium, gold was adsorbed from alkaline pH values decreasing the adsorption as the pH values were increased to more acidic values. In a chloride medium, the MWCNTs were able to load the precious metal and an increased HCl concentration (0.1–10 M), in the aqueous solution, had no effect on the gold uptake onto the nanotubes. From both aqueous media, the metal adsorption was well represented by the pseudo-second order kinetic model. In the cyanide medium, the film-diffusion controlled process best fitted the rate law governing the adsorption of gold onto the nanotubes, whereas in the chloride medium, the adsorption of the metal onto the nanotubes is best represented, both at 20 °C and 60 °C, by the particle-diffusion controlled process. With respect to the elution step, in cyanide medium gold loaded onto the nanotubes can be eluted with acidic thiourea solutions, whereas in the chloride medium, and due to that the adsorption process involved the precipitation of zero valent gold onto the multiwalled carbon nanotubes, the elution has been considered as a leaching step with aqua regia. From the eluates, dissolved gold can be conveniently precipitated as zero valent gold nanoparticles.
Collapse
|
16
|
Shahrin S, Lau WJ, Goh PS, Jaafar J, Ismail AF. Adsorptive Removal of As(V) Ions from Water using Graphene Oxide-Manganese Ferrite and Titania Nanotube-Manganese Ferrite Hybrid Nanomaterials. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201800322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sazreen Shahrin
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Woei-Jye Lau
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Pei-Sean Goh
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Juhana Jaafar
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| | - Ahmad Fauzi Ismail
- Universiti Teknologi Malaysia; Advanced Membrane Technology Research Centre (AMTEC); 81310 Skudai, Johor Malaysia
- Universiti Teknologi Malaysia; School of Chemical and Energy Engineering; 81310 Skudai, Johor Malaysia
| |
Collapse
|
17
|
Zhao Y, Wang C, Wang S, Wang C, Liu Y, Al-Khalaf AA, Hozzein WN, Duan L, Li W, Zhao D. Magnetic mesoporous TiO2 microspheres for sustainable arsenate removal from acidic environments. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00588e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique magnetic mesoporous TiO2 microspheres exhibit superior arsenate removal performance and high stability in acidic environments.
Collapse
Affiliation(s)
- Yujuan Zhao
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | - Changyao Wang
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | - Shuai Wang
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | - Chun Wang
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | - Yupu Liu
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | | | - Wael N. Hozzein
- Bioproducts Research Chair
- Zoology Department
- College of Science
- King Saud University
- Riyadh 11451
| | - Linlin Duan
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | - Wei Li
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| | - Dongyuan Zhao
- Department of Chemistry
- Laboratory of Advanced Materials
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- iChEM and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
| |
Collapse
|