1
|
Saleh SM, Ali R, Algreiby A, Alfeneekh B, Ali IAI. A novel organic chromo-fluorogenic optical sensor for detecting chromium ions. Heliyon 2024; 10:e37480. [PMID: 39309270 PMCID: PMC11413675 DOI: 10.1016/j.heliyon.2024.e37480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Sensing trivalent chromium ion (Cr(III)) is widely applied in different areas, such as clinical analysis, marine, environmental monitoring, or even chemical industry applications. Cr(III) has a significant role in the physiological process of human life. It is classified as an essential micronutrient for living organisms. Herein, we developed and designed a novel optical Cr(III) ions sensor film. The investigated sensor has a relatively small dynamic range of 1.24 × 10-3 to 0.5 μM. We report a highly sensitive optical sensor film for Cr(III) ions based on diethyl 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarboxylate (3D) probe. The optical characteristics of the chemical probe exhibit substantial emission at 460 nm under 354 nm excitation. Besides, the interaction of the Cr(III) ions with 3D involves a complex formation with a 2:1 (metal: ligand) ratio, which is convoyed by the main peak enhancement that centered at 460 nm of 3D, and the main peak is red-shifted to 480 nm. The easily discernible fluorescence enhancement effect is a defining characteristic of the complexation reaction between the 3D probe and Cr(III). On the basis of the substantial fluorescence mechanism caused by the formation of a (Cr(III)-3D complex, which inhibits the photo-induced electron transfer (PET) process, the devised optical sensor was proposed. This film exhibits exceptional sensitivity and selectivity due to its notable fluorescence properties, stock shift of less than 106 nm, and detection capabilities at a significantly low detection limit of 0.37 × 10-3 μM. The detection procedure is executed by utilizing a physiological pH medium (pH = 7.4) with a relative standard deviation RSDr (1 %, n = 3). In addition, the 3D sensor demonstrates a high degree of affinity for Cr(III), as determined by the calculation of its binding constant to be 1.40 × 106. We present an impressive optical sensor that is constructed upon a three-dimensional molecule.
Collapse
Affiliation(s)
- Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Azizah Algreiby
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Bayader Alfeneekh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Ibrahim A I Ali
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Ali R, Saleh SM. Design a Friendly Nanoscale Chemical Sensor Based on Gold Nanoclusters for Detecting Thiocyanate Ions in Food Industry Applications. BIOSENSORS 2024; 14:223. [PMID: 38785697 PMCID: PMC11118002 DOI: 10.3390/bios14050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The surfactant cetyltrimethylammonium bromide (CTAB) induces the aggregation of gold nanoclusters (GNCs), leading to the development of a proposed fluorometric technique for detecting thiocyanate (SCN-) ions based on an anti-aggregation mechanism. This approach is straightforward to execute, highly sensitive, and selective. A significant quenching effect occurs in fluorescence upon using the aggregation agent CTAB in GNCs synthesis, resulting in a transition from intense red fluorescence to dim red. The decrease in fluorescence intensity of GNCs in the presence of CTAB is caused by the mechanism of fluorescence quenching mediated by aggregation. As the levels of SCN- rise, the fluorescence of CTAB-GNCs increases; this may be detected using spectrofluorometry or by visually inspecting under UV irradiation. The recovery of red fluorescence of CTAB-GNCs in the presence of SCN- enables the precise and discerning identification of SCN- within the concentration range of 2.86-140 nM. The minimum detectable concentration of the SCN- ions was 1 nM. The selectivity of CTAB-GNCs towards SCN- ions was investigated compared to other ions, and it was demonstrated that CTAB-GNCs exhibit exceptional selectivity. Furthermore, we believe that CTAB-GNCs have novel possibilities as favorable sensor candidates for various industrial applications. Our detection technique was validated by analyzing SCN- ions in milk samples, which yielded promising results.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Department of Petroleum Refining and Petrochemical Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
3
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
4
|
Saleh SM, Altaiyah S, Ali R. Dual-emission ciprofloxacin-gold nanoclusters enable ratiometric sensing of Cu 2+, Al 3+, and Hg 2. Mikrochim Acta 2024; 191:199. [PMID: 38483615 DOI: 10.1007/s00604-024-06265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
An innovative triple optical sensor is presented that utilizes gold nanoclusters (GNCs) stabilized with ciprofloxacin (CIP) and bovine serum albumin (BSA). The sensor is designed to identify three critical metal ions, namely Cu2+, Al3+, and Hg2+. Under 360 nm excitation, the synthesized CIP-BSA-GNCs demonstrate dual fluorescence emission with peaks at 448 nm (blue) and 612 nm (red). The red emission is associated with the interior of the CIP-BSA-GNCs, whereas the blue emission results from the surface-bound CIP molecules. The sensitive and selective fluorescent nanosensor CIP-BSA-GNCs were employed to detect Cu2+, Al3+, and Hg2+ ions. Cu2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at both peaks via the internal charge transfer mechanism (ICT). Cu2+ could be detected within the concentration range 1.13 × 10-3 to 0.05 µM, with a detection limit of 0.34 nM. Al3+ increased the intensity of CIP fluorescence at 448 nm via the chelation-induced fluorescence enhancement mechanism. The fluorescence intensity of the core CIP-BSA-GNCs at 612 nm was utilized as a reference signal. Thus, the ratiometric detection of Al3+ succeeded with a limit of detection of 0.21 nM within the dynamic range 0.69 × 10-3 to 0.07 µM. Hg2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at 612 nm via the metallophilic interaction mechanism. The fluorescence intensity of CIP molecules at 448 nm was utilized as a reference signal. This allowed for the ratiometric detection of Hg2+ with a detection limit of 0.7 nM within the concentration range 2.3 × 10-3 to 0.1 µM.
Collapse
Affiliation(s)
- Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
- Department of Petroleum Refining and Petrochemical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt.
| | - Shahad Altaiyah
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| |
Collapse
|
5
|
Aroua LM, Ali R, Albadri AEAE, Messaoudi S, Alminderej FM, Saleh SM. A New, Extremely Sensitive, Turn-Off Optical Sensor Utilizing Schiff Base for Fast Detection of Cu(II). BIOSENSORS 2023; 13:359. [PMID: 36979571 PMCID: PMC10046006 DOI: 10.3390/bios13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Throughout this research, a unique optical sensor for detecting one of the most dangerous heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the sensor shows a "turn-off" state with excellent sensitivity to Cu(II) ions. This innovative fluorescent chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine Cu(II) chelation structures and associated electronic properties in solution, and the results indicate that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution containing several metal ions, the interference of other metal ions was studied. This MNC molecule has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range (0-1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful chelating agent.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Laboratory of Structural Organic Chemistry-Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
6
|
Lin J, Huang X, Kou E, Cai W, Zhang H, Zhang X, Liu Y, Li W, Zheng Y, Lei B. Carbon dot based sensing platform for real-time imaging Cu 2+ distribution in plants and environment. Biosens Bioelectron 2023; 219:114848. [PMID: 36327556 DOI: 10.1016/j.bios.2022.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Divalent copper is a double-edged sword for plants, excess or shortage of copper ions will cause adverse reactions in plants. Currently, Cu2+ sensor for plants is still underdeveloped and new technology is urgently required for realizing one-step and real-time detection of Cu2+ in plants. Herein, a home-made and low-cost sensing platform is constructed by using carbon dots (CDs) as the optical probe, electronic devices for image acquisition, and a built-in algorithm program for image processing, which allows the dynamic monitoring of Cu2+ distribution in different plant species with high spatial and temporal resolution. We found that the detection limit of R-CDs for Cu2+ in water sample was 0.375 nM, and 11.7 mg/kg or even less Cu2+ in plants can be visually observed and accurately detected by the sensing platform. Moreover, this sensing platform has also been employed for reporting the spatial distribution of Cu2+ in the external environment of plants, demonstrating its applicability for monitoring Cu2+ both in living plants and the surrounding environment. This study provides a smart sensing platform for precise detection in plant internal and external environments, offering a promising strategy for precision agriculture in real-time and remote-control manners.
Collapse
Affiliation(s)
- Junjie Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaoman Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Erfeng Kou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wenxiao Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, 610218, PR China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming, 525100, PR China.
| |
Collapse
|
7
|
Ali R, Ghannay S, Messaoudi S, Alminderej FM, Aouadi K, Saleh SM. A Reversible Optical Sensor Film for Mercury Ions Discrimination Based on Isoxazolidine Derivative and Exhibiting pH Sensing. BIOSENSORS 2022; 12:1028. [PMID: 36421146 PMCID: PMC9688351 DOI: 10.3390/bios12111028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0-4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2'R,3a'S,5R)-2-isopropyl-5,5'-dimethyl-4'-oxotetrahydro-2'H-spiro[cy-clohexane-1,6'-im-idazo[1,5-b]isoxazol]-2'-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor for pH. The emission intensity is highly enhanced for the deprotonated form concerning the protonated form. IXZD probe has a characteristic fluorescence peak at 481 nm under excitation of 351 nm with large Stocks shift of approximately 130 nm. In addition, the binding process of IXZD:Hg(II) presents a 1:1 molar ratio which is proved by the large quench of the 481 nm emission peak of IXZD and the growth of a new emission peak at 399 nm (blue shift). The binding configurations with one Hg(II) cation and its electronic characteristics were investigated by applying the Density Functional Theory (DFT) and the time-dependent DFT (TDDFT) calculations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical results were provided to examine Hg(II)-IXZD structures and their electronic properties in solution. The developed chemical sensor was offered based on the intramolecular charge transfer (ICT) mechanism. The sensor film has a significantly low limit of detection (LOD) for Hg(II) of 0.025 μM in pH 7.4, with a relative standard deviation RSDr (1%, n = 3). Lastly, the IXZD shows effective binding affinity to mercury ions, and the binding constant Kb was estimated to be 5.80 × 105 M-1. Hence, this developed optical sensor film has a significant efficiency for tracing mercury ions based on IXZD molecule-doped sensor film.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte 7021, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
8
|
Hingrajiya RD, Kalola AG, Patel MP. Poly(AA-co-NVIm-co-AAm) sensor hydrogels for the simultaneous visual detection and removal of Cu2+ ions from aqueous media. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Liu X, Liu Y, Feng S, Lu L. Two luminescent Zn(II) coordination complexes as fluorescence-responsive sensors for efficient detection of Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Flavonoids from green propolis of the Northeastern Brazilian Caatinga Mimosa tenuiflora (Willd.) Poir.: A chemotaxonomic aspect. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Saleh SM, El-Sayed WA, El-Manawaty MA, Gassoumi M, Ali R. Microwave-Assisted Rapid Synthesis of Luminescent Tryptophan-Stabilized Silver Nanoclusters for Ultra-Sensitive Detection of Fe(III), and Their Application in a Test Strip. BIOSENSORS 2022; 12:425. [PMID: 35735572 PMCID: PMC9220979 DOI: 10.3390/bios12060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
A new preparation method for extreme fluorescent green emission tryptophan-stabilized silver nanoclusters (Tryp-AgNCs) is presented in this scientific research. The produced silver nanoclusters are dependent on tryptophan amino acid which contributes to normal growth in infants and the sublimation and recovery of human protein, muscles, and enzymes. Herein, we have introduced a green method by using microwave-assisted rapid synthesis. The subsequent silver nanoclusters (AgNCs) have excitation/emission peaks at 408/498 nm and display a considerable selectivity to Fe(III) ions. The tryptophan amino acid molecule was used in the synthesis process as a reducing and stabilizing agent. The Tryp-AgNCs' properties were investigated in terms of morphology, dispersity, and modification of the synthesized particles using different advanced instruments. The luminescent nanoclusters traced the Fe(III) ions by the luminescence-quenching mechanism of the Tryp-AgNCs luminescence. Therefore, the extreme selectivity of the prepared nanoclusters was exhibited to the Fe(III) ions, permitting the sensitive tracing of ferric ions in the lab and in the real environmental samples. The limit of detection for Fe(III) ions based on Tryp-AgNCs was calculated to be 16.99 nM. The Tryp-AgNCs can be efficiently applied to a paper test strip method. The synthesized nanoclusters were used efficiently to detect the Fe(III) ions in the environmental samples. Moreover, we examined the reactivity of Tryp-AgNCs on various human tumor cell lines. The results show that the Tryp-AgNCs exhibited their activity versus the cancer cells in a dose-dependent routine for the perceived performance versus the greatest-used cancer cell lines.
Collapse
Affiliation(s)
- Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| | - Malek Gassoumi
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Laboratory of Condensed Matter and Nanosciences, University of Monastir, Monastir 5000, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Science College, Suez University, Suez 43518, Egypt
| |
Collapse
|
12
|
Saleh SM, Almotiri MK, Ali R. Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu(II) and Hg(II). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Saleh SM, El-Sayed WA, El-Manawaty MA, Gassoumi M, Ali R. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications. BIOSENSORS 2022; 12:197. [PMID: 35448257 PMCID: PMC9032517 DOI: 10.3390/bios12040197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
A new preparation route for high-luminescent blue-emission pepsin copper nanoclusters (Pep-CuNCs) is introduced in this work. The synthesized nanoclusters are based on a pepsin molecule, which is a stomach enzyme that works to digest proteins that exist in undigested food. Here, we have developed an eco-friendly technique through microwave-assisted fast synthesis. The resulting copper nanoclusters (CuNCs) exhibit significant selectivity towards Pb(II) ions. The pepsin molecule was utilized as a stabilizer and reducing agent in the production procedure of Pep-CuNCs. The characteristics of the resulting Pep-CuNCs were studied in terms of size, surface modification, and composition using various sophisticated techniques. The CuNCs responded to Pb(II) ions through the fluorescence quenching mechanism of the CuNCs' fluorescence. Thus, great selectivity of Pep-CuNCs towards Pb(II) ions was observed, allowing sensitive determination of this metal ion at lab-scale and in the environment. The CuNCs have detection limits for Pb(II) in very tenuous concentration at a nanomalar scale (11.54 nM). The resulting Pep-CuNCs were utilized significantly to detect Pb(II) ions in environmental samples. Additionally, the activity of Pep-CuNCs on different human tumor cell lines was investigated. The data for the observed behavior indicate that the Pep-CuNCs displayed their activity against cancer cells in a dose dependent manner against most utilized cancer cell lines.
Collapse
Affiliation(s)
- Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| | - Malek Gassoumi
- Department of Physics, College of Science, Qassim University, P.O. Box 64, Buraidah 51452, Saudi Arabia;
- Laboratory of Condensed Matter and Nanosciences, University of Monastir, Monastir 5000, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Science College, Suez University, Suez 43518, Egypt
| |
Collapse
|
14
|
Ali R, Alfeneekh B, Chigurupati S, Saleh SM. Green synthesis of pregabalin-stabilized gold nanoclusters and their applications in sensing and drug release. Arch Pharm (Weinheim) 2022; 355:e2100426. [PMID: 35088474 DOI: 10.1002/ardp.202100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
This is the first report on the simple preparation of gold nanoclusters stabilized with pregabalin (PREG) as a capping and reducing agent. PREG is an active pharmaceutical ingredient of the commercially available drug "Lyrica" used to treat different diseases like epilepsy and anxiety. PREG has never been used before in the synthesis of any nanoparticles or nanoclusters. The prepared gold nanoclusters (PREG-stabilized gold nanoclusters [PREG-AuNCs]) have blue fluorescence with excitation/emission at 365/425 nm, respectively. The reaction conditions were optimized for the synthesis of the as-prepared AuNCs. Different tools were used for the characterization of the synthesized nanoclusters in terms of size and surface properties. The PREG-AuNCs were exploited as a sensitive and selective fluorescent nanosensor for Cu2+ detection. The quenching of AuNC fluorescence intensity in the presence of Cu2+ is due to the aggregation-induced fluorescence quenching mechanism. The detection limit of Cu2+ ions was found to be 1.11 × 10-7 M. The selectivity of the PREG-AuNCs was studied and proved to be excellent. The drug entrapment efficacy and in vitro drug diffusion studies along with drug release kinetics helped to understand more about the pharmaceutical approaches of PREG-AuNCs. Moreover, we think that PREG-AuNCs open new opportunities as a promising candidate material for drug delivery systems and medical applications.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia.,Chemistry Department, Science College, Suez University, Suez, Egypt
| | - Bayader Alfeneekh
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia.,Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Chemistry Branch, Suez University, Suez, Egypt
| |
Collapse
|
15
|
Echabaane M, Hfaiedh S, Smiri B, Saidi F, Dridi C. Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04949-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Wu S, Jiang H, Zhang Y, Wu L, Jiang P, Ding N, Zhang H, Zhao L, Yin F, Yang Q. A novel “on-off-on” acylhydrazone-based fluorescent chemosensor for ultrasensitive detection of Pd2+. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Ali R, Alminderej FM, Messaoudi S, Saleh SM. Ratiometric ultrasensitive optical chemisensor film based antibiotic drug for Al(III) and Cu(II) detection. Talanta 2021; 221:121412. [PMID: 33076057 DOI: 10.1016/j.talanta.2020.121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Herein, we developed and designed a novel ratiometric optical chemisensor film for determining Al(III) and Cu(II) in low concentration ranges. The chemisensor film consists of (a) antibacterial drug Ciprofloxacin (CPFX) [1-cyclopropyl-6-fluoro1,4-dihydro-4-oxo-7-(piperaziny-l-yl) quinolone-3carboxylic acid] and (b) a reference dye 5,10,15,20- tetrakis (pentafluorophenyl) porphyrin (TFPP) in a polyvinyl chloride (PVC) matrix. PVC was applied as a homogeneous system for mixing CPFX and TFPP. The emission intensity of the CPFX in the PVC matrix varies depending on the concentrations of the Al(III) and Cu(II) ions. When the sensor film is immersed in different Al(III) concentrations, a significant fluorescence enhancement of the CPFX at (427 nm) is observed. Furthermore, the fluorescence intensity of the red emission of the TFPP dye at (644 nm) does not alter. However, in the presence of Cu(II) ions, a considerable emission quenching of the CPFX peak at (427 nm) is observed. PVC provides a great permeability and penetration facilities of dissolved ions that make the sensor film sensitive to Al(III) or Cu(II) changes outside the matrix. The film displays immense sensitivity depending on their distinctive optical characteristics of CPFX and detection capabilities within a low detection limit LOD for Al(III) and Cu(II). The LOD values were estimated to be 2.05 x 10-7 M and 1.04 x 10-7 M respectively with a relative standard deviation RSDr (1%, n=3). Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to study Cu(II) and Al(III) complexation structures and their electronic properties in solution and in the sensor film. The interference of the chemisensor film was examined using different cations and the chemisensor provides significant selectivity. We develop a new ratiometric chemisensor based on PVC polymer film for Al(III) and Cu(II) detection.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, Faculty of Science, Suez University, 43518 Suez, Egypt; Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia; Carthage University, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721, Suez, Egypt.
| |
Collapse
|
18
|
Rhodamine-Based Arylpropenone Azo Dyes as Dual Chemosensor for Cu2+/Fe3+ Detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|