1
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Bellucci S, Abukhadra MR. Insight into the integration effect of chitosan and β-cyclodextrin on the properties of zinc-phosphate/hydroxyapatite hybrid as delivery structures for 5-fluorouracil: loading and release profiles. Front Chem 2024; 12:1456057. [PMID: 39324064 PMCID: PMC11422123 DOI: 10.3389/fchem.2024.1456057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Zinc-phosphate/hydroxyapatite hybrid form (ZP/HP) in core-shell nanostructure was developed and functionalized with both chitosan (CS@ZP/HP) and β-cyclodextrin (CD@ZP/HP) as bio-composite of enhanced physicochemical and biological properties. These structures were assessed as potential deliveries of 5-fluorouracil, exhibiting enhanced loading, release, and anti-cancer behaviors. The functionalization strongly prompted the loading effectiveness to be 301.3 mg/g (CS@ZP/HP) and 342.8 mg/g (CD@ZP/HP) instead of 238.9 mg/g for ZP/HP. The loading activities were assessed based on the hypotheses of traditional kinetic and isotherm models, alongside the computational variables of the monolayer model with a single energetic site as an advanced isotherm model. The functionalized versions exhibit much greater loading efficacy compared to ZP/HP as a result of the increment in the density of the existing loading sites [Nm(5-Fu) = 78.85 mg/g (ZP/HP), 93.87 mg/g (CS@ZP/HP), and 117.8 mg/g (CD@ZP/HP)]. Furthermore, the loading energies of approximately 40 kJ/mol, together with the loading potential of each receptor (n > 1) and Gaussian energies of approximately 8 kJ/mol, indicate the physical entrapment of 5-Fu molecules according to a vertical orientation. The materials mentioned verify long-term and continuous release characteristics. Following the modification processes, this behavior became faster as both CS@ZP/HP and CD@ZP/HP displayed complete release within 120 h at pH 1.2. The kinetic studies and diffusing exponent (>0.45) indicate that release characteristics are controlled by both diffusion and erosion processes. These carriers also markedly increase the cytotoxicity of 5-Fu against HCT-116 colorectal cancer cell lines: 5-Fu-ZP/HP (3.2% cell viability), 5-Fu-CS@ZP/HP (1.12% cell viability), and 5-Fu-CD@ZP/HP (0.63% cell viability).
Collapse
Affiliation(s)
- May N. Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I. Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
2
|
Halder S, Behera US, Poddar S, Khanam J, Karmakar S. Preparation of Microsponge Drug Delivery System (MSDDS) Followed by a Scale-Up Approach. AAPS PharmSciTech 2024; 25:162. [PMID: 38997615 DOI: 10.1208/s12249-024-02874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 μm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.
Collapse
Affiliation(s)
- S Halder
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - U S Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Jeonnam, Yeosu, 59626, South Korea
| | - S Poddar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
- Department of Chemical Engineering, Haldia Institute of Technology, West Bengal, 721657, India.
| | - J Khanam
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - S Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
3
|
Radha D, Lal JS, Devaky KS. Release studies of the anticancer drug 5-fluorouracil from chitosan-banana peel extract films. Int J Biol Macromol 2024; 256:128460. [PMID: 38035954 DOI: 10.1016/j.ijbiomac.2023.128460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
5-F-lourouracil is an anticancer drug used for the treatment of different types of cancers. 5-flourouracil loaded chitosan-banana peel extract films were prepared for the in vitro drug release studies. Solvent casting technique was employed to prepare the films. The structure and morphology of the prepared films were analysed by FTIR, XRD and SEM methods and confirmed the presence of drug in the films. The drug loaded films show excellent thermal stability and good shelf life. Studies revealed that the percentage of banana peel extract influences the swelling properties of the film, thickness of the films and release of the drug from the films. Increase in the concentration of chitosan and banana peel extract decreases the swelling properties of the film and rate of release of the drug from the film. The release rate of 5-fluorouracil from the drug loaded chitosan-banana peel extract films were followed spectrophotometrically at λmax 266 nm and the film derived from 1 % chitosan solution and 1 mL aqueous banana peel extract (saturated) exhibited maximum drug release. Cytotoxicity studies proved that the films are non-toxic in nature and augurs well for their applications as excellent drug delivery systems. Antimicrobial studies show that the drug loaded chitosan-banana peel extract films were found to be active against microbes E. coli, Streptococcus mutans, Staphylococcus aureus, Candida albicans and Aspergillus niger and inactive against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Divya Radha
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| | - Jisha S Lal
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| | - K S Devaky
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| |
Collapse
|
4
|
Abukhadra MR, Okasha AT, Al Othman SI, Alfassam HE, Alenazi NA, AlHammadi AA, Allam AA. Synthesis and Characterization of Mg-Hydroxyapatite and Its β-Cyclodextrin Composite as Enhanced Bio-Carrier of 5-Fluorouracil Drug; Equilibrium and Release Kinetics. ACS OMEGA 2023; 8:30247-30261. [PMID: 37636978 PMCID: PMC10448682 DOI: 10.1021/acsomega.3c02982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg·HAP) was integrated in composite with β-cyclodextrin producing a safe biocomposite (β-CD/HAP) as an enhanced delivery structure of traditional 5-fluorouracil (5-FU) chemotherapy during the treatment stages of colorectal cancer cells. The qualifications of β-CD/HAP as a carrier for 5-FU were followed based on the loading, release, and cytotoxicity as compared to Mg·HAP. β-CD/HAP composite exhibits notably higher 5-FU encapsulation capacity (272.3 mg/g) than Mg·HAP phase (164.9 mg/g). The 5-FU encapsulation processes into β-CD/HAP display the isotherm behavior of the Freundlich model (R2 = 0.99) and kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the β-CD integration steps (Nm = 61.2 mg/g) as compared to pure Mg·HAP (Nm = 42.4 mg/g). Also, the capacity of each site was enhanced to be loaded by 5 of 5-FU molecules (n = 4.45) in a vertical orientation. The 5-FU encapsulation energy into β-CD/HAP (<40 kJ/mol) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The 5-FU release profiles of β-CD/HAP exhibit slow and controlled properties for about 80 h either in gastric fluid (pH 1.2) or in intestinal fluid (pH 7.4). The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and complex erosion/diffusion release mechanism. The free β-CD/HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (33.62% cell viability) and its 5-FU-loaded product shows a strong cytotoxic effect (2.91% cell viability).
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef City 62511, Egypt
| | - Alaa T. Okasha
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni Suef City 62514, Egypt
| | - Sarah I. Al Othman
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Haifa E. Alfassam
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Noof A. Alenazi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali A. AlHammadi
- Chemical
Engineering Department, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separations, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| |
Collapse
|
5
|
Alqahtani MD, Bin Jumah MN, Al-Hashimi A, Allam AA, Abukhadra MR, Bellucci S. Synthesis and Characterization of Methoxy-Exfoliated Montmorillonite Nanosheets as Potential Carriers of 5-Fluorouracil Drug with Enhanced Loading, Release, and Cytotoxicity Properties. Molecules 2023; 28:5895. [PMID: 37570864 PMCID: PMC10421137 DOI: 10.3390/molecules28155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability).
Collapse
Affiliation(s)
- Mashael D. Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May N. Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Laboratory, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
6
|
Alqahtani MD, Bin Jumah MN, AlZahrani SA, Allam AA, Abukhadra MR, Bellucci S. Insights into the Effect of Chitosan and β-Cyclodextrin Hybridization of Zeolite-A on Its Physicochemical and Cytotoxic Properties as a Bio-Carrier for 5-Fluorouracil: Equilibrium and Release Kinetics Studies. Molecules 2023; 28:5427. [PMID: 37513298 PMCID: PMC10384421 DOI: 10.3390/molecules28145427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and β-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and β-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability).
Collapse
Affiliation(s)
- Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May N Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saleha A AlZahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
7
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
8
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
9
|
Hosseini SM, Soltanabadi A, Abdouss M, Mazinani S. Investigating the structure of the product of graphene oxide reaction with folic acid and chitosan: density functional theory calculations. J Biomol Struct Dyn 2022; 40:14146-14159. [PMID: 34791994 DOI: 10.1080/07391102.2021.2001372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chitosan biopolymer was used to modify the level of graphene oxide. And the composite prepared from graphene oxide/chitosan, due to its favorable physical and chemical properties, have been used as a drug delivery system. In this study, the adsorption of Folic acid on the carrier was investigated using density functional theory (DFT). The geometry optimizations, electronic structures, and gas-phase properties of widely applicable graphene (G), graphene oxide (GO), chitosan (CS), folic acid (FA), GO-CS and GO-CS-FA were investigated using DFT. The studied molecules are based on graphene oxide. In GO-CS, DFT calculation show that two Chitosan connected to the GO molecule on both opposite sides, so that two Chitosan have maximum distance from each other. Finally, the electronic structure of FA was obtained with this molecule calculated and discussed. The interaction of hydrogen bonds in the most stable pair formers between molecules were determined. Furthermore, the hydrogen bonds were studied by atom in molecules natural bond orbital analyses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Azim Soltanabadi
- Department of Physical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Al-Otaibi JS, Mary YS, Mary YS, Acharjee N, Churchill DG. Spectroscopic studies of 5-fluoro-1H-pyrimidine-2,4-dione adsorption on nanorings, solvent effects and SERS analysis. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Rezaei A, Hooman Vahidi S, Nasrabadi M, Ali Beyramabadi S, Morsali A. Quantum chemical study of 2-hydroxypropyl-β-cyclodextrin and genipin-crosslinked chitosan nanocarriers functionalized with cytarabine anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
DFT and Molecular Simulation Study of Gold Clusters as Effective Drug Delivery Systems for 5-Fluorouracil Anticancer Drug. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
14
|
Lee RKL, Li TN, Chang SY, Chao TL, Kuo CH, Pan MYC, Chiou YT, Liao KJ, Yang Y, Wu YH, Huang CH, Juan HF, Hsieh HP, Wang LHC. Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23074050. [PMID: 35409412 PMCID: PMC8999638 DOI: 10.3390/ijms23074050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Entry inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to control the outbreak of coronavirus disease 2019 (COVID-19). This study developed a robust and straightforward assay that detected the molecular interaction between the receptor-binding domain (RBD) of viral spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor in just 10 min. A drug library of 1068 approved compounds was used to screen for SARS-CoV2 entry inhibition, and 9 active drugs were identified as specific pseudovirus entry inhibitors. A plaque reduction neutralization test using authentic SARS-CoV-2 virus in Vero E6 cells confirmed that 2 of these drugs (Etravirine and Dolutegravir) significantly inhibited the infection of SARS-CoV-2. With molecular docking, we showed that both Etravirine and Dolutegravir are preferentially bound to primary ACE2-interacting residues on the RBD domain, implying that these two drug blocks may prohibit the viral attachment of SARS-CoV-2. We compared the neutralizing activities of these entry inhibitors against different pseudoviruses carrying spike proteins from alpha, beta, gamma, and delta variants. Both Etravirine and Dolutegravir showed similar neutralizing activities against different variants, with EC50 values between 4.5 to 5.8 nM for Etravirine and 10.2 to 22.9 nM for Dolutegravir. These data implied that Etravirine and Dolutegravir may serve as general spike inhibitors against dominant viral variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Richard Kuan-Lin Lee
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
- SMOBIO Technology, Inc., Hsinchu 300096, Taiwan;
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (S.-Y.C.); (T.-L.C.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (S.-Y.C.); (T.-L.C.)
| | | | - Max Yu-Chen Pan
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
| | - Yu-Ting Chiou
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
| | - Kuan-Ju Liao
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan;
| | - Yi Yang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
| | - Chen-Hao Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan; (C.-H.H.); (H.-F.J.)
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan; (C.-H.H.); (H.-F.J.)
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350401, Taiwan;
- Department of Chemistry, National Tsing Hua University, Hsinchu 300013, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei 115202, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu 300013, Taiwan; (R.K.-L.L.); (T.-N.L.); (M.Y.-C.P.); (Y.-T.C.); (Y.Y.); (Y.-H.W.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 300013, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Kheiri K, Sohrabi N, Mohammadi R, Amini-Fazl MS. Preparation and characterization of magnetic nanohydrogel based on chitosan for 5-fluorouracil drug delivery and kinetic study. Int J Biol Macromol 2022; 202:191-198. [PMID: 35033524 DOI: 10.1016/j.ijbiomac.2022.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy is currently used for most cancer treatments, but one of the significant problems of this treatment is that it affects the healthy tissues of the body. Therefore, designing new systems for the intelligent and controlled release of these drugs in cancer tissues is one of the major challenges in the world. Hence, today, huge costs are spent designing appropriate new drug delivery systems (DDS) with controlled drug release. In this study, chitosan-polyacrylic acid encapsulated Fe3O4 magnetic nanogelic core-shell (Fe3O4@CS-PAA) was synthesized in the presence of glutaraldehyde used for loaded anticancer 5-fluorouracil (5-FU) drug. Also, the prepared Fe3O4@CS-PAA was characterized by using FT-IR, SEM, XRD, and VSM analysis. Then, drug delivery tests were carried out in the in-vitro conditions that are the simulated physiological environment and tumor tissue conditions. The drug release tests indicated that the Fe3O4@CS-PAA upgraded the rate of 5-FU release from nanogelic core-shell under tumor tissue conditions (pH 4.5) than physiological environments (pH 7.4). In addition, various models were used to investigate the drug release mechanism. Results of modeling studies of drug release showed the mechanism of 5-FU release from Fe3O4@CS-PAA controlled by Fickian diffusion.
Collapse
Affiliation(s)
- Karim Kheiri
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
16
|
Characterization of MgO/CaO hybrid nanorods as an enhanced inorganic carrier of 5-Fluorouracil drug; loading, release, and cytotoxicity studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02256-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel) 2022; 11:191. [PMID: 35203793 PMCID: PMC8868340 DOI: 10.3390/antibiotics11020191] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Schiff bases (SBs) have extensive applications in different fields such as analytical, inorganic and organic chemistry. They are used as dyes, catalysts, polymer stabilizers, luminescence chemosensors, catalyzers in the fixation of CO2 biolubricant additives and have been suggested for solar energy applications as well. Further, a wide range of pharmacological and biological applications, such as antimalarial, antiproliferative, analgesic, anti-inflammatory, antiviral, antipyretic, antibacterial and antifungal uses, emphasize the need for SB synthesis. Several SBs conjugated with chitosan have been studied in order to enhance the antibacterial activity of chitosan. Moreover, the use of the nanoparticles of SBs may improve their antimicrobial effects. Herein, we provide an analytical overview of the antibacterial and antifungal properties of SBs and chitosan-based SBs as well as SBs-functionalized nanoparticles. The most relevant and recent literature was reviewed for this purpose.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| |
Collapse
|
18
|
CuI incorporated magnetic iminochitosan as an efficient catalyst for the synthesis of N-sulfonylamidines possessing 2-formylpyrrole moiety and their subsequent reactions to the synthesis of isoxazole-5-one hybrid derivatives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Quantum chemical studies to functionalization of boron nitride nanotube (BNNT) as effective nanocarriers. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Khan S, Hussain A, Attar F, Bloukh SH, Edis Z, Sharifi M, Balali E, Nemati F, Derakhshankhah H, Zeinabad HA, Nabi F, Khan RH, Hao X, Lin Y, Hua L, Ten Hagen TLM, Falahati M. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomed Pharmacother 2021; 146:112531. [PMID: 34906771 DOI: 10.1016/j.biopha.2021.112531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.
Collapse
Affiliation(s)
- Suliman Khan
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ebrahim Balali
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; Institute of Pathology, Univesity of Berne, Berne, Switzerland
| | - Faisal Nabi
- Biotechnology Unit, Aligarh Muslim University, India
| | | | - Xiao Hao
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yueting Lin
- High Level Talent Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Linlin Hua
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Buczek A, Kupka T, Broda MA, Maślanka S, Pentak D. Liposomes as nonspecific nanocarriers for 5-Fluorouracil in the presence of cyclodextrins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Harati H, Morsali A, Bozorgmehr MR, Ali Beyramabadi S. β-cyclodextrin-lenalidomide anticancer drug delivery nanosystem: A quantum chemical approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Shakerzadeh E. Efficient carriers for anticancer 5-fluorouracil drug based on the bare and M−encapsulated (M = Na and Ca) B40 fullerenes; in silico investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Sung M, Shin DH, Lee HJ, Jang KH, Shin K, Kim JW. Enhancing skin permeation of nanoemulsions through associative polymeric micelles-mediated drop-to-skin dipolar interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Abukhadra MR, Adlii A, Khim JS, Ajarem JS, Allam AA. Insight into the Technical Qualification of the Sonocogreen CaO/Clinoptilolite Nanocomposite (CaO (NP)/Clino) as an Advanced Delivery System for 5-Fluorouracil: Equilibrium and Cytotoxicity. ACS OMEGA 2021; 6:31982-31992. [PMID: 34870021 PMCID: PMC8637967 DOI: 10.1021/acsomega.1c04725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Clinoptilolite as a natural zeolite was integrated with green CaO nanoparticles forming the green nanocomposite CaO(NP)/Clino. The CaO(NP)/Clino composite was assessed as a potential carrier for 5-fluorouracil (5-FL) drug. The CaO(NP)/Clino carrier achieved an enhanced 5-FL loading capacity of 305.3 mg/g as compared to 163 mg/g for pure clinoptilolite. The kinetics of the 5-FL loading follow the properties of the pseudo-first-order model, while the equilibrium results are related to the Langmuir isotherm. Therefore, the 5-FL loading processes occurred in the monolayer formed by homogeneous active loading receptors on the surface of the CaO(NP)/Clino carrier. The Gaussian energy of the 5-FL loading reaction (9.2 KJ/mol) reflected the dominant effect for the chemical mechanisms, especially the zeolitic ion-exchange mechanisms. Additionally, the thermodynamic parameters suggested endothermic, feasible, and spontaneous properties for the occurred 5-FL loading reactions. The release profile of 5-FL from CaO(NP)/Clino has continuous and long properties (150 h) at pH 1.2 (gastric fluid) and pH 7.4 (intestinal fluid). The kinetic studies of the release reactions show considerable agreement with Higuchi, Hixson-Crowell, and Korsmeyer-Peppas models. Such high fitting results and the diffusion exponent values (0.49 at pH 1.2 and 0.48 at pH 7.4) reflected the release properties of the Fickian transport behavior involving complex erosion and diffusion mechanisms. The cytotoxicity study of CaO(NP)/Clino on colorectal normal cells (CCD-18Co) declare the safe and biocompatible effect as a carrier for the 5-FL drug. Additionally, CaO(NP)/Clino as a carrier causes considerable enhancement for the cytotoxic effect of the loaded 5-FL drug on colon cancer cells (HCT-116).
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
| | - Alyaa Adlii
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
| | - Jong Seong Khim
- School
of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jamaan S. Ajarem
- Zoology
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| |
Collapse
|
26
|
Rezaei A, Morsali A, Bozorgmehr MR, Nasrabadi M. Quantum chemical analysis of 5-aminolevulinic acid anticancer drug delivery systems: Carbon nanotube, –COOH functionalized carbon nanotube and iron oxide nanoparticle. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Sonoco Green Decoration of Clinoptilolite with MgO Nanoparticles as a Potential Carrier for 5-Fluorouracil Drug: Loading Behavior, Release Profile, and Cytotoxicity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02078-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Gholivand K, Sabaghian M, Eshaghi Malekshah R. Synthesis, characterization, cytotoxicity studies, theoretical approach of adsorptive removal and molecular calculations of four new phosphoramide derivatives and related graphene oxide. Bioorg Chem 2021; 115:105193. [PMID: 34339976 DOI: 10.1016/j.bioorg.2021.105193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/26/2021] [Accepted: 07/17/2021] [Indexed: 01/05/2023]
Abstract
In this study, four novel phosphoramide ligands (L1-L4) are synthesized and characterized by 31PNMR, 1HNMR, MASS, and FT-IR spectroscopies. In vitro cell growth inhibition is studied by the MTT assay to evaluate the cytotoxicity of ligands against MCF-7 cell line; the result of the assay demonstrates that all ligands significantly suppress the proliferation of breast cancer cells in a concentration-dependent manner. The calculated IC50 values are in the range of 3.6-10.77 µg ml-1, of which the lowest value is attributed to L1. Then a facile approach was developed to functionalize graphene oxide (GO) surface by L1. The data which are obtained by XRD, FT-IR, and EDX analysis confirmed the deposition of phosphoramide on the surface of GO. The cell viability of GO-L1 compound at different concentrations is investigated in 24 h experiment. Excellent synergistic antitumor effects of GO and L1 lead to a decrease in IC50 value up to 2.13 μg ml-1. The Quantum calculations of compounds are used to study energies and HOMO and LUMO values, dipole moments (µ), global hardness (η), global softness (σ), and electrophilicity index (ω) using DMol3 module in Material studio2017. The docking calculations are performed to describe the mode of the binding to DNA and DNA polymerase IIα. Adsorption calculations of ligands (L1-L4) on GO sheet in the presence of water showed that L1 and L2 were located on GO via π electrons of anisole ring. While, L3 and L4 were located on GO by π - π interactions of aniline ring.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Marzie Sabaghian
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Han Q, Huang L, Luo Q, Wang Y, Wu M, Sun S, Zhang H, Wang Y. Synthesis and biological evaluation of biotin-conjugated Portulaca oleracea polysaccharides. RSC Adv 2021; 11:18084-18092. [PMID: 35480215 PMCID: PMC9033186 DOI: 10.1039/d1ra02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Biotinylated Portulaca oleracea polysaccharide (Bio-POP) conjugates were successfully prepared by the esterification reaction. The biotinylated polysaccharide products were an off-white powder with an average degree of substitution of 42.5%. After grafting biotin onto POP, the thermal stability of Bio-POP conjugates was much higher than that of POP and the surface topography of Bio-POP was a loose and porous cross-linked structure. The cytotoxicity assay in vitro demonstrated that POP, biotin, and Bio-POP conjugates exhibited different cytotoxicity to HeLa, MCF-7, LO-2, and A549, in particular POP inhibited the growth of the A549 cell line more than other cell lines. The nuclear staining method demonstrated that Bio-POP conjugates can interfere with the apoptosis of A549 cells to some extent and the immunofluorescence staining photograph illustrated that Bio-POP conjugates induced A549 cells to exhibit immune activity. Therefore, the combination of biotin and Portulaca oleracea polysaccharides had immune synergistic therapeutic effects on A549 cells and can be applied in the field of anti-tumor conjugate drugs.
Collapse
Affiliation(s)
- Qianqian Han
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Lirong Huang
- Cardio-Thoracic Surgery, Yancheng First People's Hospital Yancheng 224006 China
| | - Qiang Luo
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Mingliang Wu
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Shixin Sun
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| |
Collapse
|
30
|
Heidari Z, Pelalak R, Malekshah RE, Pishnamazi M, Marjani A, Sarkar SM, Shirazian S. Molecular modeling investigation on mechanism of cationic dyes removal from aqueous solutions by mesoporous materials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115485] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Mozhdehi AM, Sharifi AH, Ganjali A, Morsali A, Sharifi S, Naghavi F, Bamoharram FF, Sillanpää M. Perception of the reciprocal influences of the formed interactions and hydrogen bonds, and adsorption energies between zinc-titanate nanoparticles/nano-silica/Dawson heteropolyacid hybrid- water on the positive alternation trends of the strength and properties of ordinary and self-compacting concrete: A systematic study through the quantum mechanical theory and experimental engineering studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Synthesis, molecular dynamics simulation and adsorption study of different pollutants on functionalized mesosilica. Sci Rep 2021; 11:1967. [PMID: 33479295 PMCID: PMC7820229 DOI: 10.1038/s41598-020-80566-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022] Open
Abstract
Experimental and computational works were carried out on a new type of mesoporous silica. In the experimental section, functionalized hollow mesosilica spheres were prepared via a facile technique and then evaluated using some analytical techniques (FESEM, TEM, L-XRD, FTIR, BET-BJH, and TGA). The obtained results revealed that the synthesized material had hollow structure with a diamino-grafted porous shell. The molecular separation of crystal Violet (CV) and neutral Red (NR) dyes from water were investigated by adsorption process using the synthesized powder. Influence of adsorbent loading was evaluated as adsorption ability and dyes removal efficiency. Also, the obtained modeling results revealed appropriate fitting of data with non-linear Langmuir model. The theoretical studies were employed to study the adsorption and removal mechanism of cationic (CV and NR) and anionic (orange II (OII)) dyes using molecular dynamics calculations. Moreover, the simulation outcomes provided valuable information about quantum chemical properties including the HOMO-LUMO maps, chemical reactivity, global softness (σ) and hardness (η) for silica-linker-water-dyes components.
Collapse
|
34
|
Pelalak R, Soltani R, Heidari Z, Malekshah RE, Aallaei M, Marjani A, Rezakazemi M, Kurniawan TA, Shirazian S. Molecular dynamics simulation of novel diamino-functionalized hollow mesosilica spheres for adsorption of dyes from synthetic wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114812] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Tan D, Li Y, Zhang Z, Sun S, Sun H, Li B. Selective Loading and Prolonged Release of 5-Fluorouracil in the Nanoconfined Interlayer Space of Montmorillonite. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:781-787. [PMID: 33213679 DOI: 10.1166/jnn.2021.18730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Montmorillonite was used as a carrier for the anticancer drug 5-fluorouracil (5FU). The selective loading of 5FU into the nanoconfined interlayer space of montmorillonite was achieved by rinsing off the weakly bonded 5FU from the external surface. The 5FU loading content in montmorillonite was 3.2 mass%. The intercalated 5FU was in an amorphous state and might be arranged as a roughly vertical monolayer in the interlayer space of montmorillonite. The intercalated 5FU showed a high thermal stability due to the protection of the montmorillonite layers. The release profiles of the intercalated 5FU were well fitted with the modified Korsmeyer-Peppas model. The montmorillonite exhibited a prolonged release of 5FU due to the restriction of the outward diffusion of intercalated 5FU. The 5FU/montmorillonite system has promising potential for oral administration for colonspecific delivery.
Collapse
Affiliation(s)
- Daoyong Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification & High-Value Utilization, Mianyang 621010, China
| | - Yan Li
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification & High-Value Utilization, Mianyang 621010, China
| | - Zheng Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification & High-Value Utilization, Mianyang 621010, China
| | - Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification & High-Value Utilization, Mianyang 621010, China
| | - Hongjuan Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification & High-Value Utilization, Mianyang 621010, China
| | - Bowen Li
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
36
|
Nasrabadi M, Morsali A, Beyramabadi SA. An applied quantum-chemical model for genipin-crosslinked chitosan (GCS) nanocarrier. Int J Biol Macromol 2020; 165:1229-1240. [PMID: 33038394 DOI: 10.1016/j.ijbiomac.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The genipin-crosslinked chitosan (GCS) nanocarrier has received a lot of attention due to its unique biological and chemical properties as an effective drug delivery system. GCS was modeled by considering two chitosan (CS) polymer sequences with six monomer units that are crosslinked by genipin. To investigate the characteristics of this model, we considered it as a nanocarrier of the anti-cancer drug cladribine (2CdA). Seven configurations of GCS and 2CdA (GCS/2CdA1-7) were optimized at M06-2X/6-31G(d,p) in aqueous solution. The average binding energy above 100 kJ mol-1 indicates a high drug loading amount. The high adsorption of the drug on GCS is due to the hydrogen bonds that were investigated by AIM analysis. Hydrogen bonds also allow the drug to be released more slowly. These results were confirmed by experimental evidence and the comparison of this model with the simple model of one polymer chain. Also, the mechanism of GCS formation was investigated by calculating the activation parameters, which indicates that solvent (H2O) molecules are explicitly involved in the formation of GCS.
Collapse
Affiliation(s)
- Marjan Nasrabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| |
Collapse
|
37
|
Sharifi AH, Zahmatkesh I, Mozhdehi AM, Morsali A, Bamoharram FF. Stability appraisement of the alumina-brine nanofluid in the presence of ionic and non-ionic disparents on the alumina nanoparticles surface as heat transfer fluids: Quantum mechanical study and Taguchi-optimized experimental analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|