1
|
Yin H, Zhang M, Wang B, Zhang F. Effective removal of Cu(II) from water by three-dimensional composite microspheres based on chitosan/sodium alginate/silicon dioxide: Adsorption performance and mechanism. Int J Biol Macromol 2024; 277:134585. [PMID: 39122081 DOI: 10.1016/j.ijbiomac.2024.134585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Chitosan (CS) is commonly used as an adsorbent for removing Cu(II) from water, but it has drawbacks such as solubility in dilute acid, difficulty in recycling in powder form, and short service life. This study utilized sodium alginate (SA) as a gel carrier to encapsulate CS, combined with silicon dioxide (SiO2) to improve mechanical stability. The preparation of CS/SA/SiO2 (SSC1.0) involved physical blending, CaCl2 cross-linking, and freeze-drying. Characterization methods such as SEM-EDS, FTIR, BET, and XRD were used to analyze the structural composition of SSC1.0. The material exhibited a folded surface, porous internal cross-section, nitrogen/oxygen-containing functional groups, and thermal stability in high temperatures and various aqueous environments. The adsorption performance of SSC1.0 on Cu(II) was evaluated under different conditions, showing a maximum adsorption capacity of 47.50 mg/g. The material maintained a removal rate above 70 % after 5 cycles. SSC1.0 also showed the highest removal rate of Cu(II) when applied to mine wastewater treatment. Adsorption modeling indicated that the process was driven by chemical reactions and was spontaneous and heat-absorbing.'
Collapse
Affiliation(s)
- Hang Yin
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Miao Zhang
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Bowen Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Fenge Zhang
- School of Urban Construction, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Deng J, Luo D, Rong K. Sustainable route for silica preparation from silica fume. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39150880 DOI: 10.1080/09593330.2024.2391073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Silica fume (SF) is a major voluminous and bulky by-product of the ferrosilicon industry, and its disposal poses a significant environmental concern. To address this issue, a sustainable approach was employed to transform SF into silica powder using a precipitation method. The process involved calcination, acid precipitation, aging, and drying, utilising industrial by-products such as silica fume and calcium oxide. Various parameters, including hydrochloric acid concentration, water bath temperature, aging pH, aging temperature, and aging time, were systematically investigated to optimise the properties of the resulting silica product. The physical and chemical attributes of the processed silica were thoroughly examined using techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), laser particle size analysis, and dibutyl phthalate (DBP) absorption tests. Under optimal conditions (hydrochloric acid concentration of 20%, water bath temperature of 90℃, aging pH 3-4, aging temperature of 90℃, and aging time of 8 hours), the resulting silica product achieved a purity of 98.5866%, a DBP absorption value of 2.85 mL/g, and a particle size of 6.07 µm, meeting national industry standards. This environmentally benign and cost-efficient synthesis route offers a practical solution for large-scale production.
Collapse
Affiliation(s)
- Jiabao Deng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, PR China
| | - Dawei Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, PR China
| | - Ke Rong
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, PR China
| |
Collapse
|
3
|
Al-Shemy MT, Gamoń F, Al-Sayed A, Hellal MS, Ziembińska-Buczyńska A, Hassan GK. Silver nanoparticles incorporated with superior silica nanoparticles-based rice straw to maximize biogas production from anaerobic digestion of landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121715. [PMID: 38968898 DOI: 10.1016/j.jenvman.2024.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.
Collapse
Affiliation(s)
- Mona T Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Filip Gamoń
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, Gdansk, 80-233, Poland
| | - Aly Al-Sayed
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed S Hellal
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | | | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
4
|
Thamer AA, Mustafa A, Bashar HQ, Van B, Le PC, Jakab M, Rashed TR, Kułacz K, Hathal M, Somogyi V, Nguyen DD. Activated carbon and their nanocomposites derived from vegetable and fruit residues for water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121058. [PMID: 38714036 DOI: 10.1016/j.jenvman.2024.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Water pollution remains a pressing environmental issue, with diverse pollutants such as heavy metals, pharmaceuticals, dyes, and aromatic hydrocarbon compounds posing a significant threat to clean water access. Historically, biomass-derived activated carbons (ACs) have served as effective adsorbents for water treatment, owing to their inherent porosity and expansive surface area. Nanocomposites have emerged as a means to enhance the absorption properties of ACs, surpassing conventional AC performance. Biomass-based activated carbon nanocomposites (ACNCs) hold promise due to their high surface area and cost-effectiveness. This review explores recent advancements in biomass-based ACNCs, emphasizing their remarkable adsorption efficiencies and paving the way for future research in developing efficient and affordable ACNCs. Leveraging real-time communication for ACNC applications presents a viable approach to addressing cost concerns.
Collapse
Affiliation(s)
- A A Thamer
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - A Mustafa
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - H Q Bashar
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - Bao Van
- Institute of Research and Development, Duy Tan University, 550000, Danang, Viet Nam; School of Engineering & Technology, Duy Tan University, 550000, Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Lien Chieu Dist., Danang, 550000, Viet Nam
| | - Miklós Jakab
- College of Technical Engineering, Al-Farahidi University, 47024, Baghdad, Iraq
| | - T R Rashed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - Karol Kułacz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - MustafaM Hathal
- The Industrial Development and Regulatory Directorate, The Ministry of Industry and Minerals, Baghdad, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
5
|
Khan P, Saha R, Halder G. Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170723. [PMID: 38340867 DOI: 10.1016/j.scitotenv.2024.170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Antibiotics are widely prioritized pharmaceuticals frequently adopted in medication for addressing numerous ailments of humans and animals. However, the non-judicious disposal of ciprofloxacin (CIP) with concentration levels exceeding threshold limit in an aqueous environment has been the matter of growing concern nowadays. CIP is found in various waterways with appreciable mobility due to its limited decay in solidified form. Hence, the effective eradication strategy of this non-steroidal anti-inflammatory antibiotic from aqueous media is pivotal for preventing the users and the biosphere from their hazardous impacts. Reportedly several customary techniques like reverse osmosis, precipitation, cross-filtration, nano-filtration, ion exchange, microbial remediation, and adsorption have been employed to eliminate CIP from water. Out of them, adsorption is ascertained to be a potential method because of lesser preliminary investment costs, ease of operation, greater efficiency, less energy usage, reduced chemical and biological slurry production, and ready availability of precursor materials. Towards remediation of ciprofloxacin-laden water, plenty of researchers have used different adsorbents. However, the present-day challenge is opting the promising sorbent and its application towards industrial scale-up which is vital to get reviewed. In this article, adsorbents of diverse origins are reviewed in terms of their performances in CIP removal. The review stresses the impact of various factors on sorptive assimilation of CIP, adsorption kinetics, isotherms, mechanism of ionic interaction, contrivances for CIP detection, cost estimation and reusability assessments of adsorbents also that may endorse the next-generation investigators to decide the efficacious, environmental appealing and cost-competitive adsorbents for effective riddance of CIP from wastewater.
Collapse
Affiliation(s)
- Priyanka Khan
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Rajnarayan Saha
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Gopinath Halder
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
6
|
Kaur N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024; 267:125114. [PMID: 37683321 DOI: 10.1016/j.talanta.2023.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The burning of an agro waste residue causes air pollution, global warming and lethal effects. To overcome these obstacles, the transformation of agro waste into nanoparticles (NPs) reduces industrial expenses and amplifies environmental sustainability. The concept of green nanotechnology is considered as a versatile tool for the development of valuable products. Although a plethora of literature on the NPs is available, but, still scientists are exploring to design more novel particles possessing unique shape and properties. So, this review basically summarises about the synthesis, characterizations, advantages and outcomes of the various agro waste derived NPs.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India.
| |
Collapse
|
7
|
Arif M, Liu G, Zia Ur Rehman M, Mian MM, Ashraf A, Yousaf B, Rashid MS, Ahmed R, Imran M, Munir MAM. Impregnation of biochar with montmorillonite and its activation for the removal of azithromycin from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27908-z. [PMID: 37269518 DOI: 10.1007/s11356-023-27908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
An inexpensive and environmentally friendly composite synthesized from rice husk, impregnated with montmorillonite and activated by carbon dioxide, was investigated for the removal of azithromycin from an aqueous solution. Various techniques were used to characterize adsorbents in detail. The sorption process was primarily regulated by the solution pH, pollutant concentration, contact duration, adsorbent dose, and solution temperature. The equilibrium data were best analyzed using the nonlinear Langmuir and Sips (R2 > 0.97) isotherms, which revealed that adsorption occurs in a homogenous manner. The adsorption capacity of pristine biochar and carbon dioxide activated biochar-montmorillonite composite was 33.4 mg g-1 and 44.73 mg g-1, respectively. Kinetic studies identified that the experimental data obeyed the pseudo-second-order and Elovich models (R2 > 0.98) indicating the chemisorption nature of adsorbents. The thermodynamic parameters determined the endothermic and spontaneous nature of the reaction. The ion exchange, π-π electron-donor-acceptor (EDA) interactions, hydrogen-bonding, and electrostatic interactions were the plausible mechanisms responsible for the adsorption process. This study revealed that a carbon dioxide activated biochar-montmorillonite composite may be used as an effective, sustainable, and economical adsorbent for the removal of azithromycin from polluted water.
Collapse
Affiliation(s)
- Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Md Manik Mian
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Aniqa Ashraf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Muhammad Saqib Rashid
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Rafay Ahmed
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Muhammad Imran
- Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, 38000, Pakistan
| | - Mehr Ahmed Mujtaba Munir
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, Rastogi A, Skalicky M. Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. ENVIRONMENTAL RESEARCH 2023:116292. [PMID: 37276972 DOI: 10.1016/j.envres.2023.116292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | | | - Mohammad Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
9
|
Li P, Wang Z, Yang S, Lyu G, Gu Y, Chen J, Yang G. Structural regulatory mechanism of phosphotungstate acid decorated graphene oxide quantum dots-chitosan aerogel and its application in ciprofloxacin degradation. Int J Biol Macromol 2023:125137. [PMID: 37276907 DOI: 10.1016/j.ijbiomac.2023.125137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Chitosan modified AGQD (amine modified graphene oxide quantum dots) and then combined with H3PW12O40 to obtain CSx@AGQD-HPW12 via facile process and applied for CIP removal through pre-adsorption and photocatalytic processes. The application of chitosan could regulate the morphology and photoelectric properties effectively. CS0.5@AGQD-HPW12 was found to have the optimal CIP removal performance among all the products, the corresponding adsorption removal efficiency and pre-adsorption photocatalysis process were 72.1 % and 98.8 %, respectively. Results of toxicity assessment confirmed photocatalytic degradation process could mitigate the ecotoxicity of CIP effectively. The optimal TOC (total organic carbon) removal efficiency was about 52.1 %. Possible pathways for CIP degradation and reaction mechanism were proposed based on the results of intermediates analysis and trapping experiments. This demonstrated a novel approach to chitosan application and an eco-friendly way to remove CIP by adsorption-photocatalysis process.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Zhen Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Shaocong Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yawei Gu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| |
Collapse
|
10
|
Wei F, Wang K, Li W, Ren Q, Qin L, Yu M, Liang Z, Nie M, Wang S. Preparation of Fe/Ni-MOFs for the Adsorption of Ciprofloxacin from Wastewater. Molecules 2023; 28:molecules28114411. [PMID: 37298886 DOI: 10.3390/molecules28114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
This work studies the use of Fe/Ni-MOFs for the removal of ciprofloxacin (CIP) in wastewater. Fe/Ni-MOFs are prepared by the solvothermal method and characterized by X-ray diffraction (XRD), a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and a thermal gravimetric analyzer (TG). Under the conditions of the concentration of 50 ppm, a mass of 30 mg, and a temperature of 30 °C, the maximum adsorption capacity of ciprofloxacin removal within 5 h was 232.1 mg/g. The maximum removal rate was 94.8% when 40 mg of the Fe/Ni-MOFs was added to the solution of 10 ppm ciprofloxacin. According to the pseudo-second-order (PSO) kinetic model, the R2 values were all greater than 0.99, which proved that the adsorption theory of ciprofloxacin by Fe/Ni-MOFs was consistent with the practice. The adsorption results were mainly affected by solution pH and static electricity, as well as other factors. The Freundlich isotherm model characterized the adsorption of ciprofloxacin by Fe/Ni-MOFs as multilayer adsorption. The above results indicated that Fe/Ni-MOFs were effective in the practical application of ciprofloxacin removal.
Collapse
Affiliation(s)
- Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Kui Wang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Wenxiu Li
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Qinhui Ren
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Lan Qin
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Mengjie Yu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Meng Nie
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Siyuan Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Xu S, Zhou C, Fang H, Zhu W, Shi J, Liu G. Synthesis of ordered mesoporous silica from biomass ash and its application in CO 2 adsorption. ENVIRONMENTAL RESEARCH 2023; 231:116070. [PMID: 37150388 DOI: 10.1016/j.envres.2023.116070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
It is possible to achieve high-value utilization of solid wastes and lower the cost of mesoporous silica synthesis by synthesizing mesoporous silica from solid wastes. In this study, silica was extracted using the alkali fusion method using biomass ash as the starting material. Biomass ash based mesoporous silica was successfully prepared by hydrothermal method with silicon extract solution as silicon source. The optimum conditions for preparation were determined as follows: addition of cetyltrimethylammonium bromide was 0.45g, hydrothermal temperature was 120 °C, hydrothermal time was 24h. The prepared mesoporous silicon was systematically characterized, and the results showed that high surface area (495 m2/g) and ordered pore structure appeared in the synthesized mesoporous silica materials. The synthesized mesoporous silica showed excellent CO2 adsorption performance (0.749 mmol/g) at 25 °C and 1 bar. According to the calculation of adsorption isotherm and thermodynamics, non-linear Freundlich model can fit the adsorption isotherm better and the adsorption heat of mesoporous silica is less than 20 kJ/mol, which belongs to physical adsorption. After five cycles of CO2 adsorption, the adsorption property was still above 90%, and the CO2/N2 adsorption selectivity reached 396.6, showing good regeneration performance and adsorption selectivity. This research can provide a new possibility for the high-value exploitation of biomass ash and reducing the cost of synthetic mesoporous silica.
Collapse
Affiliation(s)
- Shihai Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China.
| | - Hongxia Fang
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Wenrui Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Jiaqian Shi
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei, 230009, China
| | - Guijian Liu
- School of Earth and Space Sciences, University of Science and Technology of China, No. 96, Road Jinzhai, Hefei, 230026, China
| |
Collapse
|
12
|
Morales-Paredes CA, Rodríguez-Linzán I, Saquete MD, Luque R, Osman SM, Boluda-Botella N, Joan Manuel RD. Silica-derived materials from agro-industrial waste biomass: Characterization and comparative studies. ENVIRONMENTAL RESEARCH 2023; 231:116002. [PMID: 37105288 DOI: 10.1016/j.envres.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The management and final disposal of agro-industrial wastes are one of the main environmental problems. Due to the presence of silica in some agricultural by-products, it is possible to convert waste into materials with advanced properties. This contribution was aimed to extract and characterize silica materials from various feedstocks including sugarcane bagasse (SCB), corn stalk (CS), and rice husk (RH). Silica yields of 17.91%, 9.39%, and 3.25% were obtained for RH, CS, and SCB. On the other hand, the textural properties show that the siliceous materials exhibited mesoporous structures, with high silica composition in the materials due to the formation of crystalline SiO2 for SCB and CS and amorphous for RH. XPS spectra demonstrate the presence of Si4+ species in RH, and Si3+/Si4+ tetrahedra in SCB and CS.
Collapse
Affiliation(s)
- Carlos Augusto Morales-Paredes
- Instituto Universitario de Ingeniería de los Procesos Químicos, Universidad de Alicante, Alicante, E-03080, Spain; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130104, Ecuador.
| | - Imelda Rodríguez-Linzán
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, 130104, Ecuador
| | - María Dolores Saquete
- Instituto Universitario de Ingeniería de los Procesos Químicos, Universidad de Alicante, Alicante, E-03080, Spain; Instituto Universitario del Agua y las Ciencias Ambientales, Universidad de Alicante, Alicante, E-03080, Spain
| | - Rafael Luque
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nuria Boluda-Botella
- Instituto Universitario de Ingeniería de los Procesos Químicos, Universidad de Alicante, Alicante, E-03080, Spain; Instituto Universitario del Agua y las Ciencias Ambientales, Universidad de Alicante, Alicante, E-03080, Spain
| | - Rodríguez-Díaz Joan Manuel
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, 130104, Ecuador.
| |
Collapse
|
13
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
14
|
Fusinato MD, da Silva Amaral MAF, de Irigon PI, Calgaro CO, de Los Santos DG, Filho PJS. Silica extraction from rice hull ash through the sol-gel process under ultrasound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21494-21511. [PMID: 36272000 DOI: 10.1007/s11356-022-23687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Rice is among the main foods produced in the world and is part of the daily diet of most families. The main waste from rice processing is rice husk (RH), which has been used as biomass for energy generation through combustion. In this process, rice husk ash (RHA) is generated as a residue, and its silica (SiO2) content varies from 85 to 98%. The present work describes the study of the extraction of silica from RHA by the ultrasound-assisted sol-gel method. An experimental design based on the response surface methodology (RSM) with the symmetrical, second-order rotational central composite design (RCCD) was applied to determine the best extraction conditions considering extraction time and molar ratio (n) as variables = nNaOH/nSilica). These optimal conditions were then applied to three ash samples, two obtained by the combustion process in a boiler furnace, with a mobile grate system (RHAC1 and RHAC2), and one obtained by the pyrolysis process (RHAP) carried out in a fixed bed reactor. Results showed that a molar ratio of 4.4, and an extraction time of 107 min were the best extraction conditions, leading to a yield of 73.3% for RHAP, 43.9% for RHAC1, and 31.1% for RHAC2. It was found that the extraction yield and textural properties of the silica obtained depend on the characteristics of the ash used. The silica extracted from RHAC1 presented a surface area of 465 m2.g-1, mesopores of 4.69 nm, purity greater than 95%, and an ultra-fine granulometric distribution, reaching nanoparticle dimensions, characteristics comparable to commercially available silicas.
Collapse
Affiliation(s)
- Mirian Dosolina Fusinato
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil.
| | - Maria Alice Farias da Silva Amaral
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Paula Irigon de Irigon
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Camila Ottonelli Calgaro
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Diego Gil de Los Santos
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| | - Pedro José Sanches Filho
- Grupo de Pesquisa de Contaminantes Ambientais (GPCA), Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense (IFSul), Campus Pelotas, Endereço postal: Praça 20 de Setembro, 455, Centro, Pelotas, RS, 96015360, Brasil
| |
Collapse
|
15
|
Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim JW, Banat F, Cheng CK. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. CHEMOSPHERE 2023; 310:136843. [PMID: 36243081 DOI: 10.1016/j.chemosphere.2022.136843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.
Collapse
Affiliation(s)
- Amanuel Gidey Gebretatios
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Rasheed Kadiri Kanakka Pillantakath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Thongthai Witoon
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd., Ladyao, Jatujak Bangkok, 10900, Thailand
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Chin Kui Cheng
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Nassar MY, El-Salhy HI, El-Shiwiny WH, Abdelaziz G, El-Shiekh R. Composite Nanoarchitectonics of Magnetic Silicon Dioxide-Modified Chitosan for Doxorubicin Delivery and In Vitro Cytotoxicity Assay. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
Abstract
AbstractDeveloping drug delivery carriers for highly selective, controlled, and sustained release of the anti-cancer drugs is one of the crucial issues in the cancer strive. We herein report the synthesis of Fe3O4 (M) and SiO2 (S) nanoparticles and their nanocomposites with chitosan (CS) for high loading efficiency and subsequent release potentiality of Doxorubicin (DOX) anticancer drug. The as-synthesized nanostructures were characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and thermal analysis techniques. The average crystallite sizes of the as-prepared M, S, CS/M, CS/S, and CS/M/S nanostructures were found to be 5, 15, 70, 22, and 29 nm, respectively. The loading and cumulative release of Doxorubicin for the produced nanostructures were examined, and the results exhibited loading efficacy of 71%, 95%, 96%, 79%, 17%, and 42% for M, S, CS, CS/M, CS/S, and CS/M/S nanostructures, respectively. The Doxorubicin releasing results revealed a promising cumulative release percentages at pH 4.2 and pH 5 compared with those at pH 7.4. At pH 4.2, the cumulative release percentages for DOX-M, DOX-S, DOX-CS, DOX/M, and DOX/CS/M/S were 94%, 96%, 92%, 95%, and 98%, respectively. While the corresponding percentages at pH 5 were 97%, 90%, 46%, 43%, and 70%. The percentage for DOX-CS/S was 60% at pH 5, though. The in-vitro cytotoxicity of M-DOX, CS-DOX, and M/CS-DOX was explored against two human cancer cell lines (MCF-7 and Hep-G2) using SRB (Sulforhodamine B) assay. The DOX-loaded M/CS exhibited the highest cytotoxicity and its IC50 values were 2.65 and 2.25 μg/mL against Hep-G2 and MCF-7 cell lines, respectively, compared to the corresponding values of 5.1 and 4.5 μg/mL for free DOX. The results indicated that M/CS nanocomposite is a good candidate as drug delivery nano-carrier for the Doxorubicin anti-cancer drug.
Collapse
|
17
|
Sharma P, Prakash J, Kaushal R. An insight into the green synthesis of SiO 2 nanostructures as a novel adsorbent for removal of toxic water pollutants. ENVIRONMENTAL RESEARCH 2022; 212:113328. [PMID: 35483413 DOI: 10.1016/j.envres.2022.113328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanomaterials is a sustainable, biologically safe, reliable, and eco-friendly approach. Green synthesis is beneficial to reduce the devastating effects of the traditional chemical synthesis methods and particularly aims at decreasing the usage of toxic chemicals. This review deals with the green synthesis of silica nanoparticles (SiO2 NPs) with emphasis on the engineering surface properties for enhanced adsorption capability and their applications as novel nano-adsorbents for water pollutants removal. Green synthesized SiO2 NPs have shown excellent adsorption properties with higher adsorption capacity of 150-200 mg/g and more than 95% removal for various toxic water pollutants along with reusability for more than 5 cycles. These SiO2 NPs show fascinating physical and chemical properties i.e. tunable size (5 nm to more than 100 nm), low toxicity, biocompatibility, high porosity, higher specific surface area (500--700 m2/g) making them attractive/suitable for several applications in biomedical, agriculture, catalysis, construction, water treatment, etc. Commonly, highly pure SiO2 NPs are synthesized from organic chemicals (very expensive and highly toxic in nature) as a precursor that led to high production costs, high energy consumption, and environmental hazards. On the other hand, green synthesis of SiO2 NPs from natural resources like biomass that includes rice husk, bamboo leaves/stem, sugarcane bagasse, corn cobs, wheat straw, etc. is cost-effective, less toxic, and eco-friendly which has been discussed in detail. Furthermore, the effect of key synthesis parameters (i.e., temperature, time, concentration, pH, etc.) on the morphology, size, purity, and specific surface area of SiO2 NPs have been summarized. Finally, the applications of SiO2 NPs as nano-adsorbents for the removal of toxic water pollutants (i.e., heavy metal cations, anions, dyes, etc.) including the adsorption mechanisms along with the future scope, challenges, and suggestions have been discussed.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Chemistry, National Institute of Technology, Hamirpur, HP, 177005, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology, Hamirpur, HP, 177005, India.
| | - Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, HP, 177005, India.
| |
Collapse
|
18
|
Alegbeleye O, Daramola OB, Adetunji AT, Ore OT, Ayantunji YJ, Omole RK, Ajagbe D, Adekoya SO. Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56948-57020. [PMID: 35716301 DOI: 10.1007/s11356-022-21252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
This review discusses the fundamental principles and mechanism of antibiotic removal from water of some commonly applied treatment techniques including chlorination, ozonation, UV-irradiation, Fenton processes, photocatalysis, electrochemical-oxidation, plasma, biochar, anaerobicdigestion, activated carbon and nanomaterials. Some experimental shortfalls identified by researchers such as certain characteristics of degradation agent applied and the strategies explored to override the identified limitations are briefly discussed. Depending on interactions of a range of factors including the type of antibiotic compound, operational parameters applied such as pH, temperature and treatment time, among other factors, all reviewed techniques can eliminate or reduce the levels of antibiotic compounds in water to varying extents. Some of the reviewed techniques such as anaerobic digestion generally require longer treatment times (up to 360, 193 and 170 days, according to some studies), while others such as photocatalysis achieved degradation within short contact time (within a minimum of 30, but up to 60, 240, 300 and 1880 minutes, in some cases). For some treatment techniques such as ozonation and Fenton, it is apparent that subjecting compounds to longer treatment times may improve elimination efficiency, whereas for some other techniques such as nanotechnology, application of longer treatment time generally meant comparatively minimal elimination efficiency. Based on the findings of experimental studies summarized, it is apparent that operational parameters such as pH and treatment time, while critical, do not exert sole or primary influence on the elimination percentage(s) achieved. Elimination efficiency achieved rather seems to be due more to the force of a combination of several factors.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington, Western Cape, 7654, South Africa
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, P.M.B. 022, Nigeria
| | - Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | - Damilare Ajagbe
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA
| | | |
Collapse
|
19
|
Sun S, Lee K, Lee G, Kim Y, Kim S, Hwang J, Kong H, Chung KY, Ali G, Song T, Paik U. Fe-substituted silica via lattice dissolution–reprecipitation replacement for tungsten chemical mechanical planarization. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
El-Feky HH, Behiry MS, Amin AS, Nassar MY. Facile Fabrication of Nano-sized SiO2 by an Improved Sol–Gel Route: As an Adsorbent for Enhanced Removal of Cd(II) and Pb(II) Ions. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02214-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Akhter F, Rao AA, Abbasi MN, Wahocho SA, Mallah MA, Anees-ur-Rehman H, Chandio ZA. A Comprehensive Review of Synthesis, Applications and Future Prospects for Silica Nanoparticles (SNPs). SILICON 2022; 14. [PMCID: PMC8730748 DOI: 10.1007/s12633-021-01611-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Silica nanoparticles (SNPs) have shown great applicability potential in a number of fields like chemical, biomedical, biotechnology, agriculture, environmental remediation and even wastewater purification. With remarkably instinctive properties like mesoporous structure, high surface area, tunable pore size/diameter, biocompatibility, modifiability and polymeric hybridizability, the SNPs are growing in their applicable potential even further. These particles are shown to be non-toxic in nature, hence safe to be used in biomedical research. Moreover, the molecular mobilizability onto the internal and external surface of the particles makes them excellent carriers for biotic and non-biotic compounds. In this respect, the present study comprehensively reviews the most important and recent applications of SNPs in a number of fields along with synthetic approaches. Moreover, despite versatile contributions, the applicable potential of SNPs is still a tip of the iceberg waiting to be exploited more, hence, the last section of the review presents the future prospects containing only few of the many gaps/research extensions regarding SNPs that need to be addressed in future work.
Collapse
Affiliation(s)
- Faheem Akhter
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Ahsan Atta Rao
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Mahmood Nabi Abbasi
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Shafeeque Ahmed Wahocho
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Hafiz Anees-ur-Rehman
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Zubair Ahmed Chandio
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| |
Collapse
|
22
|
Zong Y, Ma S, Gao J, Xu M, Xue J, Wang M. Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light. ACS OMEGA 2021; 6:17228-17238. [PMID: 34278109 PMCID: PMC8280686 DOI: 10.1021/acsomega.1c00919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 05/25/2023]
Abstract
The release of antibiotics into the water environment can pose a serious threat to human and ecological health, so it is of great significance to effectively remove antibiotics from wastewater. In this work, porphyrinic zirconium metal-organic framework material, PCN-224, was first explored for the adsorption removal of antibiotics from water using tetracycline (TC) and ciprofloxacin (CIP) as examples. We prepared a series of PCN-224 with different particle sizes (150 nm, 300 nm, 500 nm, and 6 μm). Benefiting from the huge surface area (1616 m2 g-1), the 300 nm-PCN-224 sample had the best adsorption properties for TC and CIP. Remarkably, it exhibits fast removal rates and high adsorption capacities of 354.81 and 207.16 mg g-1 for TC and CIP, respectively. The adsorption of TC and CIP in 300 nm-PCN-224 is consistent with the pseudo-second-order kinetic model and Langmuir isotherm model, which indicates that the adsorption can be regarded as homogeneous monolayer chemisorption, and the adsorption is exothermic, which has been confirmed by thermodynamic studies. Under visible-light irradiation, 300 nm-PCN-224 exhibited high photocatalytic activity for TC and CIP. The adsorption studies confirmed that the adsorption of adsorbates takes place via the formation of hydrogen bonding, π-π interactions, and electrostatic attraction. In addition, the adsorbent can be simply regenerated by photocatalysis under visible light, and the adsorption-desorption efficiency is still above 85% after repeated use five times. The work of MOFs to remove antibiotics from water shows that MOFs have great potential in this field and are worthy of further study.
Collapse
Affiliation(s)
- Yuqing Zong
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shuaishuai Ma
- College
of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiamin Gao
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Minjing Xu
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jinjuan Xue
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Mingxin Wang
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
23
|
Jiang W, Cui WR, Liang RP, Qiu JD. Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125302. [PMID: 33609869 DOI: 10.1016/j.jhazmat.2021.125302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Due to the low efficiency of traditional sewage treatment methods, the effective removal of zwitterionic fluoroquinolone (FQs) antibiotics is of vital significant for environment protection. In this work, a SO3H-anchored covalent organic framework (TpPa-SO3H) was deliberately designed by linking phenolic trialdehyde with triamine through Schiff reaction, then low-content Tb3+ ions were loaded onto covalent organic framework according to wet-chemistry immersion dispersion method which benefitting for efficient FQs antibiotics uptaking. Tb@TpPa-SO3H functionalized with regularly distributed sulfonic acid groups and terbium ions which could provide difunctional binding sites. Tb3+ sites could capture carboxylic acid group of FQs molecules according to the complexes coordination effect and sulfonic acid sites play a significant role in the adsorption of FQs molecules through electrostatic interaction with amine group. Tb@TpPa-SO3H with dual complementary function sites exhibited ultra-fast adsorption kinetics (< 2 min, average over 99% removing rate) and high adsorption capacities of 989, 956, and 998 mg g-1 for Norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), respectively. Furthermore, Tb@TpPa-SO3H showed excellent selectivity for the adsorption of FQs in tanglesome system. This work not only explored synergistic adsorption in ion-functionalized 2D covalent organic framework with dual binding sites, but also delineated a promising strategy for the elimination of organic pollutants in environmental remediation.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China; Nanchang Institute for Food and Drug Control, Nanchang 330038, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
24
|
Chen K, Dai R, Xu G, Biney BW, Shen J, Xia W, Liu D. Preparation of a porous carbon material by hydrothermal activation of itaconic acid fermentation waste liquid and its efficient adsorption of Cr( vi). NEW J CHEM 2021. [DOI: 10.1039/d1nj03713g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recycling organic waste liquid to treat chromium-containing wastewater to achieve the purpose of treating waste with waste.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong, 266580, China
| | - Renwei Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong, 266580, China
| | - Guanjun Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong, 266580, China
| | - Bernard Wiafe Biney
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong, 266580, China
| | - Jiahua Shen
- Shandong Lunan Borui Hazardous Waste Centralized Disposal Co. Ltd., Zaozhuang, Shandong, 277527, China
| | - Wei Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong, 266580, China
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong, 266580, China
| |
Collapse
|
25
|
|
26
|
Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk. SUSTAINABILITY 2020. [DOI: 10.3390/su122410683] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of engineered silica particles by using low-cost renewable or waste resources is a key example of sustainability. Rice husks have emerged as a renewable resource for the production of engineered silica particles as well as bioenergy. This review presents a state-of-the-art process for the development of engineered silica particles from rice husks via a bottom-up process. The first part of this review focuses on the extraction of Si from rice husks through combustion and chemical reactions. The second part details the technologies for synthesizing engineered silica particles using silicate obtained from rice husks. These include technologies for the precipitation of silica particles, the control of morphological properties, and the synthesis of ordered porous silica particles. Finally, several issues that need to be resolved before this process can be commercialized are addressed for future research.
Collapse
|
27
|
Photocatalytic hydrogel layer supported on alkali modified straw fibers for ciprofloxacin removal from water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Akpomie KG, Conradie J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Eze SI, Akpomie KG, Ezekoye OM, Chukwujindu CN, Ojo FK, Ani JU, Ujam OT. Antibiotic Adsorption by Acid Enhanced Dialium guineense Seed Waste. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04771-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int J Biol Macromol 2020; 154:621-633. [DOI: 10.1016/j.ijbiomac.2020.03.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
|
31
|
Mohamed AK, Mahmoud ME. Encapsulation of starch hydrogel and doping nanomagnetite onto metal-organic frameworks for efficient removal of fluvastatin antibiotic from water. Carbohydr Polym 2020; 245:116438. [PMID: 32718595 DOI: 10.1016/j.carbpol.2020.116438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023]
Abstract
Growing interests and efforts have been recently focused on design and assembly of novel hydrogel nanosorbents for removal of drugs from wastewater. Therefore, this work is aimed to immobilize and encapsulate starch hydrogel matrix onto metal organic frameworks (MOFs) and dope with nanomagnetite. The magnetic MOFs-Starch hydrogel (NFe3O4@Zn(GA)/Starch-Hydrogel) was synthesized via microwave irradiation process and characterized with high surface area (528.39 m2/g), mesoporous with pore size 2.90 nm and highly crystalline structure. The maximum swelling ratio (1000.0 %) was optimized at pH 10, 180 min and 25 °C. The validity of NFe3O4@Zn(GA)/Starch-Hydrogel for adsorptive removal of Fluvastatin statin drug provided maximum equilibrium adsorption capacity 782.05 mg g-1. The Langmuir isotherm and pseudo-second kinetics models were correlated well with the computed correlation coefficient values 0.9991 and 0.9997, respectively. The validity of NFe3O4@Zn(GA)/Starch-Hydrogel for removal of FLV statin drug from real water matrices was confirmed in the range 96.15-99.99 %.
Collapse
Affiliation(s)
- Asmaa K Mohamed
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt
| | - Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| |
Collapse
|
32
|
Wang L, Yang C, Lu A, Liu S, Pei Y, Luo X. An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. BIORESOURCE TECHNOLOGY 2020; 302:122812. [PMID: 32007848 DOI: 10.1016/j.biortech.2020.122812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In this work, two plant wastes were reused to fabricate the homogeneous 3D micro-nano porous structured humic acid/cellulose nanocomposite beads (IHA@CB) embedded with insoluble humic acid (IHA) particles. The subtle synthesis method attributed to the homogenous distribution of IHA particles in the cellulose matrix and improved the adsorption performance of IHA@CB for low concentration ciprofloxacin in water. Physical and chemical properties of the beads were characterized by SEM, EDX, XRD, FTIR, and the adsorption process of ciprofloxacin was studied by isotherm, kinetic and dynamic adsorption experiments. The maximum adsorption capacity of IHA@CB on CPX reached 10.87 mg g-1 under 318 K. The dynamic experiments were conducted by adjusting bed height, flow rate, initial concentration and pH values, and the regeneration experiments proved the adsorbent exhibited good repeatability. The adsorption mechanism was revealed that CPX was adsorbed by IHA@CB mainly through cation exchange.
Collapse
Affiliation(s)
- Langrun Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China
| | - Cong Yang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China; School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China.
| |
Collapse
|
33
|
Evaluating Nanoparticles Decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in Adsorption of Ciprofloxacin from Aqueous Environments. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01499-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Saxena R, Saxena M, Lochab A. Recent Progress in Nanomaterials for Adsorptive Removal of Organic Contaminants from Wastewater. ChemistrySelect 2020. [DOI: 10.1002/slct.201903542] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Reena Saxena
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi 110007
| | - Megha Saxena
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi 110007
| | - Amit Lochab
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi 110007
| |
Collapse
|
35
|
Pan J, Shen W, Zhao Y, Sun H, Guo T, Cheng Y, Zhao N, Tang H, Yan X. Difunctional hierarchical porous SiOC composites from silicone resin and rice husk for efficient adsorption and as a catalyst support. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Sobeih MM, El-Shahat MF, Osman A, Zaid MA, Nassar MY. Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Adv 2020; 10:25567-25585. [PMID: 35518600 PMCID: PMC9055320 DOI: 10.1039/d0ra02340j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022] Open
Abstract
We herein have developed a mild approach for the fabrication of glauconite clay (G)-modified chitosan (CS) nanocomposites by the combination of a simple blending and crosslinking method. The chitosan was modified with ethylenediaminetetraacetic acid (EDTA), glutaraldehyde (GL), sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB). The as-prepared composites were identified using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), nitrogen physical adsorption (BET), atomic absorption spectrophotometry (AA), and thermal gravimetric analysis (TGA). The adsorption activities of the as-prepared materials were assessed for the removal of fluoride ions from aqueous media using a batch technique. Raw glauconite (G), GL-CS/G, SDS-CS/G, EDTA-GL-CS/G, and CTAB-CS/G adsorbents displayed maximum adsorption capacity values of 1.15, 4.31, 4.55, 6.90, and 9.03 mg g−1, respectively. The adsorption results were well described by employing the pseudo-second-order kinetic and Langmuir isotherm models. The estimated thermodynamic constants indicated that the F− ion adsorption was a spontaneous, physisorption process. Furthermore, the modified chitosan adsorbents are good candidates for the adsorptive elimination of F− ions from aqueous solutions, according to their reusability, high stability, good adsorption capacity, and applicability for actual field water samples. We herein have developed a mild approach for the fabrication of glauconite clay (G)-modified chitosan (CS) nanocomposites by the combination of a simple blending and crosslinking method.![]()
Collapse
Affiliation(s)
- Marwa M. Sobeih
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - M. F. El-Shahat
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - A. Osman
- Geology Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - M. A. Zaid
- Abu-Zaabal Company for Fertilizer and Chemical Company (AZFC)
- EL-Qalyubia
- Egypt
| | - Mostafa Y. Nassar
- Chemistry Department
- Faculty of Science
- Benha University
- Benha 13815
- Egypt
| |
Collapse
|
37
|
Adsorptive Removal of Antibiotic Ciprofloxacin from Aqueous Solution Using Protein-Modified Nanosilica. Polymers (Basel) 2020; 12:polym12010057. [PMID: 31906267 PMCID: PMC7023575 DOI: 10.3390/polym12010057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
The present study aims to investigate adsorptive removal of molecular ciprofloxacin using protein-modified nanosilica (ProMNS). Protein was successfully extracted from Moringa seeds while nanosilica was synthesized from rice husk. Fourier-transform infrared (FTIR), ultraviolet visible (UV-Vis) and high-performance liquid chromatography (HPLC) were used to evaluate the characterization of protein. Adsorption of protein onto nanosilica at different pH and ionic strength was thoroughly studied to modify nanosilica surface. The removal efficiency of antibiotic ciprofloxacin (CFX) increased from 56.84% to 89.86% after surface modification with protein. Effective conditions for CFX removal using ProMNS were systematically optimized and found to be pH 7.0, adsorption time 90 min, adsorbent dosage 10 mg/mL, and ionic strength 1 mM KCl. A two-step model was successfully used to fit the adsorption isotherms of CFX onto ProMNS at different ionic strength while a pseudo-second-order model could fit adsorption kinetic of CFX onto ProMNS very well. Maximum adsorption capacity was very high that reached to 85 mg/g. Adsorption of CFX onto ProMNS decreased with increasing KCl concentration, suggesting that adsorption of CFX onto ProMNS is mainly controlled by electrostatic attraction between positively charged ProMNS surface and anionic species of CFX. Adsorption mechanisms of CFX onto ProMNS were discussed in detail based on adsorption isotherms, the change in surface charge by zeta potentail and the change in functional groups by FT-IR. The removal of CFX after three regenerations was greater than 73% while CFX removal from an actual hospital wastewater using ProMNS reached to 70%. Our results suggest that ProMNS is a new and eco-friendly adsorbent to remove antibiotics from aqueous solutions.
Collapse
|
38
|
Gao S, Shang J, Zhang J, Gao Z. Controlled fabrication of the dandelion-like SUZ-4 zeolite with the addition of ethyl acetate. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Bhaduri B, Polubesova T, Chefetz B. Interactions of organic dye with Ag- and Ce-nano-assemblies: Influence of dissolved organic matter. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Aashima, Uppal S, Arora A, Gautam S, Singh S, Choudhary RJ, Mehta SK. Magnetically retrievable Ce-doped Fe 3O 4 nanoparticles as scaffolds for the removal of azo dyes. RSC Adv 2019; 9:23129-23141. [PMID: 35514495 PMCID: PMC9067296 DOI: 10.1039/c9ra03252e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Considering the significant impact of magnetically retrievable nanostructures, herein, Fe3O4 and Ce-doped Fe3O4 nanoparticles were employed as scaffolds for the removal of the Reactive Black 5 (RB5) azo dye. We synthesized the Ce-doped Fe3O4 nanoparticles via hydrothermal treatment at 120 °C for 10 h with varying cerium concentrations (1.5-3.5%) and characterized them using basic techniques such as FTIR and UV-visible spectroscopy, and XRD analysis. The retention of their magnetic behaviors even after cerium amalgamation was demonstrated and confirmed by the VSM results. FESEM and EDX were used for the morphological and purity analysis of the synthesized nanoabsorbents. XPS was carried out to determine the electronic configuration of the synthesized samples. The porosity of the magnetic nanoparticles was investigated by BET analysis, and subsequently, the most porous sample was further used in the adsorption studies for the cleanup of RB5 from wastewater. The dye adsorption studies were probed via UV-visible spectroscopy, which indicated the removal efficiency of 87%. The prepared Ce-doped Fe3O4 nanoabsorbent showed the high adsorption capacity of 84.58 mg g-1 towards RB5 in 40 min. This is attributed to the electrostatic interactions between the nanoabsorbent and the dye molecules and high porosity of the prepared sample. The adsorption mechanism was also analyzed. The kinetic data well-fitted the pseudo-first-order model, and the adsorption capability at different equilibrium concentrations of the dye solution indicated monolayer formation and chemisorption phenomena. Furthermore, the magnetic absorbent could be rapidly separated from the wastewater using an external magnetic field after adsorption.
Collapse
Affiliation(s)
- Aashima
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Shivani Uppal
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Arushi Arora
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Sanjeev Gautam
- Dr S. S. Bhatnagar University Institute of Chemical Engineering and Technology (SSB UICET), Panjab University Chandigarh 160014 India
| | - Suman Singh
- CSIR - Central Scientific Instruments Organization Sector-30 Chandigarh 160030 India
| | - R J Choudhary
- UGC-DAE Consortium for Scientific Research University Campus, Khandwa Road Indore - 452 017 India
| | - S K Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| |
Collapse
|