1
|
Liu M, Xiao H, Pan R, Ren J, Zhang L, Zhang L. Synergistic Effect of Betaines and Dialkyl Chain Anionic Surfactants on Interfacial Arrangement: A Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6898-6908. [PMID: 38502007 DOI: 10.1021/acs.langmuir.3c03862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Mixed systems of betaines and anionic surfactants can have a significant synergistic effect and greatly reduce the interfacial tension (IFT), which has attracted an extensive amount of attention. However, this synergistic effect requires an anionic surfactant and betaine molecular size matching, which limits the scope of its application. In this work, we studied three mixed systems of sodium dialkyl sulfosuccinate (AOT) and betaines with different sizes by molecular dynamics simulation and an IFT experiment and explored the interfacial behavior and synergistic mechanism of AOT in single and mixed systems. The hydrophobic tail chain center angle, average rising height of carbon atoms, stretch degree and distance between the terminal carbon atoms of AOT, and tilt angles of betaine were calculated and analyzed in detail. Simulation results showed that the hydrophobic tail chain center angle of AOT in the single system was smaller, and it tended to extend into the oil phase. After being mixed with different betaines, AOT can adjust its size according to the interfacial vacancies of different betaine systems by changing the alkyl chain orientation and forming tighter interfacial films. The IFT experiment showed that betaine/AOT mixed systems achieved a lower IFT value compared with that of the single system, indicating that AOT showed a synergistic effect with betaines with different structures. This study will be importantly instructively significant for the design and research of betaine mixed systems in crude oil exploitation.
Collapse
Affiliation(s)
- Mengxin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ruosheng Pan
- Oil and Gas Engineering Research Institute, CNPC Jilin Oilfield Company, Songyuan 138000, P. R. China
| | - Jia Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Synergism for lowering interfacial tensions between betaines and extended surfactants: the role of self-regulating molecular size. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
3
|
Dynamic Interfacial Tensions of Surfactant and Polymer Solutions Related to High-Temperature and High-Salinity Reservoir. Molecules 2023; 28:molecules28031279. [PMID: 36770949 PMCID: PMC9920167 DOI: 10.3390/molecules28031279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Betaine is a new surfactant with good application prospects in high-temperature and high-salinity reservoirs. The interfacial properties of two kinds of betaine mixtures with a good synergistic effect were evaluated in this paper. On this basis, the effects of temperature-resistant, salt-resistant polymers with different contents of 2-acrylamide-2-methylpropanesulfonic acid (AMPS) on dynamic interfacial tensions (IFTs) against n-alkanes and crude oil were studied. The experimental results show that the IFTs between betaine ASB and n-alkanes can be reduced to ultra-low values by compounding with anionic surfactant petroleum sulfonate (PS) and extended anionic surfactant alkoxyethylene carboxylate (AEC), respectively. ASB@AEC is very oil-soluble with nmin value ≥14, and ASB@PS is relatively water-soluble with nmin value of 10. The water solubility of both ASB@PS and ASB@AEC is enhanced by the addition of water-soluble polymers. The HLB of the ASB@AEC solution becomes better against crude oil after the addition of polymers, and the IFT decreases to an ultra-low value as a result. On the contrary, the antagonistic effect in reducing the IFT can be observed for ASB@PS in the same case. In a word, polymers affect the IFTs of surfactant solutions by regulating the HLB.
Collapse
|
4
|
Enhanced oil recovery performance and mechanism of a wormlike micelles flooding system with zwitterionic-anionic surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wang ZS, Zhou ZH, Han L, Chen X, He HJ, Zhang Q, Xu ZC, Gong QT, Zhang L, Ma GY, Zhang L. The mechanism for lowering interfacial tension by extended surfactant containing ethylene oxide and propylene oxide groups. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Kopanichuk I, Scerbacova A, Ivanova A, Cheremisin A, Vishnyakov A. The effect of the molecular structure of alkyl ether carboxylate surfactants on the oil–water interfacial tension. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Zou S, Wang S, Ma X, Zhong H. Underlying synergistic collection mechanism of an emerging mixed reagent scheme in chalcopyrite flotation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Zhang W, Wang Y, Wang S, Guo Z, Zhang C, Zhu X, Zhang G. Hyperbranched ionic surfactants with polyether skeleton: Synthesis, properties and used as stabilizer for emulsion polymerization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhou W, Jiang L, Liu X, Hu Y, Yan Y. Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Zhang XJ, Zhou ZH, Han L, Zhang YQ, Zhang Q, Ma DS, Ma WJ, Zhang L, Zhang L. Mechanism responsible for the reduction of interfacial tension by extended surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Study on Preparation and Performance of Calcium Carbide Slag Foam for Coal Mine Disaster Reduction and CO2 Storage. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|