1
|
Pugazhendhi A, Kamarudin SK, Alshehri MA, Ganesan R, Brindhadevi K. Nanomaterials - A promising solution for textile and fossil fuel generated pollutants. ENVIRONMENTAL RESEARCH 2024; 258:119427. [PMID: 38889840 DOI: 10.1016/j.envres.2024.119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - S K Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Chemical Engineering, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | | | - Ramya Ganesan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
2
|
Malsawmdawngzela R, Siama L, Tiwari D, Lee SM, Kim DJ. Efficient and selective use of functionalized material in the decontamination of water: removal of emerging micro-pollutants from aqueous wastes. ENVIRONMENTAL TECHNOLOGY 2023; 44:1099-1113. [PMID: 34649467 DOI: 10.1080/09593330.2021.1994654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The contamination of the aquatic environment with emerging micro-pollutants is a serious global concern. The aim of this investigation was to synthesize novel functionalized material (BNAPTES) precursor to natural bentonite in a single pot facile synthetic route. The material was utilized for efficient and selective removal of tetracycline (TC) and triclosan (TCS) in aqueous wastes. The grafting of silane was confirmed with the FT-IR (Fourier Transform Infra-Red) analysis and the EDX (Energy Dispersive X-ray) analysis showed the incorporation of amino group with the bentonite. The structural changes of clay due to silane grafting were studied with the help of XRD (X-ray Diffraction) and BET (Brunner-Emmett-Teller) surface area analyses. Batch adsorption studies showed that functionalized clay significantly increased the selectivity and adsorption capacity of bentonite for TC and TCS. The Langmuir monolayer adsorption capacity was found to be 15.36 and 17.15 mg/g for TC and TCS, respectively. The rapid uptake of TC and TCS by functionalized material followed pseudo-second-rate kinetics. Further, a total of 78% of TC and 73% of TCS were removed within 5 min of contact and the adsorption equilibrium was achieved within 120 min. The influence of background electrolytes and co-existing ions indicated that TC and TCS were selective towards BNAPTES. The loading capacities of the column packed with BNAPTES were found to be 56.00 and 44.42 mg/g for TC and TCS, respectively. Further, BNAPTES was found efficient even in real water treatment since the attenuation of TC and TCS was not affected significantly in the real water matrix.
Collapse
Affiliation(s)
| | | | - Diwakar Tiwari
- Department of Chemistry, Mizoram University, Aizawl, India
| | - Seung-Mok Lee
- Department of Health and Environmental, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Dong-Jin Kim
- Department of Environmental Sciences and Biotechnology & Institute of Energy and Environment, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Vega R, Rong R, Dai M, Ali I, Naz I, Peng C. Fe-C-based materials: synthesis modulation for the remediation of environmental pollutants-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64345-64369. [PMID: 35849230 DOI: 10.1007/s11356-022-21849-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Presently, the rapid pace in the discovery of emerging aquatic pollutants is increasing the demand for the remediation and treatment of our natural resources. Regarding this, nanotechnology is being considered the potential solution for contaminated water remediation with techniques such as filtration, adsorption, catalysis, and desalination. For this purpose, zerovalent iron (ZVI) is being widely used in the remediation of environmental pollutants due to its large specific surface area and high reactivity. However, ZVI is easy to agglomerate and oxidize, limiting its application in the real environment. Therefore, the present study was designed to discuss the preparation and characterization methods of ZVI composite materials, factors affecting adsorption, the removal effect, and adsorption mechanism of different pollutants by Fe-C materials because the optimization and modification of nano-zero-valent iron is a hot research topic nowadays in this field. Moreover, this paper does also analyze the possibility of the practical application prospects of the team's technology for preparing iron-carbon materials. Thus, this information will be helpful for the development and application of Fe-C-based technologies for water and soil remediation and the prediction of the future research direction of Fe-C composite materials.
Collapse
Affiliation(s)
- Robinson Vega
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Rong Rong
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Iffat Naz
- Science Unit, Deanship of Educational Services, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| |
Collapse
|
4
|
|
5
|
Qamar MA, Shahid S, Javed M, Iqbal S, Sher M, Bahadur A, AL-Anazy MM, Laref A, Li D. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126176] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
|
7
|
Diacon A, Mocanu A, Răducanu CE, Busuioc C, Șomoghi R, Trică B, Dinescu A, Rusen E. New carbon/ZnO/Li 2O nanocomposites with enhanced photocatalytic activity. Sci Rep 2019; 9:16840. [PMID: 31727991 PMCID: PMC6856305 DOI: 10.1038/s41598-019-53335-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023] Open
Abstract
Our study was focused on the synthesis of photocatalytic materials for the degradation of organic dyes based on the valorization of biomass resources. The biochar resulted from pyrolysis process of cherry pits wastes was activated by CO2 flow. Activated and inactivated carbon was used to obtain carbon-based photocatalysts impregnated with different zinc salt precursors. The activation of carbon had no significant influence on the photodegradation process. The doping procedure used Li2CO3 and Zn(CH3COO)2 of different concentrations to impregnate the biochar. The carbon-ZnO-Li2O based nanomaterials were analysed by TEM and SEM, while the presence of hexagonal wurtzite ZnO was investigated by XRD. The solid samples were analysed by PL at 360 nm excitation fixed wavelength to correlate their morphology with the optical and photocatalytic properties. The presence of Li atoms led to photocatalytic activities of the doped ZnO similar to the undoped ZnO obtained at higher concentrations of zinc acetate precursor.
Collapse
Affiliation(s)
- Aurel Diacon
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu Street 1-7, Bucharest, postal code 011061, Romania
| | - Alexandra Mocanu
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu Street 1-7, Bucharest, postal code 011061, Romania.
| | - Cristian Eugen Răducanu
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu Street 1-7, Bucharest, postal code 011061, Romania
| | - Cristina Busuioc
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu Street 1-7, Bucharest, postal code 011061, Romania
| | - Raluca Șomoghi
- National Research and Development Institute for Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independenţei, Bucharest, 060021, Romania
| | - Bogdan Trică
- National Research and Development Institute for Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independenţei, Bucharest, 060021, Romania
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies - IMT-Bucharest, 126 A, Erou Iancu Nicolae Street, PO-BOX 38-160, 023573, Bucharest, 077190, Romania
| | - Edina Rusen
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu Street 1-7, Bucharest, postal code 011061, Romania
| |
Collapse
|
8
|
Choudri BS, Charabi Y. Health effects associated with wastewater treatment, reuse, and disposal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:976-983. [PMID: 31177600 DOI: 10.1002/wer.1157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
This paper highlights the review of scientific literature published in the year 2018 on issues related to health risks associated with human and the general environment on the reuse of wastewater, treatment as well as disposal. The literature review on the above issues divided into number of sections, and these sections include management of wastewater, wastewater reuse with focus on microbial hazards, and chemical hazards. Further, the review also provides some recent research related to wastewater treatment plants, disposal of wastewater, sludge, and biosolids management. PRACTITIONER POINTS: This paper highlights the review of scientific literature published in the year 2018. Review provide issues related to health risks associated with human and the general environment on the reuse of wastewater, treatment as well as disposal. Literature review covers selected papers relevant to the topic.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Sultanate of Oman, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Sultanate of Oman, Muscat, Oman
| |
Collapse
|