1
|
Synthesis and characterization of novel acrylamide derivatives and their use as corrosion inhibitors for carbon steel in hydrochloric acid solution. Sci Rep 2023; 13:3519. [PMID: 36864262 PMCID: PMC9981741 DOI: 10.1038/s41598-023-30574-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Two new acrylamide derivatives were prepared namely: "N-(bis(2-hydroxyethyl) carbamothioyl) acrylamide (BHCA) and N-((2-hydroxyethyl) carbamothioyl) acrylamide( HCA) and their chemical structures were analyzed and confirmed using IR and 1H NMR". These chemicals were investigated as corrosion inhibitors for carbon steel (CS) in 1 M HCl medium using chemical method (mass loss, ML), and electrochemical techniques including potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The results showed that the acrylamide derivatives work well as corrosion inhibitors, with inhibition efficacy (%IE) reaching 94.91-95.28% at 60 ppm for BHCA and HCA, respectively. Their inhibition depends mainly on their concentration and temperature of the solution. According to the PDP files, these derivatives function as mixed-type inhibitors that physically adsorb on the CS surface in accordance with the Langmuir adsorption isotherm, creating a thin coating that shields the CS surface from corrosive fluids. The charge transfer resistance (Rct) increased and the double layer capacitance (Cdl) decreased as a result of the adsorption of the used derivatives. Calculated and described were the thermodynamic parameters for activation and adsorption. Quantum chemistry computations and Monte Carlo simulations were examined and discussed for these derivatives under investigation. Surface analysis was checked using atomic force microscope (AFM). Validity of the obtained data was demonstrated by the confirmation of these several independent procedures.
Collapse
|
2
|
Shafek SH, Ghiaty EA, El Basiony NM, Badr EA, Shaban SM. Preparation of zwitterionic ionic surfactants-based sulphonyl for steel protections: Experimental and theoretical insights. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Designating an organic inhibitor with a specific chemical structure that actively participates in steel protection by increasing adsorption on the steel surface. Based on that, we synthesized three zwitterionic surfactants based on azomethine with different hydrophobic chain lengths labeled ZWSO, ZWSD, and ZWSH. The presence of azomethine group, electrons, and heteroatoms in the zwitterionic surfactant’s amphipathic structure helped to improve C-steel protection. Their inhibitory activity toward steel corrosion was investigated utilizing electrochemical impedance spectroscopy (EIS), gravimetrical, and potentiodynamic polarization techniques. Importantly, the surfactant tail influenced corrosion inhibition performance; as surfactant tail length increased, so did inhibition efficiency due to increased adsorption affinity. The inhibition efficiencies of ZWSO, ZWSD, and ZWSH are 87.15, 89.82, and 91.36%, respectively. Tafel data clarified that ZWSO, ZWSD, and ZWSH inhibitors behave as mixed-type inhibitors following the modified Langmuir isotherm. The inhibitors can adsorb physiochemically on the steel surface with ∆G
ads ranges from −38.48 to −44.6 kJ mol−1. The SEM confirms that the morphology of C-steel becomes smoother because of inhibitor adsorption. The DFT and MCs output data supported the experimental performance of the tested ZWSO, ZWSD, and ZWSH inhibitors and especially their dependence on surfactant tail length.
Collapse
Affiliation(s)
- Samir H. Shafek
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
| | - Eman A. Ghiaty
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
| | - Nasser M. El Basiony
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Emad A. Badr
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
| | - Samy M. Shaban
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
3
|
Asymmetric Gemini Surfactants as Corrosion Inhibitors for Carbon Steel in Acidic Medium: Experimental and theoretical studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Abu-Rayyan A, Al Jahdaly BA, AlSalem HS, Alhadhrami NA, Hajri AK, Bukhari AAH, Waly MM, Salem AM. A Study of the Synthesis and Characterization of New Acrylamide Derivatives for Use as Corrosion Inhibitors in Nitric Acid Solutions of Copper. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3685. [PMID: 36296875 PMCID: PMC9611118 DOI: 10.3390/nano12203685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The objective of this research was to explore the impact of corrosion inhibition of some synthetic acrylamide derivatives 2-cyano-N-(4-hydroxyphenyl)-3-(4-methoxyphenyl)acrylamide (ACR-2) and 2-cyano-N-(4-hydroxyphenyl)-3-phenylacrylamide (ACR-3) on copper in 1.0 M nitric acid solution using chemical and electrochemical methods, including mass loss as a chemical method and electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP) as electrochemical methods. By Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1HNMR), and mass spectroscopy (MS) methods, the two compounds were verified and characterized. There is evidence that both compounds were effective corrosion inhibitors for copper in 1.0 M nitric acid (HNO3) solutions, as indicated by the PP curves, which show that these compounds may be considered mixed-type inhibitors. With the two compounds added, the value of the double-layer capacitance was reduced. In the case of 20 × 10-5 M, they reached maximum efficiencies of 84.5% and 86.1%, respectively. Having studied its behavior during adsorption on copper, it was concluded that it follows chemical adsorption and Langmuir isotherm. The theoretical computations and the experimental findings were compared using density functional theory (DFT) and Monte Carlo simulations (MC).
Collapse
Affiliation(s)
- Ahmed Abu-Rayyan
- Chemistry Department, Faculty of Arts & Science, Applied Science Private University, P.O. Box 166, Amman 11931, Jordan
| | - Badreah Ali Al Jahdaly
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 24230, Makkah 21955, Saudi Arabia
| | - Huda S. AlSalem
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nahlah A. Alhadhrami
- Chemistry Department, Faculty of Science, Taibah University, P.O. Box 30002, Medina 42353, Saudi Arabia
| | - Amira K. Hajri
- Department of Chemistry, University College Alwajh, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Mohamed M. Waly
- Department of Chemistry, Faculty of Science, New Mansoura University, Mansoura 35516, Egypt
| | - Aya M. Salem
- Department of Basic Science, Higher Institute of Electronic Engineering (HIEE), Belbis 11621, Egypt
| |
Collapse
|
5
|
Chaouiki A, In Han D, Ko YG. Computational molecular-level prediction of heterocyclic compound-metal surface interfacial behavior. J Colloid Interface Sci 2022; 622:452-468. [PMID: 35525147 DOI: 10.1016/j.jcis.2022.04.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022]
Abstract
It is difficult to comprehensively understand the interfacial mechanism (IM) of the adsorption of corrosion inhibitors (CIs) on metal surfaces solely through experiments and electronic structure parameters of isolated molecules. To better understand the molecular-level IM of CIs, a combination of atomistic simulations and first-principles calculations was used to obtain reliable information on the adsorption nature and intermolecular interactions during the actual interfacial behavior. The IM and property changes of two synthesized heterocyclic sustainable-green CIs, namely 4-{[(5-nitrofuran-2-yl)methylene]amino}-5-propyl-4H-1,2,4-triazole-3-thiol (NFPT and 4-{[(5-nitrofuran-2-yl)methylene]amino}-4H-1,2,4-triazole-3-thiol (NFT), were investigated on the Fe(110) surface using first-principles density functional theory (DFT) calculations and molecular dynamics (MD) simulations. The NFPT was preferentially adsorbed through a parallel configuration with a high interaction energy (-706.12 kJ·mol-1) compared to NFT, owing to stronger chemical bonds via S, N, and O atoms with the Fe surface. Additionally, the adsorbed NFPT film effectively inhibited Fe surface corrosion owing to the small diffusion coefficient of corrosive particles in the presence of NFPT. Subsequently, the anti-corrosion performance of both CIs was validated through electrochemical methods, surface analysis, and adsorption isotherm models. The observations suggest that the combination of modern computational perspectives could efficiently design and select the best CIs before their laboratory synthesis.
Collapse
Affiliation(s)
- Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Da In Han
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Sun X, Qiang Y, Hou B, Zhu H, Tian H. Cabbage extract as an eco-friendly corrosion inhibitor for X70 steel in hydrochloric acid medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Chinnappan JK, Jeyabalan T, Lgaz H, Park T, Subbiah K. Evaluation of Corrosion Mitigation Properties of 3-1H-Benzo[d]Imidazol-2-yl-Quinolin-2-ol on the Mild Steel in HCl and H2SO4. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Cherrak K, Khamaysa O, Bidi H, Massaoudi ME, Ali IA, Radi S, El Ouadi Y, El-Hajjaji F, Zarrouk A, Dafali A. Performance evaluation of newly synthetized bi-pyrazole derivatives as corrosion inhibitors for mild steel in acid environment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Tan B, Lan W, Zhang S, Deng H, Qiang Y, Fu A, Ran Y, Xiong J, Marzouki R, Li W. Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128892] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
An environmentally friendly formulation based on Cannabis sativa L. seed oil for corrosion inhibition of E24 steel in HCl medium: Experimental and theoretical study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Studying the effect of two isomer forms thiazole and thiadiazine on the inhibition of acidic chloride-induced steel corrosion: Empirical and Computer simulation explorations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Ould Abdelwedoud B, Damej M, Tassaoui K, Berisha A, Tachallait H, Bougrin K, Mehmeti V, Benmessaoud M. Inhibition effect of N-propargyl saccharin as corrosion inhibitor of C38 steel in 1 M HCl, experimental and theoretical study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Damej M, Hsissou R, Berisha A, Azgaou K, Sadiku M, Benmessaoud M, Labjar N, El hajjaji S. New epoxy resin as a corrosion inhibitor for the protection of carbon steel C38 in 1M HCl. experimental and theoretical studies (DFT, MC, and MD). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Wang P, Chen Q, Xiong L, He Z, Pu J, Zhang R, Guo L. Experimental and Theoretical Studies on the Inhibition Properties of an Imidazoline Derivative on Q235 Corrosion in a Simulated Concrete Pore Solution. ChemistrySelect 2022. [DOI: 10.1002/slct.202102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengjie Wang
- School of Materials Science and Engineering East China JiaoTong University Nanchang 330013 People's Republic of China
| | - Qi Chen
- School of Materials Science and Engineering East China JiaoTong University Nanchang 330013 People's Republic of China
| | - Liping Xiong
- School of Materials Science and Engineering East China JiaoTong University Nanchang 330013 People's Republic of China
| | - Zhongyi He
- School of Materials Science and Engineering East China JiaoTong University Nanchang 330013 People's Republic of China
| | - Jibin Pu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 People's Republic of China
| | - Renhui Zhang
- School of Materials Science and Engineering East China JiaoTong University Nanchang 330013 People's Republic of China
| | - Lei Guo
- College of Material and Chemical Engineering Tongren University Tongren 554300 People's Republic of China
| |
Collapse
|
15
|
Chen L, Lu D, Zhang Y. Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2023. [PMID: 35329474 PMCID: PMC8954067 DOI: 10.3390/ma15062023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022]
Abstract
Most studies on the corrosion inhibition performance of organic molecules and (nano)materials were conducted within "carbon steel/1.0 M HCl" solution system using similar experimental and theoretical methods. As such, the numerous research findings in this system are sufficient to conduct comparative studies to select the best-suited inhibitor type that generally refers to a type of inhibitor with low concentration/high inhibition efficiency, nontoxic properties, and a simple and cost-economic synthesis process. Before data collection, to help readers have a clear understanding of some crucial elements for the evaluation of corrosion inhibition performance, we introduced the mainstay of corrosion inhibitors studies involved, including the corrosion and inhibition mechanism of carbon steel/HCl solution systems, evaluation methods of corrosion inhibition efficiency, adsorption isotherm models, adsorption thermodynamic parameters QC calculations, MD/MC simulations, and the main characterization techniques used. In the classification and statistical analysis section, organic compounds or (nano)materials as corrosion inhibitors were classified into six types according to their molecular structural characteristics, molecular size, and compound source, including drug molecules, ionic liquids, surfactants, plant extracts, polymers, and polymeric nanoparticles. We outlined the important conclusions obtained from recent literature and listed the evaluation methods, characterization techniques, and contrastable experimental data of these types of inhibitors when used for carbon steel corrosion in 1.0 M HCl solution. Finally, statistical analysis was only performed based on these data from carbon steel/1.0 M HCl solution system, from which some conclusions can contribute to reducing the workload of the acquisition of useful information and provide some reference directions for the development of new corrosion inhibitors.
Collapse
Affiliation(s)
- Liangyuan Chen
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road (Qingdao), Qingdao 266200, China
- Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Dongzhu Lu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road (Qingdao), Qingdao 266200, China
- Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Yanhu Zhang
- Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Han P, Zhang B, Chang Z, Fan J, Du F, Xu C, Liu R, Fan L. The anticorrosion of surfactants toward L245 steel in acid corrosion solution: Experimental and theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Lgaz H, Lee HS. Facile preparation of new hydrazone compounds and their application for long-term corrosion inhibition of N80 steel in 15% HCl: An experimental study combined with DFTB calculations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Damej M, Molhi A, Tassaoui K, El Ibrahimi B, Akounach Z, Addi AA, El hajjaji S, Benmessaoud M. Experimental and Theoretical Study to Understand the Adsorption Process of p‐Anisidine and 4‐Nitroaniline for the Dissolution of C38 Carbon Steel in 1M HCl. ChemistrySelect 2022. [DOI: 10.1002/slct.202103192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamed Damej
- Energy Materials and Sustainable Development Team CERN2D Higher School of Technology Salé Mohammed V University in Rabat Rabat 8007 Morocco
| | - Abdu Molhi
- Laboratory of Spectroscopy Molecular Modelling Materials Nanomaterials Water and Environment -CERNE2D Faculty of Sciences Mohammed V University in Rabat Morocco
| | - Kawtar Tassaoui
- Energy Materials and Sustainable Development Team CERN2D Higher School of Technology Salé Mohammed V University in Rabat Rabat 8007 Morocco
| | - Brahim El Ibrahimi
- Faculty of Applied Sciences Ibn Zohr University Aït Melloul 86153 Morocco
- Team of Physical Chemistry and Environment Faculty of Sciences Ibn Zohr University 80000 Agadir Morocco
| | - Zahra Akounach
- Laboratory of Spectroscopy Molecular Modelling Materials Nanomaterials Water and Environment -CERNE2D Faculty of Sciences Mohammed V University in Rabat Morocco
| | - Abdelaziz Ait Addi
- Faculty of Applied Sciences Ibn Zohr University Aït Melloul 86153 Morocco
- Team of Physical Chemistry and Environment Faculty of Sciences Ibn Zohr University 80000 Agadir Morocco
| | - Souad El hajjaji
- Laboratory of Spectroscopy Molecular Modelling Materials Nanomaterials Water and Environment -CERNE2D Faculty of Sciences Mohammed V University in Rabat Morocco
| | - Mohammed Benmessaoud
- Energy Materials and Sustainable Development Team CERN2D Higher School of Technology Salé Mohammed V University in Rabat Rabat 8007 Morocco
| |
Collapse
|
20
|
Molecular-dynamic/DFT-electronic theoretical studies coupled with electrochemical investigations of the carrot pomace extract molecules inhibiting potency toward mild steel corrosion in 1 M HCl solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Kanniappan Rajendran S, Hassan Mondal J, Sayem Alam M. Influence of an anionic hydrotrope on thermophysical properties of an anionic surfactant sodium dodecyl sulfate. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Luffa cylindrica roem leaves extract as the environment-friendly inhibitor for copper in sulfuric acid environment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Luo W, Lin Q, Ran X, Li W, Tan B, Fu A, Zhang S. A new pyridazine derivative synthesized as an efficient corrosion inhibitor for copper in sulfuric acid medium: Experimental and theoretical calculation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Sadik K, El hamdani N, Byadi S, Hachim ME, El harafi H, Aboulmouhajir A. Quantum and dynamic investigations of Complex iron- alkaloid-extract Cytisine derivatives of Retama monosperma (L.) Boiss. Seeds as eco-friendly inhibitors for Mild steel corrosion in 1M HCl. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Cherrak K, El Massaoudi M, Outada H, Taleb M, Lgaz H, Zarrouk A, Radi S, Dafali A. Electrochemical and theoretical performance of new synthetized pyrazole derivatives as promising corrosion inhibitors for mild steel in acid environment: Molecular structure effect on efficiency. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Abdullah RS, El Nemr A, El‐Sakka SSA, El‐Hashash MA, Soliman MH. Synthesis of Phthalazinones with Amino or Hydrazide Moiety as Corrosion Inhibitors of Low Carbon Steel in 0.5 M H
2
SO
4. ChemistrySelect 2021. [DOI: 10.1002/slct.202102513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rokaia Safwat Abdullah
- Environment Division National Institute of Oceanography and Fisheries (NIOF) Kayet Bey El-Anfoushy Alexandria Egypt
| | - Ahmed El Nemr
- Environment Division National Institute of Oceanography and Fisheries (NIOF) Kayet Bey El-Anfoushy Alexandria Egypt
| | | | | | | |
Collapse
|
27
|
Aslam R, Mobin M, Aslam J, Aslam A, Zehra S, Masroor S. Application of surfactants as anticorrosive materials: A comprehensive review. Adv Colloid Interface Sci 2021; 295:102481. [PMID: 34390883 DOI: 10.1016/j.cis.2021.102481] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/05/2023]
Abstract
Corrosion is the degradation of a metal due to its reaction with the environment. One of the most efficient ways of securing metal surfaces from corrosion is the use of corrosion inhibitors. Their efficacy is connected to their chemical composition, their molecular structures, and their adsorption affinities on the metal surface. This review article focuses on the prospects of different types of monomeric and gemini surfactants, mixed surfactants systems, surfactants- additives mixed systems, inhibitors-surfactants (as additives) mixed systems, and ionic liquid based surfactants as promising corrosion-inhibiting formulations in the aqueous phase and the role of surfactants in developing protective coatings. The analysis starts with an accurate overview of the characteristics, types, and structure-property-performance relationship of anti-corrosion formulations of such inhibitors.
Collapse
Affiliation(s)
- R Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.
| | - J Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia
| | - A Aslam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - S Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - S Masroor
- Department of Chemistry, A.N. College, Patliputra University, Patna 800013, Bihar, India
| |
Collapse
|
28
|
Ebenso EE, Verma C, Olasunkanmi LO, Akpan ED, Verma DK, Lgaz H, Guo L, Kaya S, Quraishi MA. Molecular modelling of compounds used for corrosion inhibition studies: a review. Phys Chem Chem Phys 2021; 23:19987-20027. [PMID: 34254097 DOI: 10.1039/d1cp00244a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular modelling of organic compounds using computational software has emerged as a powerful approach for theoretical determination of the corrosion inhibition potential of organic compounds. Some of the common techniques involved in the theoretical studies of corrosion inhibition potential and mechanisms include density functional theory (DFT), molecular dynamics (MD) and Monte Carlo (MC) simulations, and artificial neural network (ANN) and quantitative structure-activity relationship (QSAR) modeling. Using computational modelling, the chemical reactivity and corrosion inhibition activities of organic compounds can be explained. The modelling can be regarded as a time-saving and eco-friendly approach for screening organic compounds for corrosion inhibition potential before their wet laboratory synthesis would be carried out. Another advantage of computational modelling is that molecular sites responsible for interactions with metallic surfaces (active sites or adsorption sites) and the orientation of organic compounds can be easily predicted. Using different theoretical descriptors/parameters, the inhibition effectiveness and nature of the metal-inhibitor interactions can also be predicted. The present review article is a collection of major advancements in the field of computational modelling for the design and testing of the corrosion inhibition effectiveness of organic corrosion inhibitors.
Collapse
Affiliation(s)
- Eno E Ebenso
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa.
| | - Chandrabhan Verma
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Lukman O Olasunkanmi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Ekemini D Akpan
- Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046, Mmabatho 2735, South Africa
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Govt. Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh 491441, India
| | - Hassane Lgaz
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, Seoul 05029, South Korea
| | - Lei Guo
- School of Materials and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Savas Kaya
- Faculty of Science, Department of Chemistry, Cumhuriyet University, 58140, Sivas, Turkey
| | - M A Quraishi
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
29
|
Mechbal N, Belghiti M, Benzbiria N, Lai CH, Kaddouri Y, Karzazi Y, Touzani R, Zertoubi M. Correlation between corrosion inhibition efficiency in sulfuric acid medium and the molecular structures of two newly eco-friendly pyrazole derivatives on iron oxide surface. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Experimental and theoretical explorations of S-alkylated mercaptobenzimidazole derivatives for use as corrosion inhibitors for carbon steel in HCl. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115708] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Alarfaji SS, Ali IH, Bani-Fwaz MZ, Bedair MA. Synthesis and Assessment of Two Malonyl Dihydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Theoretical Studies. Molecules 2021; 26:molecules26113183. [PMID: 34073408 PMCID: PMC8199006 DOI: 10.3390/molecules26113183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the extensive use of carbon steel in all industrial sectors, particularly in the petroleum industry, its low corrosion resistance is an ongoing problem for these industries. In the current work, two malonyl dihydrazide derivatives, namely 2,2'-malonylbis (N-phenylhydrazine-1-carbothiamide (MBC) and N'1, N'3-bis(-2-hydroxybenzylidene) malonohydrazide (HBM), were examined as inhibitors for the carbon steel corrosion in 1.0 M HCl. Both MBC and HBM were characterised using thin-layer chromatography, elemental analysis, infrared spectroscopy, and nuclear magnetic resonance techniques. The corrosion tests were performed using mass loss measurements, polarisation curves, and electrochemical impedance spectroscopy. It is obtained from the mass loss studies that the optimal concentration for both inhibitors is 2.0 × 10-5 mol/L, and the inhibition efficiencies reached up to 90.7% and 84.5% for MBC and HBM, respectively. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) indicate an increased impedance in the presence of both MBC and HBM and mixed-type inhibitors, respectively. Both inhibitors can mitigate corrosion in the range of 298-328 K. Values of free energy changes obtained from the Langmuir model suggest that the inhibitors suppress the corrosion process principally by chemisorption. The computational investigations were conducted to identify the factors connected with the anti-corrosive properties of the examined inhibitors.
Collapse
Affiliation(s)
- Saleh S. Alarfaji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.S.A.); (M.Z.B.-F.)
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ismat H. Ali
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.S.A.); (M.Z.B.-F.)
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Correspondence:
| | - Mutasem Z. Bani-Fwaz
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.S.A.); (M.Z.B.-F.)
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mahmoud A. Bedair
- Department of Chemistry, Faculty of Science (Men’s Campus), Al-Azhar University, Cairo 11884, Egypt;
- College of Science and Arts, University of Bisha, P.O. Box 101, Al-Namas 61977, Saudi Arabia
| |
Collapse
|
32
|
Corrosion inhibition and surface examination of carbon steel 1018 via N-(2-(2-hydroxyethoxy)ethyl)-N,N-dimethyloctan-1-aminium bromide in 1.0 M HCl. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129713] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Corrosion behaviors of Q235 carbon steel under imidazoline derivatives as corrosion inhibitors: Experimental and computational investigations. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
34
|
Farhadian A, Rahimi A, Safaei N, Shaabani A, Sadeh E, Abdouss M, Alavi A. Exploration of Sunflower Oil As a Renewable Biomass Source to Develop Scalable and Highly Effective Corrosion Inhibitors in a 15% HCl Medium at High Temperatures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3119-3138. [PMID: 33423454 DOI: 10.1021/acsami.0c18887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The feasibility study of utilizing sunflower oil as renewable biomass source to develop highly effective inhibitors for mild steel corrosion (MS) in the 15% HCl medium was done by weight loss, potentiodynamic polarization (PDP), dynamic electrochemical impedance spectroscopy (DEIS), and electrochemical impedance spectroscopy (EIS), supported with energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and field-emission scanning electron microscope (FESEM) techniques. Moreover, a complementary theoretical investigation was carried out to clarify the inhibition mechanism of inhibitors by density functional theory (DFT), density functional based tight-binding (DFTB), and molecular dynamics (MD) simulation approaches. The obtained results confirm that sunflower-oil-based corrosion inhibitor (SFOCI) has a significant anticorrosion property toward the dissolution of MS in 15% HCl solution in the temperature range 20-80 °C. In addition, the results show that SFOCI could provide an inhibition efficiency of 98 and 93% at 60 and 80 °C, respectively. The inhibition mechanism of SFOCIs was mixed-type and their adsorption on the surface of MS was mainly chemisorption. The FESEM and EDX studies proved the presence of SFOCI molecules on the surface of MS. In addition, the adsorption energy of SFOCI indicated an intense interaction between the inhibitor and surface of Fe. The results of this study could open a new window for the design and development of scalable and effective eco-friendly vegetable-oil-based corrosion inhibitors for highly corrosive solutions at high temperatures.
Collapse
Affiliation(s)
- Abdolreza Farhadian
- Department of Petroleum Engineering, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
- Department of Polymer & Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University GC, Tehran 1983969411, Iran
| | - Alireza Rahimi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591639675, Iran
| | - Nehzat Safaei
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran
| | - Alireza Shaabani
- Department of Polymer & Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University GC, Tehran 1983969411, Iran
| | - Elaheh Sadeh
- Department of Polymer & Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University GC, Tehran 1983969411, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591639675, Iran
| | - Ali Alavi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University GC, Tehran 1983969411, Iran
| |
Collapse
|
35
|
Li H, Zhang S, Qiang Y. Corrosion retardation effect of a green cauliflower extract on copper in H2SO4 solution: Electrochemical and theoretical explorations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114450] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Comprehensive assessment of corrosion inhibition mechanisms of novel benzimidazole compounds for mild steel in HCl: An experimental and theoretical investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Berdimurodov E, Kholikov A, Akbarov K, Xu G, Abdullah AM, Hosseini M. New anti-corrosion inhibitor (3ar,6ar)-3a,6a-di-p-tolyltetrahydroimidazo[4,5-d]imidazole-2,5(1 h,3h)-dithione for carbon steel in 1 M HCl medium: gravimetric, electrochemical, surface and quantum chemical analyses. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|