1
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
2
|
Kalyani Bhardwaj B, James A, Tomy J, K B S, Suresh PS. Multi-spectroscopic and in silico investigation of gambogic acid-calf thymus DNA interactions. J Biomol Struct Dyn 2024:1-12. [PMID: 38433426 DOI: 10.1080/07391102.2024.2323694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Gambogic acid (GA), a xanthanoid compound, is derived from Garcinia Hanbury gamboge resin. Studying GA's DNA binding and targeting processes is crucial to understanding its tumor-targeting potentiality. This study used spectroscopic and in silico methods to investigate the GA-calf thymus DNA-binding interaction. The results of the UV-visible absorbance spectroscopy revealed that GA binds to DNA and forms a complex. Investigation of fluorescence quenching using ethidium bromide-DNA revealed that GA displaced ethidium bromide, and the type of quenching was static in nature, as determined by Stern-Volmer plot data. Thermodynamic analysis of the DNA-GA complex revealed a spontaneous, favorable interaction involving hydrogen bonding and hydrophobic interactions. Quenching experiments with potassium iodide, Acridine orange, and NaCl verified GA's groove-binding nature and the presence of weak electrostatic interactions. The thermal melting temperature of DNA in its native and bound states with GA did not differ significantly (69.27° C to 71.25° C), validating the binding of GA to the groove region. Furthermore, the groove-binding nature of GA was confirmed by studying its interaction with ssDNA and DNA viscosity. The methods of DSC, FT-IR, and CD spectroscopy have not revealed any structural aberrations in DNA bound with GA. Molecular docking and modeling studies revealed that GA has a groove-binding nature with DNA, which is consistent with prior experimental results. Finally, the findings shed information by which GA attaches to DNA and provide insights into its recognized anticancer effects via topoisomerase inhibition causing DNA cleavage, inhibition of cell proliferation and apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Arsha James
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, India
| | - Jiya Tomy
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, India
| | - Shalini K B
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kerala, India
| |
Collapse
|
3
|
Devika PP, Alex S, Soni KB, Sindura KP, Ayisha R, Manju RV. Nano-PCR for the early detection of tomato leaf curl virus. 3 Biotech 2024; 14:5. [PMID: 38074290 PMCID: PMC10700262 DOI: 10.1007/s13205-023-03842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/02/2023] [Indexed: 01/19/2024] Open
Abstract
Nano-PCR is a potential tool for the early detection of plant viruses. In the current study, different concentrations of silver nanoparticles (20 nm) and magnesium oxide nanoparticles (50 nm) were included in the PCR mixture to improve the sensitivity of PCR for the detection of tomato leaf curl virus. The inclusion of nanoparticles in single or combination in PCR mixture has resulted in improvement of PCR sensitivity. Four-fold improvement was exhibited by the inclusion of 3 ng/µL silver nanoparticles, whereas the combination of silver and magnesium oxide nanoparticles (3 ng/µL and 200 ng/µL, respectively), resulted in a 4.5-fold improvement. The inclusion of 200 ng/µL of magnesium oxide nanoparticles in the PCR mixture exhibited a 7.6-fold increase in PCR sensitivity. Replacement of magnesium chloride with a combination of silver and magnesium oxide nanoparticles (3 ng/µL and 275 ng/µL, respectively) resulted in a 12-fold increase. A 13-fold improvement in PCR sensitivity was observed by the replacement of magnesium chloride in PCR buffer with 275 ng/µL of magnesium oxide nanoparticles. This could also produce detectable amplicon in PCR with a minimum of 25 cycles, resulting in a 26.5% reduction in the duration of PCR. This is the first report on the use of magnesium oxide nanoparticles in PCR for the early detection and better management of tomato leaf curl virus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03842-2.
Collapse
Affiliation(s)
- P. P. Devika
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - Swapna Alex
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - K. B. Soni
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - K. P. Sindura
- Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| | - R. Ayisha
- Department of Plant Pathology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, Kerala 680656 India
| | - R. V. Manju
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala 695522 India
| |
Collapse
|
4
|
Mati SS, Chowdhury S, Sarkar S, Bera N, Sarkar N. Targeting genomic DNAs and oligonucleotide on base specificity: A comparative spectroscopic, computational and in vitro study. Int J Biol Macromol 2023:124933. [PMID: 37230444 DOI: 10.1016/j.ijbiomac.2023.124933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Drug discovery in targeted nucleic acid therapeutics encompass several stages and rigorous challenges owing to less specificity of the DNA binders and high failure rate in different stages of clinical trials. In this perspective, we report newly synthesized ethyl 4-(pyrrolo[1,2-a]quinolin-4-yl)benzoate (PQN) with minor groove A-T base pair binding selectivity and encouraging in cell results. This pyrrolo quinolin derivative has shown excellent groove binding ability with three of our inspected genomic DNAs (cpDNA 73 % AT, ctDNA58% AT and mlDNA 28 % AT) with varying A-T and G-C content. Notably in spite of similar binding patterns PQN have strong binding preference with A-T rich groove of genomic cpDNA over the ctDNA and mlDNA. Spectroscopic experiments like steady state absorption and emission results have established the relative binding strengths (Kabs = 6.3 × 105 M-1, 5.6 × 104 M-1, 4.3 × 104 M-1 and Kemiss = 6.1 × 105 M-1, 5.7 × 104 M-1 and 3.5 × 104 M-1 for PQN-cpDNA, PQN-ctDNA and PQN-mlDNA respectively) whereas circular dichroism and thermal melting studies have unveiled the groove binding mechanism. Specific A-T base pair attachment with van der Waals interaction and quantitative hydrogen bonding assessment were characterized by computational modeling. In addition to genomic DNAs, preferential A-T base pair binding in minor groove was also observed with our designed and synthesized deca-nucleotide (primer sequences 5/-GCGAATTCGC-3/ and 3/-CGCTTAAGCG-5/). Cell viability assays (86.13 % in 6.58 μM and 84.01 % in 9.88 μM concentrations) and confocal microscopy revealed low cytotoxicity (IC50 25.86 μM) and efficient perinuclear localization of PQN. We propose PQN with excellent DNA-minor groove binding capacity and intracellular permeation properties, as a lead for further studies encompassing nucleic acid therapeutics.
Collapse
Affiliation(s)
- Soumya Sundar Mati
- Department of Chemistry, Government General Degree College, Keshiary, Paschim Medinipur,WB 721135, India.
| | - Sourav Chowdhury
- Structural Biology and Bio-informatics division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Soumen Sarkar
- Department of Chemistry, Balurghat College, Dakshin Dinajpur, WB 733101, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Paschim Medinipur, WB 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Paschim Medinipur, WB 721302, India.
| |
Collapse
|
5
|
Chen J, Li F, Gu J, Zhang X, Bartoli M, Domena JB, Zhou Y, Zhang W, Paulino V, C L B Ferreira B, Michael Brejcha N, Luo L, Arduino C, Verde F, Zhang F, Zhang F, Tagliaferro A, Olivier JH, Zhang Y, Leblanc RM. Cancer cells inhibition by cationic carbon dots targeting the cellular nucleus. J Colloid Interface Sci 2023; 637:193-206. [PMID: 36701865 PMCID: PMC9957951 DOI: 10.1016/j.jcis.2023.01.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported. In this project, 1, 2, 4, 5-benzenetetramine (Y15, a focal adhesion kinase inhibitor) derived cationic carbon dots (Y15-CDs) were prepared via a hydrothermal approach utilizing Y15, folic acid and 1,2-ethylenediamine as precursors. Based on the structural, optical, and morphologic characterizations, Y15-CDs possess rich amine groups and nitrogen in structure, an excitation-dependent photoluminescence emission, and a small particle size of 2 to 4 nm. The DNA binding experiments conducted through agarose gel electrophoresis, UV-vis absorption, fluorescence emission, and circular dichroism spectroscopies, prove that Y15-CDs might bind with DNA via electrostatic interactions and partially intercalative binding modes. In addition, the cell imaging and cytotoxicity studies in human foreskin fibroblasts (HFF), prostate cancer (PC3) and osteosarcoma cells (U2OS) indicate the nucleus targeting and anticancer abilities of Y15-CDs. Most interestingly, Y15-CDs exhibit a higher cytotoxicity to cancer cells (PC3 and U2OS) than to normal cells (HFF), inferring that Y15-CDs might be potentially applied in cancer therapy.
Collapse
Affiliation(s)
- Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Xiao Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; C-Dots, LLC, Miami, FL 33136, USA
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Victor Paulino
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Nicholas Michael Brejcha
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Liang Luo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Chiara Arduino
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
6
|
Sultana R, Ali A, Twala C, Mehandi R, Rana M, Yameen D, Abid M, Rahisuddin. Synthesis, spectral characterization of pyrazole derived Schiff base analogs: molecular dynamic simulation, antibacterial and DNA binding studies. J Biomol Struct Dyn 2023; 41:13724-13751. [PMID: 36826451 DOI: 10.1080/07391102.2023.2179541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We have synthesized the pyrazole-bearing Schiff base derivatives (5a-5e) and (6a-6h) then the structural confirmation was supported by various spectral analyses. The antibacterial activity of all analogs was screened against bacterial strains Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonieae and Pseudomonas aeruginosa. In comparison to the reference drug ciprofloxacin, the lead analogs 5c and 6c showed potent activity, with MIC values of 64 µg/mL against E. coli and B. subtilis. Compound 5c showed a moderate effect with a MIC value of 128 µg/mL against B. subtilis, P. aeruginosa and K. pneumonieae, while compound 6c was against E. coli and P. aeruginosa. Furthermore, the compounds 5c and 6c displayed groove binding mode towards CT-DNA by absorption, emission, competitive fluorescence studies using EtBr, CD and time-resolved fluorescence studies. Thermodynamic parameters of analogs 5c and 6c with CT-DNA were also calculated at 298, 303 and 308K temperatures by UV-visible spectroscopy. The molecular docking studies give the docking score for all compounds with PDB codes: 1BNA and 2XCT. The MD simulation study of analogs 5c and 6c was also carried out. The pharmacokinetic and ADME properties were calculated for all of the synthesized analogs (5a-5e) and (6a-6h).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razia Sultana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumer Science, University of South Africa, Florida, South Africa
| | - Rabiya Mehandi
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Daraksha Yameen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of AgNPs in Aquatic Ecosystem. WATER 2022. [DOI: 10.3390/w14142192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver nanoparticles (AgNPs) are commonly used in numerous consumer products, including textiles, cosmetics, and health care items. The widespread usage of AgNPs results in their unavoidable discharge into the ecosystem, which pollutes the aquatic, groundwater, sediments, and marine environments. These nanoparticles (NPs) activate the production of free radicals reactive species in aquatic organisms that interrupt the functions of DNA, cause mitochondrial dysfunction, and increase lipid peroxidation, which terminates the development and reproduction both in vivo and in vitro. The life present in the aquatic ecosystem is becoming threatened due to the release and exploitation of AgNPs. Managing the aquatic ecosystem from the AgNP effects in the near future is highly recommended. In this review, we discussed the background of AgNPs, their discharge, and uptake by aquatic organisms, the mechanism of toxicity, different pathways of cytotoxicity, and bioaccumulation, particularly in aquatic organisms. We have also discussed the antimicrobial activities of AgNPs along with acute and chronic toxicity in aquatic groups of organisms.
Collapse
|
8
|
Blaškovičová J, Labuda J. Effect of Triclosan and Silver Nanoparticles on DNA Damage Investigated with DNA-Based Biosensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22124332. [PMID: 35746113 PMCID: PMC9228991 DOI: 10.3390/s22124332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/07/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent widely used in personal care, healthcare, and clinical practice. One of the most important aspects of toxicological profiling of compounds is their interaction with DNA. In human cells, TCS causes a significant reduction in DNA methylation. The involvement of TCS in chromosomal aberrations, DNA damage, and strand breaks, as well as DNA damage from TCS degradation products, was reported. AgNPs share similarities with TCS in terms of antimicrobial properties, enter the body after exposure, and are used even together with TCS in oral care products. Therefore, their mutual effect on the DNA is of interest. In this study, the electrochemical behavior of TCS on a glassy carbon electrode (GCE) and the biosensor with salmon sperm dsDNA (DNA/GCE), DNA damage by TCS present in phosphate buffer solution pH 7.4 and an additional effect of the immobilized AgNP layer on such DNA damage have been investigated. Two different sizes of AgNPs (about 15 and 37 nm) were tested. Using square-wave voltammetric signals of nucleobases, the portion of survived DNA was 64% in the presence of 15 nm AgNPs compared to 55% in its absence. The protective effect of AgNPs on DNA against TCS-induced DNA damage was found.
Collapse
|
9
|
Kou SB, Zhou KL, Lin ZY, Lou YY, Wang BL, Shi JH, Liu YX. Investigation of binding characteristics of ritonavir with calf thymus DNA with the help of spectroscopic techniques and molecular simulation. J Biomol Struct Dyn 2022; 40:2908-2916. [PMID: 33164672 DOI: 10.1080/07391102.2020.1844057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The binding behavior of ritonavir (RTV), a HIV/AIDS protease inhibitor, with ct-DNA was characterized through multiple testing technologies and theoretical calculation. The findings revealed that the RTV-DNA complex was formed through the noncovalent interaction mainly including conventional hydrogen bonds and carbon hydrogen bonds as well as hydrophobic interactions (pi-alkyl interactions). The stoichiometry and binding constant of the RTV-DNA complex were 1:1 and 1.87 × 103 M-1 at 298 K, respectively, indicating that RTV has moderate affinity with ct-DNA. The findings confirmed that RTV binds to the minor groove of DNA. The outcomes of CD experiments showed that the binding with RTV changed the conformation of DNA slightly. However, the conformation of RTV had obvious changes after binding to DNA, meaning that the flexibility of RTV molecule played an important role in stabilizing the RTV-DNA complex. Meanwhile, the results of DFT calculation revealed that the RTV and DNA interaction caused the changes in the frontier molecular orbitals, dipole moment and atomic charge distribution of RTV, altering the chemical properties of RTV when it bound to DNA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Ying-Xin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Structure-dependent of 3-fluorooxindole derivatives interacting with ctDNA: Binding effects and molecular docking approaches. Bioorg Chem 2022; 121:105698. [DOI: 10.1016/j.bioorg.2022.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
11
|
Keshavarzian E, Asadi Z, Poupon M, Dusek M, Rastegari B. Heterodinuclear Cu–Gd (3d-4f) complex with di-compartmental Schiff base ligand in biological activity: Synthesis, crystal structure, catecholase activity and DNA & BSA-binding studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Mollarasouli F, Dogan-Topal B, Caglayan MG, Taskin-Tok T, Ozkan SA. Electrochemical, spectroscopic, and molecular docking studies of the interaction between the anti-retroviral drug indinavir and dsDNA. J Pharm Anal 2020; 10:473-481. [PMID: 33133731 PMCID: PMC7591812 DOI: 10.1016/j.jpha.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, an electrochemical DNA biosensor was developed using a straightforward methodology to investigate the interaction of indinavir with calf thymus double-stranded deoxyribonucleic acid (ct-dsDNA) for the first time. The decrease in the oxidation signals of deoxyguanosine (dGuo) and deoxyadenosine (dAdo), measured by differential pulse voltammetry, upon incubation with different concentrations of indinavir can be attributed to the binding mode of indinavir to ct-dsDNA. The currents of the dGuo and dAdo peaks decreased linearly with the concentration of indinavir in the range of 1.0–10.0 μg/mL. The limit of detection and limit of quantification for indinavir were 0.29 and 0.98 μg/mL, respectively, based on the dGuo signal, and 0.23 and 0.78 μg/mL, respectively, based on the dAdo signal. To gain further insights into the interaction mechanism between indinavir and ct-dsDNA, spectroscopic measurements and molecular docking simulations were performed. The binding constant (Kb) between indinavir and ct-dsDNA was calculated to be 1.64 × 108 M−1, based on spectrofluorometric measurements. The obtained results can offer insights into the inhibitory activity of indinavir, which could help to broaden its applications. That is, indinavir can be used to inhibit other mechanisms and/or hallmarks of viral diseases. Electrochemical DNA biosensor was fabricated for indinavir-DNA interaction study. Indinavir was interacted with ct-dsDNA and made eight hydrogen bonds. The Kb was calculated to be 1.64 × 108 M−1 by spectrofluorometry.
Collapse
Affiliation(s)
- Fariba Mollarasouli
- Ankara University, Department of Analytical Chemistry, 06560, Ankara, Turkey.,Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Burcu Dogan-Topal
- Ankara University, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Tugba Taskin-Tok
- Department of Chemistry, Gaziantep University, 27310, Gaziantep, Turkey.,Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, 27310, Gaziantep, Turkey
| | - Sibel A Ozkan
- Ankara University, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
13
|
Mo F, Li H, Li Y, Cui W, Wang M, Li Z, Chai R, Wang H. Toxicity of Ag + on microstructure, biochemical activities and genic material of Trifolium pratense L. seedlings with special reference to phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110499. [PMID: 32208213 DOI: 10.1016/j.ecoenv.2020.110499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The objective of this research was to evaluate Ag+ toxicity in Trifolium pratense L. seedlings subjected to increasing doses of Ag+ by determining photosynthetic pigment and malondialdehyde (MDA) contents, microstructure and hereditary substance alterations, changes in activities of antioxidase-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as the content of total Ag absorbed in vivo with evaluation of root growth. Doses of approximately 80 mg L-1 Ag+ severely affected photosynthetic efficiency in Trifolium pratense L. seedlings promoted by damages in photosynthetic apparatus evidenced by downward trend in photosynthetic pigment contents and obvious chlorosis. Alterations in enzymatic activity, lipid peroxidation, genic material damage and the presence of Ag+in vivo had impacted on photosynthetic machinery as well. A hormesis effect was observed at 60 mg L-1 Ag+ for the photosynthetic pigments and antioxidase for Trifolium pratense L. seedlings. Tissue changes (i.e., roots, stems and leaves) observed in fluorescence microscope with obvious chlorosis, roots blackening and formation of agglomerated black particles, were related to the lesion promoted by excessive ROS in vivo. Asynchronous change of antioxidase activity corresponded to the alteration in the MDA content, indicating the synchronization in the elimination of ROS. The changes occurred in RAPD profiles of treated samples following Ag+ toxicity containing loss of normal bands, appearance of new bands and variation in band intensity compared to the normal plants with a dose-dependent effect. On average, the roots of Trifolium pratense L. immobilized 92.20% of the total Ag absorbed as a metal exclusion response. Root growth was significantly sensitive to Ag+ stress with obvious hormesis, which corresponded to the changes in Ag uptake, demonstrating the functional alterations in plants. To sum up, we suggest that modulating the genotype of Trifolium pratense L. seedlings to bear higher proportion of pollutants is conducive to contamination site treatment.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Weina Cui
- Institute of Applied Ecology, Chinese Academy of Sciences Shenyang Branch, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China; School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Rui Chai
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Hongxuan Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| |
Collapse
|
14
|
Li H, Mo F, Li Y, Wang M, Li Z, Hu H, Deng W, Zhang R. Effects of silver(I) toxicity on microstructure, biochemical activities, and genic material of Lemna minor L. with special reference to application of bioindicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22735-22748. [PMID: 32323236 DOI: 10.1007/s11356-020-08844-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this research, several biochemical variations in plant of Lemna minor L. were investigated to reflect Ag+ toxicity. Lemna minor L. changed colorless AgNO3 to colloidal brown at doses equal to and greater than 1 mg L-1. Optical and fluorescence microscopy revealed the presence of bright spots in roots of tested plant related to Ag/Ag2O-NPs. Photosynthetic pigment contents of Lemna minor L. declined upon exposure to Ag+ with an evidently higher decrease in chlorophyll a than in chlorophyll b. Similarly, Ag+ treatment caused an evident reduction in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). The reduction in antioxidase activity was significantly higher in POD than in SOD and CAT. Ag+ treatment resulted in a significant increment in the level of malondialdehyde (MDA) content as the judging criteria of cellular injury which showed sign of dose-related. The alterations occurred in RAPD profiles of treated samples following Ag+ toxicity containing loss of normal bands, appearance of new bands, and variation in band intensities compared with the normal plants. In addition, morphological character and biomass of Lemna minor L. subjected to increasing Ag+ concentrations were evaluated to reveal Ag+ toxicity. Our study demonstrated that Lemna minor L. have a high sensitivity to indicate fluctuation of water quality. It would be beneficial that modulating the genotype of Lemna minor L. to bear high proportion of contaminates.
Collapse
Affiliation(s)
- Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Haiyang Hu
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Wenhe Deng
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Ran Zhang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| |
Collapse
|