1
|
Eades W, Abdolmohammadpourbonab S, Dinh L, Yan B. Ionic liquids and their potential use in development and improvement of drug delivery systems: evidence of their tendency to promote drug accumulation in the brain. Pharm Dev Technol 2024; 29:1065-1074. [PMID: 39403783 DOI: 10.1080/10837450.2024.2417004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Ionic liquids (ILs) are considered salt in liquid state, which is composed of organic cations and anions with low melting points (<100 °C). ILs have become a major scientific area with an extensive range of applications including chemistry, electrochemistry, and pharmaceutics. ILs have received great research interest in the pharmaceutical field as solvents, anti-solvents, co-solvents, and reagents in synthesis and formulation. While therapeutic ILs have been investigated for oral and trans-dermal drug delivery systems showing promising compatibility with a wide range of therapeutics, enhanced drug permeation through the skin, and cell membrane solvation to open channels to facilitate molecular passage, their potential to cross the challenging blood-brain barrier (BBB) remains an unanswered question. IL-based therapies could potentially be a game changer for improving drug delivery to cellular targets both at and across the BBB. In this review, we discuss (1) the tunable physicochemical properties of ILs; (2) the vast and various applications of ILs in the development and improvement of drug delivery systems; and (3) ILs as a potential approach for increasing drug accumulation in the brain tissue.
Collapse
Affiliation(s)
- William Eades
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Linh Dinh
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
Dang LH, Vu NQ, Nguyen TT, Do THT, Pham TKT, Tran NQ. Thermally-responsive and reduced glutathione-sensitive folate-targeted nanocarrier based on alginate and pluronic F127 for on-demand release of methotrexate. Int J Biol Macromol 2024; 263:130227. [PMID: 38378121 DOI: 10.1016/j.ijbiomac.2024.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
A specific rheumatoid arthritis (RA)-microenvironment-triggered nanocarrier for RA treatment of a first-line antirheumatic drug (Methotrexate, MTX) has been proposed. Reduced glutathione (GSH) responsivity, cystamine, was first introduced on the alginate backbone, which was then used as the bridge to connect pluronic F127 (temperature-responsive factor) and folic acid (targeting factor for active immune cells), resulting in dual-responsive triggered targeting carrier, PCAC-FA. In vitro study demonstrated that PCAC-FA was preferentially taken up by activated macrophage cells rather than normal ones, suggesting the targeting of PCAC-FA to inflamed tissue. The loading capacity of the designed carrier was 21.23 ± 0.91 %. MTX from the PCAC-FA carrier was significantly accelerated release in the presentation of glutathione or in cold shock condition, proposing the efficacy-controlled release. MTX@PCAC-FA showed excellent hemocompatibility, confirming a suitable application with parenteral administration. Notably, the acute and subacute toxicity in the mice model showed that the toxicity of MTX had significantly reduced after encapsulating in the PCAC-FA carrier. These nanoplatforms not only provide an alternative safe strategy for the clinical treatment of rheumatoid arthritis with MTX but also deliver MTX selectively and provide on-demand drug release via external and internal signals, thus emerging as a promising therapeutic option for precise RA therapy.
Collapse
Affiliation(s)
- Le Hang Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| | - Nhu Quynh Vu
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam; School of Medicine -, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Thuy Tien Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam; School of Medicine -, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Thi Hong Tuoi Do
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Thi Kim Tram Pham
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| |
Collapse
|
4
|
Niesyto K, Mazur A, Neugebauer D. Piperacillin/Tazobactam Co-Delivery by Micellar Ionic Conjugate Systems Carrying Pharmaceutical Anions and Encapsulated Drug. Pharmaceutics 2024; 16:198. [PMID: 38399252 PMCID: PMC10891911 DOI: 10.3390/pharmaceutics16020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions and encapsulated TAZ for co-delivery. The exchange of Cl anions in TMAMA units with PIP ones resulted in a yield of 45.6-72.7 mol.%. The self-assembling properties were confirmed by the critical micelle concentration (CMC), which, after ion exchange, increased significantly (from 0.011-0.020 mg/mL to 0.041-0.073 mg/mL). The amphiphilic properties were beneficial for TAZ encapsulation to reach drug loading contents (DLCs) in the ranges of 37.2-69.5 mol.% and 50.4-80.4 mol.% and to form particles with sizes of 97-319 nm and 24-192 nm in the single and dual systems, respectively. In vitro studies indicated that the ionically conjugated drug (PIP) was released in quantities of 66-81% (7.8-15.0 μg/mL) from single-drug systems and 21-25% (2.6-3.9 μg/mL) from dual-drug systems. The release of encapsulated TAZ was more efficient, achieving 47-98% (7.5-9.0 μg/mL) release from the single systems and 47-69% (9.6-10.4 μg/mL) release from the dual ones. Basic cytotoxicity studies showed non-toxicity of the polymer matrices, while the introduction of the selected drugs induced cytotoxicity against normal human bronchial epithelial cells (BEAS-2B) with the increase in concentration.
Collapse
Affiliation(s)
| | | | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (K.N.); (A.M.)
| |
Collapse
|
5
|
Zhuo Y, Cheng HL, Zhao YG, Cui HR. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024; 16:151. [PMID: 38276519 PMCID: PMC10818567 DOI: 10.3390/pharmaceutics16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - He-Li Cheng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
6
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
7
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Md Moshikur R, Goto M. Pharmaceutical Applications of Ionic Liquids: A Personal Account. CHEM REC 2023; 23:e202300026. [PMID: 37042429 DOI: 10.1002/tcr.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Ionic liquids (ILs) have been extensively used in drug formulation and delivery as designer solvents and other components because of their inherent tunability and useful physicochemical and biopharmaceutical properties. ILs can be used to manage some of the operational and functional challenges of drug delivery, including drug solubility, permeability, formulation instability, and in vivo systemic toxicity, that are associated with conventional organic solvents/agents. Furthermore, ILs have been recognized as potential solvents to address the polymorphism, limited solubility, poor permeability, instability, and low bioavailability of crystalline drugs. In this account, we discuss the technological progress and strategies toward designing biocompatible ILs and explore potential biomedical applications, namely the solubilization of small and macromolecular drugs, the creation of active pharmaceutical ingredients, and the delivery of pharmaceuticals.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Advanced Transdermal Drug Delivery System Center, Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Fukuta T, Ikeda-Imafuku M, Iwao Y. Development of Edaravone Ionic Liquids and Their Application for the Treatment of Cerebral Ischemia/Reperfusion Injury. Mol Pharm 2023. [PMID: 37155370 DOI: 10.1021/acs.molpharmaceut.3c00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| |
Collapse
|
10
|
Moshikur RM, Carrier RL, Moniruzzaman M, Goto M. Recent Advances in Biocompatible Ionic Liquids in Drug Formulation and Delivery. Pharmaceutics 2023; 15:1179. [PMID: 37111664 PMCID: PMC10145603 DOI: 10.3390/pharmaceutics15041179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective drug formulations and delivery systems for newly developed or marketed drug molecules remains a significant challenge. These drugs can exhibit polymorphic conversion, poor bioavailability, and systemic toxicity, and can be difficult to formulate with traditional organic solvents due to acute toxicity. Ionic liquids (ILs) are recognized as solvents that can improve the pharmacokinetic and pharmacodynamic properties of drugs. ILs can address the operational/functional challenges associated with traditional organic solvents. However, many ILs are non-biodegradable and inherently toxic, which is the most significant challenge in developing IL-based drug formulations and delivery systems. Biocompatible ILs comprising biocompatible cations and anions mainly derived from bio-renewable sources are considered a green alternative to both conventional ILs and organic/inorganic solvents. This review covers the technologies and strategies developed to design biocompatible ILs, focusing on the design of biocompatible IL-based drug formulations and delivery systems, and discusses the advantages of these ILs in pharmaceutical and biomedical applications. Furthermore, this review will provide guidance on transitioning to biocompatible ILs rather than commonly used toxic ILs and organic solvents in fields ranging from chemical synthesis to pharmaceutics.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rebecca L. Carrier
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Safdar R, Nawaz M, Mushtaq A, Khanh Tran T, Aziz Omar A. A Bibliometric Analysis for Estimating the Global Research Trends Related to Applications of Ionic Liquids in Drug Delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
13
|
Islamov II, Yusupova AV, D'yakonov VA, Dzhemilev UM. Synthesis of new ionic liquids based on (5Z,9Z)-alkadienoic acids and choline. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M. Transformation of Hydrophilic Drug into Oil-Miscible Ionic Liquids for Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55332-55341. [PMID: 36508194 DOI: 10.1021/acsami.2c15636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Islam Md Shimul
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Richu, Sharmhal A, Kumar A, Kumar A. Insights into the applications and prospects of ionic liquids towards the chemistry of biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Tumor Targeting with Methotrexate-Conjugated Zwitterionic Near-Infrared Fluorophore for Precise Photothermal Therapy. Int J Mol Sci 2022; 23:ijms232214127. [PMID: 36430604 PMCID: PMC9697011 DOI: 10.3390/ijms232214127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted tumor imaging can effectively enable image-guided surgery and precise cancer therapy. Finding the right combination of anticancer drugs and near-infrared (NIR) fluorophores is the key to targeted photothermal cancer treatment. In this study, a tumor-targetable NIR fluorophore conjugate with rapid body clearance was developed for accurate tumor imaging and effective photothermal therapy (PTT). The methotrexate (MTX) and zwitterionic NIR fluorophore conjugate (MTX-ZW) were prepared by conjugating a folate antagonist MTX with an aminated ZW800-1 analog to increase the tumor targetability for NIR laser-based PTT of cancer. The MTX, known as a poor tumor-selective drug, showed high tumor accumulation and rapid background clearance after conjugation with the highly water-soluble zwitterionic NIR fluorophore up to 4 h post-injection. The photothermal energy was generated from the MTX-ZW conjugate to induce necrotic cell death in the targeted tumor site under 808 nm laser irradiation. Compared with the previously reported MTX conjugates, the MTX-ZW conjugate can be a great candidate for targeted tumor imaging and fluorescence-guided photothermal cancer therapy. Therefore, these results provide a strategy for the design of drug-fluorophore conjugates and elaborate therapeutic platforms for cancer phototherapy.
Collapse
|
17
|
Yan Z, Sun M, Lv Y. Novel berberine-based pharmaceutical salts with fatty acid anions: Synthesis, characterization, physicochemical properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Amsel AK, Olsson O, Kümmerer K. Inventory of biodegradation data of ionic liquids. CHEMOSPHERE 2022; 299:134385. [PMID: 35337825 DOI: 10.1016/j.chemosphere.2022.134385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are increasingly of interest for environmentally open applications. Therefore, completely mineralising ILs are highly desirable. We reviewed the current state of knowledge on ILs' environmental biodegradability and identified research needs. Literature data were evaluated as for applied standard methods (e.g. OECD, ISO, APHA) for biodegradation of ILs in order to get an overview on the validity of the test results received and ILs' biodegradability. 109 studies were evaluated. The ILs were categorised based on the cation's core structure. The biodegradation data was classified according to a traffic light system (red: 0-19% degradation, amber: 20-59% degradation, green: ≥ 60% degradation). Not all studies could be assessed for compliance with the test guidelines due to missing test parameters. Moreover, no study discussed all validation criteria as defined by the test guidelines. Consequently, the reliability and quality of the existing biodegradation data is restrained. With regard to the different cations classified for ≥ 60% biodegradability, phosphonium ILs are the least biodegradable, followed by imidazolium ones. The most ILs that were biodegradable are cholinium ILs. The results indicate the need for more and qualitatively better testing according to standard methods including application and reporting of all validation criteria in order to get reliable data that enables the comparison of the test data and a comprehensive understanding of ILs' biodegradability. Moreover, reliable data allows the selection of sufficiently environmentally biodegradable ILs if an introduction into the environment during use cannot be excluded.
Collapse
Affiliation(s)
- Ann-Kathrin Amsel
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
19
|
Handa M, Almalki WH, Shukla R, Afzal O, Altamimi ASA, Beg S, Rahman M. Active pharmaceutical ingredients (APIs) in ionic liquids: An effective approach for API physiochemical parameter optimization. Drug Discov Today 2022; 27:2415-2424. [PMID: 35697283 DOI: 10.1016/j.drudis.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Ionic liquids (ILs) are widely used as solvents, co-solvents and permeation enhancers in the biomedical and pharmaceutical fields. There are many advantages to using active pharmaceutical ingredients (APIs) in the production of ILs for drug delivery, including the ability to tailor solubility, improve thermal stability, increase dissolution, regulate drug release, improve API permeability, and modulate cytotoxicity on tumor cells. Such an approach has shown significant potential as a tool for drug delivery. As a result, APIs converted into ILs are used as active components in solutions, emulsions, and even nanoparticles (NPs). In this review, we explore the use and physiochemical characteristics of APIs via ILs, including improvements of their physicochemical properties in preformulation and formulation development.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| |
Collapse
|
20
|
|
21
|
Shimul IM, Moshikur RM, Minamihata K, Moniruzzaman M, Kamiya N, Goto M. Amino Acid Ester based Phenolic Ionic Liquids as a Potential Solvent for the Bioactive Compound Luteolin: Synthesis, Characterization, and Food Preservation Activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Applications of choline-based ionic liquids in drug delivery. Int J Pharm 2022; 612:121366. [PMID: 34896216 DOI: 10.1016/j.ijpharm.2021.121366] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) usually refer to kinds of salts with melting point below 100 °C and are composed of definite anions and cations. In recent years, in addition to the field of material engineering, the applications of ILs have been extended to biomedical application. As a solubilizer, skin penetration enhancer, antibacterial agent, and macromolecular stabilizer of poorly soluble active pharmaceutical ingredients, ILs have attracted great attention in the field of pharmaceutical research. Among them, choline-based ILs are very popular in the field of drug delivery due to their biocompatibility, biodegradability, low toxicity or non-toxicity and other characteristics. This article mainly reviews the applications of choline-based ILs formed by choline and organic acid and choline-based ionic liquids-pharmaceutical active ingredients in transdermal delivery, topical delivery and oral delivery.
Collapse
|
23
|
Physicochemical study on molecular interactions of the active pharmaceutical ingredient ionic liquid domiphen salicylate with amino acids at different temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Klebeko J, Ossowicz-Rupniewska P, Świątek E, Szachnowska J, Janus E, Taneva SG, Krachmarova E, Guncheva M. Salicylic Acid as Ionic Liquid Formulation May Have Enhanced Potency to Treat Some Chronic Skin Diseases. Molecules 2021; 27:216. [PMID: 35011452 PMCID: PMC8746858 DOI: 10.3390/molecules27010216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, numerous studies have shown that conversion of conventional drugs in ionic liquid (IL) formulation could be a successful strategy to improve their physicochemical properties or suggest a new route of administration. We report the synthesis and detailed characterization of eight salicylic acid-based ILs (SA-ILs) containing cation non-polar or aromatic amino acid esters. Using in vitro assays, we preliminary evaluated the therapeutic potency of the novel SA-ILs. We observed that conversion of the SA into ionic liquids led to a decrease in its cytotoxicity toward NIH/3T3 murine embryo fibroblasts and human HaCaT keratinocytes. It should be mentioned is that all amino acid alkyl ester salicylates [AAOR][SA] inhibit the production of the proinflammatory cytokine IL-6 in LPS-stimulated keratinocytes. Moreover, keratinocytes, pretreated with [PheOMe][SA] and [PheOPr][SA] seem to be protected from LPS-induced inflammation. Finally, the novel compounds exhibit a similar binding affinity to bovine serum albumin (BSA) as the parent SA, suggesting a similar pharmacokinetic profile. These preliminary results indicate that SA-ILs, especially those with [PheOMe], [PheOPr], and [ValOiPr] cation, have the potential to be further investigated as novel topical agents for chronic skin diseases such as psoriasis and acne vulgaris.
Collapse
Affiliation(s)
- Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Ewelina Świątek
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Joanna Szachnowska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria;
| | - Elena Krachmarova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria;
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
25
|
Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M. Methotrexate-based ionic liquid as a potent anticancer drug for oral delivery: In vivo pharmacokinetics, biodistribution, and antitumor efficacy. Int J Pharm 2021; 608:121129. [PMID: 34562557 DOI: 10.1016/j.ijpharm.2021.121129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Oral delivery of the sparingly soluble drug methotrexate (MTX) is challenging owing to its poor bioavailability and low solubility. To address this challenge, the present study reports the conversion of MTX into a series of five ionic liquids (ILs) comprising a cationic component-i.e., cholinium (Cho), tetramethylammonium (TMA), tetrabutylphosphonium (TBP), or an amino acid ester-and an anionic component-i.e., MTX. The biocompatibility, pharmacokinetics, tissue distribution, and antitumor efficacy of each MTX-based IL were investigated to determine its usefulness as a pharmaceutical. Oral administration to mice revealed that proline ethyl ester MTX (IL[ProEt][MTX]) had 4.6-fold higher oral bioavailability than MTX sodium, followed by aspartic diethyl ester MTX, IL[TBP][MTX], IL[Cho][MTX], and IL[TMA][MTX]. The peak plasma concentration, elimination half-life, area under the plasma concentration, mean absorption time, and body clearance of IL[ProEt][MTX] were significantly (p < 0.0001) higher by 1.7-, 6.2-, 4.6-, 2.5-, and 3.6-fold, respectively, than those of MTX sodium. MTX accumulation in the lungs, spleen, kidney, and gastrointestinal tract was also reduced by 5.6-, 1.8-, 1.5-, and 1.4-fold, respectively, indicating the IL formulations had lower systemic toxicity than free MTX. Mechanistic studies revealed that the IL[ProEt][MTX] solution formed spherical structures with an average size of 190 nm. This was probably responsible for its improved oral absorption performance in vivo. In vivo antitumor studies also demonstrated that IL[ProEt][MTX] suppressed tumor growth more than MTX sodium. These results suggest that MTX-based ILs provide a simple scalable approach to improving the oral bioavailability of poorly soluble MTX.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Md Korban Ali
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
26
|
|
27
|
Curreri AM, Mitragotri S, Tanner EEL. Recent Advances in Ionic Liquids in Biomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004819. [PMID: 34245140 PMCID: PMC8425867 DOI: 10.1002/advs.202004819] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
The use of ionic liquids and deep eutectic solvents in biomedical applications has grown dramatically in recent years due to their unique properties and their inherent tunability. This review will introduce ionic liquids and deep eutectics and discuss their biomedical applications, namely solubilization of drugs, creation of active pharmaceutical ingredients, delivery of pharmaceuticals through biological barriers, stabilization of proteins and other nucleic acids, antibacterial agents, and development of new biosensors. Current challenges and future outlooks are discussed, including biocompatibility, the potential impact of the presence of impurities, and the importance of understanding the microscopic interactions in ionic liquids in order to design task-specific solvents.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Present address:
Department of Chemistry and BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
28
|
Uddin S, Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Lipid-Based Ionic-Liquid-Mediated Nanodispersions as Biocompatible Carriers for the Enhanced Transdermal Delivery of a Peptide Drug. ACS APPLIED BIO MATERIALS 2021; 4:6256-6267. [PMID: 35006923 DOI: 10.1021/acsabm.1c00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid-based biocompatible ionic liquids (LBILs) have attracted attention as carriers in transdermal drug delivery systems (TDDSs) because of their lipophilic character. In this study, we report the formulation of a peptide-LBIL complex microencapsulated in an oil phase as a potential carrier for the transdermal delivery of leuprolide acetate as a model hydrophilic peptide. The peptide-LBIL complexes were prepared via a water-in-oil emulsion composed of 1,2-dimyristoyl-sn-glycerol-3-ethyl-phosphatidylcholine (EDMPC), a fatty acid (stearic, oleic, and linoleic acid)-based LBIL, and cyclohexane followed by freeze-drying to remove the water and cyclohexane. Then, the peptide-LBIL complexes were nanodispersed and stabilized in isopropyl myristate (IPM) using sorbitol laurate (Span-20). Ionic-liquid-in-oil nanodispersions (IL/O-NDs) were prepared with varying weight ratios of LBILs and Span-20 as the surfactant and the cosurfactant, respectively. Keeping the overall surfactant constant at 10 wt % in IPM, a 5:5 wt % ratio of surfactant (IL) and cosurfactant (Span-20) in the IL/O-NDs significantly (p < 0.0001) increased the physiochemical stability, drug-loading capacity, and drug encapsulation efficiency. The in vitro and in vivo peptide delivery across the skin was increased significantly (p < 0.0001) using IL/O-NDs, compared with non-IL-treated groups. Of all of the LBIL-based formulations, [EDMPC][Linoleate]/O-ND was considered the most preferable for a TDDS based on the pharmacokinetic parameters. The transdermal delivery flux with [EDMPC][Linoleate]/O-ND was increased 65-fold compared with the aqueous delivery vehicle. The IL/O-NDs were able to deform the lipid and protein arrangements of the skin layers to enhance the transdermal permeation of the peptide. In vitro and in vivo cytotoxicity studies of the IL/O-NDs revealed the biocompatibility of the LBIL-based formulations. These results indicated that IL/O-NDs are promising biocompatible carriers for lipid-peptide TDDSs.
Collapse
Affiliation(s)
- Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Rafiqul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M. Favipiravir-Based Ionic Liquids as Potent Antiviral Drugs for Oral Delivery: Synthesis, Solubility, and Pharmacokinetic Evaluation. Mol Pharm 2021; 18:3108-3115. [PMID: 34250805 DOI: 10.1021/acs.molpharmaceut.1c00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the β-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Korban Ali
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Rajalingam K, Krishnaswami V, Alagarsamy S, Kandasamy R. Solubility Enhancement of Methotrexate by Solid Nanodispersion Approach for the Improved Treatment of Small Cell Lung Carcinoma. Curr Top Med Chem 2021; 21:140-150. [PMID: 32888268 DOI: 10.2174/1568026620999200904120241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS The present work aimed to develop MT loaded solid Nano dispersion by improving its solubility, half-life and bioavailability in biological system thereby this formulation may be afforded economically. BACKGROUND Small cell lung carcinoma is a type of malignant tumor characterized by uncontrolled cell growth at lung tissues. The potent anti-cancer drug methotrexate (MT) chosen for the present work is poorly soluble in water (BCS type IV class) with short half-life and hepatotoxic effect. OBJECTIVE With the concept of polymeric surfactant to improve the solubility along with wettability of drugs, the present work has been hypothesized to improve its solubility using polyvinyl pyrollidone (PVP K30) polymer and α- tocopheryl polyethylene glycol 1000 succinate (TPGS) surfactant, thereby the bioavailability is expected to get enhanced. By varying the PVP K30 and TPGS ratios different formulations were developed using emulsification process. METHODS The developed MT loaded solid nanodispersion was further characterized for its particle size, charge, morphology, encapsulation efficiency and in-vitro release behavior etc. Results: The results of FT-IR spectrometric analysis indicated the compatibility nature of MTX, PVPK30 and TPGS. The developed formulations showed spherical morphology, particle size ranging from 59.28±24.2 nm to 169.33±10.85 nm with a surface charge ranging from -10.33 ± 2.81mV to -9.57 ± 1.2 mV. The in vitro release studies as performed by dialysis bag method showed a sustained release pattern as checked by UV Spectrophotometer. Residual solvent analysis for MTXNDs performed by HPLC indicates there is no residual DMSO in the formulation. Transmission electron microscopic image of MTXNDs revealed that the particles are spherical shaped with a solid core structure. Haemolytic assay indicates that the developed formulation is safe for intravenous administration. Cell culture studies in A549 cells indicates the enhanced cytotoxic effect for the developed formulation. CONCLUSION This proof of study indicates that the developed formulation may have anticancer potential for SCLC treatment.
Collapse
Affiliation(s)
- Karthikeyan Rajalingam
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| |
Collapse
|
31
|
Silva SS, Gomes JM, Reis RL, Kundu SC. Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends. ACS APPLIED BIO MATERIALS 2021; 4:4000-4013. [PMID: 35006819 DOI: 10.1021/acsabm.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Green solvents such as ionic liquids (ILs) unlock possibilities for developing innovative biomedical and pharmaceutical solutions. ILs are the most investigated solvents for compound extractions, as reaction media and/or catalysts, and a desired eco-friendly solvent to process biomacromolecules for biomaterial production. Investigations demonstrate that the tunable nature and physicochemical features of ILs are also beneficial for building up delivery systems through their combination with bioactive compounds. Bioactive compounds from synthetic origins, like ibuprofen, ketoprofen, and natural sources such as curcumin, flavonoids, and polyphenols are essential starting points as preventive and therapeutic agents for treating diseases. Therefore, the association of those compounds with ILs opens up windows of opportunities in this research field. This Review assesses some of the main and important recent information and the current challenges concerning delivery platforms based on ILs combined with bioactive compounds of both natural and synthetic origins. Moreover, the chemistry, bioavailability, and biological functions of the main bioactive compounds used in the ILs-based delivery platforms are described. These data are presented and are discussed, together with the main delivery routes of the systems.
Collapse
Affiliation(s)
- Simone S Silva
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joana M Gomes
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
32
|
Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19745-19755. [PMID: 33891816 DOI: 10.1021/acsami.1c03111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Physicochemical study on molecular interactions in ternary aqueous solutions of the pharmaceutically active ionic liquid cetylpyridinium salicylate and amino acid/glycylglycine at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Muthukuru P, P. K, Rayadurgam J, Rajasekhara Reddy S. Naturally derived sugar-based ionic liquids: an emerging tool for sustainable organic synthesis and chiral recognition. NEW J CHEM 2021. [DOI: 10.1039/d1nj03914h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past decade, the synthesis of sugar-based ionic liquids (SILs) from natural sugars has been described as a promising strategy.
Collapse
Affiliation(s)
- Priyanka Muthukuru
- Department of Chemistry, Vellore Institute of Technology (VIT), Vellore-632014, India
| | - Krishnaraj P.
- Department of Chemistry, Vellore Institute of Technology (VIT), Vellore-632014, India
| | | | | |
Collapse
|
35
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
36
|
Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M. Formation and potential application of micelles composed of biocompatible N-lauroyl-amino acid ionic liquids surfactant. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ossowicz P, Janus E, Klebeko J, Światek E, Kardaleva P, Taneva S, Krachmarova E, Rangelov M, Todorova N, Guncheva M. Modulation of the binding affinity of naproxen to bovine serum albumin by conversion of the drug into amino acid ester salts. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
39
|
Colloidal properties of self-assembled cationic hyperbranched-polyethyleneimine covered poly lactide-co-glycolide nanoparticles: Exploring modified release and cell delivery of methotrexate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Di Francesco V, Gurgone D, Palomba R, Ferreira MFM, Catelani T, Cervadoro A, Maffia P, Decuzzi P. Modulating Lipoprotein Transcellular Transport and Atherosclerotic Plaque Formation in ApoE -/- Mice via Nanoformulated Lipid-Methotrexate Conjugates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37943-37956. [PMID: 32805983 PMCID: PMC7453397 DOI: 10.1021/acsami.0c12202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 05/02/2023]
Abstract
Macrophage inflammation and maturation into foam cells, following the engulfment of oxidized low-density lipoproteins (oxLDL), are major hallmarks in the onset and progression of atherosclerosis. Yet, chronic treatments with anti-inflammatory agents, such as methotrexate (MTX), failed to modulate disease progression, possibly for the limited drug bioavailability and plaque deposition. Here, MTX-lipid conjugates, based on 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were integrated in the structure of spherical polymeric nanoparticles (MTX-SPNs) or intercalated in the lipid bilayer of liposomes (MTX-LIP). Although, both nanoparticles were colloidally stable with an average diameter of ∼200 nm, MTX-LIP exhibited a higher encapsulation efficiency (>70%) and slower release rate (∼50% at 10 h) compared to MTX-SPN. In primary bone marrow derived macrophages (BMDMs), MTX-LIP modulated the transcellular transport of oxLDL more efficiently than free MTX mostly by inducing a 2-fold overexpression of ABCA1 (regulating oxLDL efflux), while the effect on CD36 and SRA-1 (regulating oxLDL influx) was minimal. Furthermore, in BMDMs, MTX-LIP showed a stronger anti-inflammatory activity than free MTX, reducing the expression of IL-1β by 3-fold, IL-6 by 2-fold, and also moderately of TNF-α. In 28 days high-fat-diet-fed apoE-/- mice, MTX-LIP reduced the mean plaque area by 2-fold and the hematic amounts of RANTES by half as compared to free MTX. These results would suggest that the nanoenhanced delivery to vascular plaques of the anti-inflammatory DSPE-MTX conjugate could effectively modulate the disease progression by halting monocytes' maturation and recruitment already at the onset of atherosclerosis.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department
of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via Opera Pia, 13, 16145 Genoa, Italy
| | - Danila Gurgone
- Centre
for Immunobiology, Institute of Infection, Immunity and Inflammation,
College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Department
of Pharmacy, University of Naples Federico
II, Naples 80131, Italy
| | - Roberto Palomba
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | | | - Tiziano Catelani
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, via Morego
30, Genova 16163, Italy
| | - Antonio Cervadoro
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Pasquale Maffia
- Centre
for Immunobiology, Institute of Infection, Immunity and Inflammation,
College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Department
of Pharmacy, University of Naples Federico
II, Naples 80131, Italy
- Institute
of Cardiovascular and Medical Sciences, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
41
|
Synthesis and characterization of novel 1,3-benzodioxole tagged noscapine based ionic liquids with in silico and in vitro cytotoxicity analysis on HeLa cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Ionic liquids with N-methyl-2-pyrrolidonium cation as an enhancer for topical drug delivery: Synthesis, characterization, and skin-penetration evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112166] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Elgharbawy AA, Moniruzzaman M, Goto M. Recent advances of enzymatic reactions in ionic liquids: Part II. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107426] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Fernández-Stefanuto V, Esteiro P, Santiago R, Moreno D, Palomar J, Tojo E. Design and synthesis of alverine-based ionic liquids to improve drug water solubility. NEW J CHEM 2020. [DOI: 10.1039/d0nj05216g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alverine [3-phenyl-N-(3-phenylpropyl)-N-ethylpropan-1-amine] is a widely known smooth muscle relaxant used to relieve cramps or spasms of the stomach and intestines.
Collapse
Affiliation(s)
| | - P. Esteiro
- Department of Organic Chemistry
- Universidade de Vigo
- Marcosende
- As Lagoas
- Vigo-362180
| | - R. Santiago
- Departamento de Química Física aplicada
- Universidad Autónoma de Madrid
- Campus de Cantoblanco
- C/Francisco Tomás y Valiente 7
- Madrid 28049
| | - D. Moreno
- Departamento de Química Física aplicada
- Universidad Autónoma de Madrid
- Campus de Cantoblanco
- C/Francisco Tomás y Valiente 7
- Madrid 28049
| | - J. Palomar
- Departamento de Química Física aplicada
- Universidad Autónoma de Madrid
- Campus de Cantoblanco
- C/Francisco Tomás y Valiente 7
- Madrid 28049
| | - E. Tojo
- Department of Organic Chemistry
- Universidade de Vigo
- Marcosende
- As Lagoas
- Vigo-362180
| |
Collapse
|
45
|
Zhou Z, Liu C, Wan X, Fang L. Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti – aging component α – lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation. Eur J Pharm Sci 2020; 141:105042. [DOI: 10.1016/j.ejps.2019.105042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
|
46
|
Synthesis and characterization of choline–fatty-acid-based ionic liquids: A new biocompatible surfactant. J Colloid Interface Sci 2019; 551:72-80. [DOI: 10.1016/j.jcis.2019.04.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 11/23/2022]
|
47
|
Gomes JM, Silva SS, Reis RL. Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev 2019; 48:4317-4335. [DOI: 10.1039/c9cs00016j] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bio- and eco-friendly nature of biocompatible ionic liquids contributes to their widespread use in a wide range of fields.
Collapse
Affiliation(s)
- Joana M. Gomes
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4806-909 Guimarães
- Portugal
| | - Simone S. Silva
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4806-909 Guimarães
- Portugal
| | - Rui L. Reis
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4806-909 Guimarães
- Portugal
| |
Collapse
|
48
|
Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. Development of a novel ionic liquid-curcumin complex to enhance its solubility, stability, and activity. Chem Commun (Camb) 2019; 55:7737-7740. [PMID: 31184357 DOI: 10.1039/c9cc02812a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a one-step emulsification and rapid freeze-drying process to develop a curcumin-ionic liquid (CCM-IL) complex that could be readily dispersed in water with a significantly enhanced solubility of ∼8 mg mL-1 and half-life (t1/2) of ∼260 min compared with free CCM (solubility ∼30 nM and t1/2 ∼ 20 min). This process using an IL consisting of a long chain carbon backbone as a surfactant, may provide an alternative way of enhancing the solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Md Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | | | | | | | |
Collapse
|