1
|
Shee NK, Lee GS, Kim HJ. Sn(IV)porphyrin-Incorporated TiO 2 Nanotubes for Visible Light-Active Photocatalysis. Molecules 2024; 29:1612. [PMID: 38611891 PMCID: PMC11013583 DOI: 10.3390/molecules29071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction conditions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegradation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP, leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical stability, unique morphology, and outstanding visible light photodegradation of cationic methylene blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min-1), SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst loading, positioning them as more efficient than conventional catalysts. This report introduces a novel direction for porphyrin-incorporated catalytic systems, holding significance for future applications in environmental remediation.
Collapse
Affiliation(s)
| | | | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
2
|
Abdrabou D, Ahmed M, Hussein A, El-Sherbini T. Photocatalytic behavior for removal of methylene blue from aqueous solutions via nanocomposites based on Gd 2O 3/CdS and cellulose acetate nanofibers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99789-99808. [PMID: 37615907 PMCID: PMC10533607 DOI: 10.1007/s11356-023-28999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Efficient cleaning of contaminated water by photocatalysis has become an effective strategy in recent years due to its environmental and ecological designation. Cadmium sulfate (CdS) is an excellent photocatalyst in the visible region but has low quantum efficiency. In order to increase the photocatalytic efficiency, CdS was modified with gadolinium oxide (Gd2O3) and combined with graphene oxide (GO) nanoparticles. The estimated crystallite size (Ds) for Gd2O3, CdS/Gd2O3, and CdS/Gd2O3@GO was 29.6, 11.6, and 11.5 nm, respectively. The degradation of methylene blue (MB) reaches the highest values after 60 min under visible light irradiation with a dye concentration of (0.25 ppm). Whereas in powdered composition the efficiency of dye removal has been enhanced under UV irradiation, it reduced by increasing the MB concentration to 0.50 ppm with visible light irradiation. In addition, the CdS with/without Gd2O3 and GO were integrated into electrospun nanofibrous cellulose acetate (CA) through the electrospinning technique. The compounds of Gd2O3, CdS/Gd2O3, and CdS/Gd2O3/GO were encapsulated into CA nanofibers for the degradation of MB under visible and UV irradiation. The apparent rate constant (k) achieves a value of 0.006, 0.007, and 0.0013 min-1 while the removal efficiency reaches 41.02%, 54.71%, and 71.42% for Gd2O3@CA, CdS/Gd2O3@CA, and CdS/Gd2O3/GO@CA, respectively, after 60 min under UV irradiation.
Collapse
Affiliation(s)
- Dalia Abdrabou
- Misr University for Science and Technology, 6 October, Giza, 12566, Egypt.
| | - Mohamed Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Ali Hussein
- Misr University for Science and Technology, 6 October, Giza, 12566, Egypt
| | - Tharwat El-Sherbini
- Laboratory of Laser and New Materials, Department of Physics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Landeros-Páramo L, Saavedra-Molina A, Cholico-González D, Rosas G. A comparative study of the catalytic activity between Ag nanoparticles and Ag flower-like particles synthesized by the Sedum praealtum aqueous extract. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2156415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Luis Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, Morelia, México
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, Morelia, México
| | - Diana Cholico-González
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, Morelia, México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, Morelia, México
| |
Collapse
|
4
|
Maniyazagan M, Naveenkumar P, Yang HW, Zuhaib H, Seung Kang W, Kim SJ. Hierarchical SiO2@FeCo2O4 core–shell nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Harish V, Ansari MM, Tewari D, Gaur M, Yadav AB, García-Betancourt ML, Abdel-Haleem FM, Bechelany M, Barhoum A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183226. [PMID: 36145012 PMCID: PMC9503496 DOI: 10.3390/nano12183226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/19/2023]
Abstract
Nanomaterials are materials with one or more nanoscale dimensions (internal or external) (i.e., 1 to 100 nm). The nanomaterial shape, size, porosity, surface chemistry, and composition are controlled at the nanoscale, and this offers interesting properties compared with bulk materials. This review describes how nanomaterials are classified, their fabrication, functionalization techniques, and growth-controlled mechanisms. First, the history of nanomaterials is summarized and then the different classification methods, based on their dimensionality (0-3D), composition (carbon, inorganic, organic, and hybrids), origin (natural, incidental, engineered, bioinspired), crystal phase (single phase, multiphase), and dispersion state (dispersed or aggregated), are presented. Then, the synthesis methods are discussed and classified in function of the starting material (bottom-up and top-down), reaction phase (gas, plasma, liquid, and solid), and nature of the dispersing forces (mechanical, physical, chemical, physicochemical, and biological). Finally, the challenges in synthesizing nanomaterials for research and commercial use are highlighted.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | | | - Fatehy M. Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, Giza 12613, Egypt
| | - Mikhael Bechelany
- Institut Europeen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Correspondence: (M.B.); or (A.B.)
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
- Correspondence: (M.B.); or (A.B.)
| |
Collapse
|
6
|
Al-luhaibi AA, Sendi RK. Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Improvement of medical applicability of hydroxyapatite/graphene oxide nanocomposites via additional yttrium oxide nanoparticles. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Altuwirqi RM. Graphene Nanostructures by Pulsed Laser Ablation in Liquids: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5925. [PMID: 36079307 PMCID: PMC9456608 DOI: 10.3390/ma15175925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
High-quality graphene has demonstrated remarkable mechanical, thermal, electronic, and optical properties. These features have paved the road for the introduction of graphene into numerous applications such as optoelectronics and energy devices, photodegradation, bioimaging, photodetectors, sensors, and biosensors. Due to this, graphene research has accelerated exponentially, with the aim of reaching a sustainable large-scale production process of high-quality graphene that can produce graphene-based technologies at an industrial scale. There exist numerous routes for graphene fabrication; however, pulsed laser ablation in liquids (PLAL) has emerged as a simple, fast, green, and environmentally friendly method as it does not require the use of toxic chemicals. Moreover, it does not involve the use of expensive vacuum chambers or clean rooms. However, the great advantage of PLAL is its ability to control the size, shape, and structure of the produced nanostructures through the choice of laser parameters and liquid used. Consequently, this review will focus on recent research on the synthesis of graphene nanosheets and graphene quantum dots via PLAL and the effect of experimental parameters such as laser wavelength, pulse width, pulse energy, repetition rate, irradiation time, and liquid media on the produced nanostructures. Moreover, it will discuss extended PLAL techniques which incorporate other methods into PLAL. Finally, different applications that utilize nanostructures produced by PLAL will be highlighted. We hope that this review will provide a useful guide for researchers to further develop the PLAL technique and the fabrication of graphene-based materials.
Collapse
Affiliation(s)
- Reem M Altuwirqi
- Physics Department, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| |
Collapse
|
9
|
Ibrahim AS, Ayad DM, Menazea AA. Modification on antibacterial activity of PVC/PVDF blend filled with CuO NPs using laser ablation technique. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractNanocomposite of polyvinyl chloride (PVC)/polyvinylidene fluoride (PVDF) have been in situ synthesized. Copper oxide nanoparticles (CuONPs) have been prepared via using the laser ablation technique. Nanoparticles were added to the blend. The properties of the blend were studied before and after adding CuONPs. These properties were characterized by different techniques. Antimicrobial activity of the prepared nanocomposite film was investigated. FTIR data show vibrational spectral bands and the shift of the bands is related to the interaction and the complexation that occurs between blend and nanoparticles. Structural properties and crystallinity of the samples were investigated using XRD diffraction. XRD results illustrated the effect of CuONPs at two new peaks 2θ = 26.25º and 38.41º. These results confirmed the interaction CuO NPs and PVDF/PVC matrix. UV–Visible analyses confirmed the existing of copper oxide nanoparticles and were also used for determining the optical absorption edge. The absorption edges have been obtained at 430–520 nm for all of the doping films. The obtained values for indirect and direct bandgaps were reduced by raising the nanoparticles because of the presence of charge transfer between PVC/PVDF and CuONPs. SEM images illustrateed the presence of CuONPs on the surface of the blend and the morphology changes which occurred to the blend. The antibacterial activity for the nanocomposite proved the antimicrobial effect of copper oxide nanoparticles. The prepared PVC/PVDF/CuONPs are potentially suggesting to be applied for biomedical applications.
Collapse
|
10
|
Waheed IF, Yasin Thayee Al-Janabi O, Foot PJ. Novel MgFe2O4-CuO/GO heterojunction magnetic nanocomposite: Synthesis, characterization, and batch photocatalytic degradation of methylene blue dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Álvarez-Chimal R, García-Pérez VI, Álvarez-Pérez MA, Tavera-Hernández R, Reyes-Carmona L, Martínez-Hernández M, Arenas-Alatorre JÁ. Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Elabbasy MT, Algahtani FD, Al-Harthi HF, Abd El-Kader M, Eldrehmy EH, Abd El-Rahman GI, El-Morsy M, Menazea A. Optimization of compositional manipulation for hydroxyapatite modified with boron oxide and graphene oxide for medical applications. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 18:5419-5431. [DOI: 10.1016/j.jmrt.2022.04.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Shelke HD, Machale AR, Survase AA, Pathan HM, Lokhande CD, Lokhande AC, Shaikh SF, Rana AUHS, Palaniswami M. Multifunctional Cu 2SnS 3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3126. [PMID: 35591460 PMCID: PMC9104045 DOI: 10.3390/ma15093126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023]
Abstract
We present a simplistic, ultrafast, and facile hydrothermal deposition of ternary Cu2SnS3 nanoparticles (CTS NPs). The fabricated CTS NPs show superior antimicrobial and photocatalytic activities. In the presence of UV-Visible illumination, methylene blue (MB) dye was studied for photocatalytic dye degradation activity of CTS NPs. Excellent efficiency is shown by incorporating CTS NPs to degrade MB dye. There is a ~95% decrease in the absorbance peak of the dye solution within 120 min. Similarly, CTS NPs tested against three bacterial strains, i.e., B. subtilis, S. aureus, P. vulgaris, and one fungal strain C. albicans, defining the lowest inhibitory concentration and zone of inhibition, revealed greater antimicrobial activity. Hence, it is concluded that the CTS NPs are photocatalytically and antimicrobially active and have potential in biomedicine.
Collapse
Affiliation(s)
- Harshad D. Shelke
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; (H.D.S.); (H.M.P.)
| | - Archana R. Machale
- Solid State Physics Laboratory, Department of Physics, Yashwantrao Chavan Institute of Science, Satara 415001, Maharashtra, India;
| | - Avinash A. Survase
- Rayat Institute of Research and Development Center, Satara 415001, Maharashtra, India;
| | - Habib M. Pathan
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; (H.D.S.); (H.M.P.)
| | - Chandrakant D. Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Educational Society, Kolhapur 416006, Maharashtra, India
| | - Abhishek C. Lokhande
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Shoyebmohamad F. Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abu ul Hassan S. Rana
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Marimuthu Palaniswami
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
14
|
Optical, thermal and dielectric properties of Copper Oxide (CuO)/ chitosan (CS)/ Polyethylene oxide (PEO) blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
A Flower-like In 2O 3 Catalyst Derived via Metal-Organic Frameworks for Photocatalytic Applications. Int J Mol Sci 2022; 23:ijms23084398. [PMID: 35457216 PMCID: PMC9028932 DOI: 10.3390/ijms23084398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/15/2023] Open
Abstract
The most pressing concerns in environmental remediation are the design and development of catalysts with benign, low-cost, and efficient photocatalytic activity. The present study effectively generated a flower-like indium oxide (In2O3-MF) catalyst employing a convenient MOF-based solvothermal self-assembly technique. The In2O3-MF photocatalyst exhibits a flower-like structure, according to morphology and structural analysis. The enhanced photocatalytic activity of the In2O3-MF catalyst for 4-nitrophenol (4-NP) and methylene blue (MB) is likely due to its unique 3D structure, which includes a large surface area (486.95 m2 g-1), a wide spectrum response, and the prevention of electron-hole recombination compared to In2O3-MR (indium oxide-micro rod) and In2O3-MD (indium oxide-micro disc). In the presence of NaBH4 and visible light, the catalytic performances of the In2O3-MF, In2O3-MR, and In2O3-MD catalysts for the reduction of 4-NP and MB degradation were investigated. Using In2O3-MF as a catalyst, we were able to achieve a 99.32 percent reduction of 4-NP in 20 min and 99.2 percent degradation of MB in 3 min. Interestingly, the conversion rates of catalytic 4-NP and MB were still larger than 95 and 96 percent after five consecutive cycles of catalytic tests, suggesting that the In2O3-MF catalyst has outstanding catalytic performance and a high reutilization rate.
Collapse
|
16
|
Hybrid Nanocomposites of Hydroxyapatite, Eu2O3, Graphene Oxide Via Ultrasonic Power: Microstructure, Morphology Design and Antibacterial for Biomedical Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Compositional Adjusting and Antibacterial Improvement of Hydroxyapatite/Nb2O5/Graphene Oxide for Medical Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02266-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Ahmed MK, Awwad NS, Ibrahium HA, Mostafa MS, Alqahtani MS, El-Morsy MA. Hydroxyapatite and Er2O3 are embedded within graphene oxide nanosheets for high improvement of their hardness and biological responses. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02249-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Optimizing the mechanical and surface topography of hydroxyapatite/Gd2O3/Graphene oxide nanocomposites for medical applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Zhang S, Dai F, Ke Z, Wang Q, Chen C, Qian G, Yu Y. A novel porous hollow carboxyl-polysulfone microsphere for selective removal of cationic dyes. CHEMOSPHERE 2022; 289:133205. [PMID: 34890624 DOI: 10.1016/j.chemosphere.2021.133205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.
Collapse
Affiliation(s)
- Shangying Zhang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Fengna Dai
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhao Ke
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Qi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Guangtao Qian
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Youhai Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
21
|
Optimizing Graphene Oxide Encapsulated TiO2 and Hydroxyapatite; Structure and Biological Response. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
El-Naggar ME, Abu Ali OA, Saleh DI, Abu-Saied MA, Ahmed MK, Abdel-Fattah E, Mansour SF. Microstructure, morphology and physicochemical properties of nanocomposites containing hydroxyapatite/vivianite/graphene oxide for biomedical applications. LUMINESCENCE 2021; 37:290-301. [PMID: 34837471 DOI: 10.1002/bio.4171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
Designing a nanocomposite that accumulates biocompatibility and antimicrobial behaviour is an essential requirement for biomedical applications. Hydroxyapatite (HAP), graphene oxide, and vivianite in one ternary nanocomposite with three phases and shapes led to an increase in cell viability to 97.6% ± 4 for the osteoblast cells in vitro. The obtained nanocomposites were investigated for their structural features using X-ray diffraction, while the microstructure features were analyzed using a scanning electron microscope (SEM) and a transmission electron microscope. The analysis showed a decrease in the crystal size to 13 nm, while the HAP grains reached 30 nm. The elongated shape of vivianite reached 200 nm on SEM micrographs. The monoclinic and hexagonal crystal systems of HAP and vivianite were presented in the ternary nanocomposite. The maximum roughness peak height reached 236.1 nm for the ternary nanocomposite from 203.3 nm, while the maximum height of the roughness parameter reached 440.7 nm for the di-nanocomposite of HAP/graphene oxide from 419.7 nm. The corrosion current density reached 0.004 μA/cm2 . The ferrous (Fe2+ ) and calcium (Ca2+ ) ions released were measured and confirmed. Therefore, the morphology of the nanocomposites affected bacterial activity. This was estimated as an inhibition zone and reached 14.5 ± 0.9 and 13.4 ± 1.1 mm for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h. The increase in viability and the antibacterial activity refer to the compatibility of the nanocomposite in different medical applications.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, Dokki, Cairo, Egypt
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - Dalia I Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Alexandria, Egypt
| | - M K Ahmed
- Faculty of nanotechnology for postgraduate studies, Cairo University, El-Sheikh Zayed, Egypt
| | - E Abdel-Fattah
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. 173, Al-Kharj, Saudi Arabia.,Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - S F Mansour
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Al Mogbel MS, Elabbasy MT, Mohamed RS, Ghoniem AE, El-Kader MFHA, Menazea AA. Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02838-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Wang W, Wang S, Xiang C, Liu S, Li M, Wang D. Graphene Oxide/Nanofiber-Based Actuation Films with Moisture and Photothermal Stimulation Response for Remote Intelligent Control Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48179-48188. [PMID: 34586793 DOI: 10.1021/acsami.1c11117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of intelligent technology and industry has induced higher requirements for multifunctional materials, especially intelligent materials with stimulus-responsive self-actuation behavior. In this study, a Cu@PVA-co-PE/GO composite actuation film, with an asymmetric sandwich structure, was prepared by attaching graphene oxide (GO) to the surface of a polyvinyl alcohol ethylene copolymer (PVA-co-PE) nanofiber composite film containing copper nanoparticles (Cu) through layer-on-layer adsorption. This unique structural design endowed the composite film with not only excellent structural stability but also different bending directions (in response to moisture and infrared light). The actuation performance shows that when the adsorption time was 4 h, the maximum bending angle of the Cu@PVA-co-PE/GO composite film was up to 90° within 5.99 s. Furthermore, the actuation behavior was stable after 100 cycles of reversible moisture stimulation. Additionally, the maximum actuation strain of the composite film was up to 1.35 MPa during the illumination time of 6.8 s and maintained an excellent stability for 400 s under continuous infrared stimulation of 0.53 W/cm2. The rapid and sensitive stimulus response of the Cu@PVA-co-PE/GO composite film exhibited self-actuation behavior under the remote control of moisture and infrared light. This, in turn, suggests prospects for wide applications in emerging technologies, such as intelligent switches, artificial muscles, intelligent medical treatment, and flexible robots.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Shuang Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Chenxue Xiang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuying Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
El-Naggar ME, Abu Ali OA, Abu-Saied MA, Ahmed MK, Abdel-Fattah E, Saleh DI. Tailoring combinations of hydroxyapatite/cadmium selenite/graphene oxide based on their structure, morphology, and antibacterial activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02115-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
El-Naggar ME, Ali OAA, Saleh DI, Abu-Saied MA, Ahmed MK, Abdel-Fattah E, Mansour SF. Nanoarchitectonics of Hydroxyapatite/Molybdenum Trioxide/Graphene Oxide Composite for Efficient Antibacterial Activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
A (solvent-free) approach to metal-free photo-catalysts for methylene blue degradation. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00957-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
El-Naggar ME, Aldalbahi A, Khattab TA, Hossain M. Facile production of smart superhydrophobic nanocomposite for wood coating towards long-lasting glow-in-the-dark photoluminescence. LUMINESCENCE 2021; 36:2004-2013. [PMID: 34453772 DOI: 10.1002/bio.4137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023]
Abstract
A smart photoluminescent nanocomposite surface coating was prepared for simple industrial production of long-persisting phosphorescence and superhydrophobic wood. The photoluminescent nanocomposite coatings were capable of continuing to emit light in the dark for prolonged time periods that could reach 1.5 h. Lanthanide-doped aluminium strontium oxide (LASO) nanoparticles at different ratios were immobilized in polystyrene (PS) and developed as a nanocomposite coating for wood substrates. To produce transparency in the prepared nanocomposite coating, LASO was efficiently dispersed in the form of nanoscaled particles to ensure homogeneous dispersion without agglomeration in the PS matrix. The coated wood showed an absorption band at 374 nm and two emission bands at 434 nm and 518 nm. The luminescence spectra showed both long-persisting phosphorescence as well as photochromic fluorescence relying on the LASO ratio. The improved superhydrophobicity and resistance to scratching of the coated wood could be attributed to the LASO NPs incorporated in the polystyrene matrix. Compared with the uncoated wood substrate, the coated LASO-PS nanocomposite film also displayed photostability and high durability. The current study demonstrated the potential high-scale manufacturing of smart wood for some applications such as safety directional signs in buildings, household products, and smart windows.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK
| |
Collapse
|
29
|
Aldawood FK, Andar A, Desai S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers (Basel) 2021; 13:2815. [PMID: 34451353 PMCID: PMC8400269 DOI: 10.3390/polym13162815] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1-1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications.
Collapse
Affiliation(s)
- Faisal Khaled Aldawood
- Industrial Engineering Department, College of Engineering, University of Bisha, Bisha 67714, Saudi Arabia;
| | - Abhay Andar
- Potomac Photonics, Inc., Halethorpe, MD 21227, USA;
| | - Salil Desai
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
30
|
Ahmad AAL, Marutheri Parambath JB, Postnikov PS, Guselnikova O, Chehimi MM, Bruce MRM, Bruce AE, Mohamed AA. Conceptual Developments of Aryldiazonium Salts as Modifiers for Gold Colloids and Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8897-8907. [PMID: 34291926 DOI: 10.1021/acs.langmuir.1c00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modified colloids and flat surfaces occupy an important place in materials science research due to their widespread applications. Interest in the development of modifiers that adhere strongly to surfaces relates to the need for stability under ambient conditions in many applications. Diazonium salts have evolved as the primary choice for the modification of surfaces. The term "diazonics" has been introduced in the literature to describe "the science and technology of aryldiazonium salt-derived materials". The facile reduction of diazonium salts via chemical or electrochemical processes, irradiation stimuli, or spontaneously results in the efficient modification of gold surfaces. Robust gold-aryl nanoparticles, where gold is connected to the aryl ring through bonding to carbon and films modified by using diazonium salts, are critical in electronics, sensors, medical implants, and materials for power sources. Experimental and theoretical studies suggest that gold-carbon interactions constructed via chemical reactions with diazonium salts are stronger than nondiazonium surface modifiers. This invited feature article summarizes the conceptual development of recent studies of diazonium salts in our laboratories and others with a focus on the surface modification of gold nanostructures, flat surfaces and gratings, and their applications in nanomedicine engineering, sensors, energy, forensic science, and catalysis.
Collapse
Affiliation(s)
- Ahmad A L Ahmad
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | | | - Pavel S Postnikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Olga Guselnikova
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Mohamed Mehdi Chehimi
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), F-75013 Paris, France
| | - Mitchell R M Bruce
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | - Alice E Bruce
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | - Ahmed A Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
31
|
Rohilla D, Kaur N, Shanavas A, Chaudhary S. Microwave mediated synthesis of dopamine functionalized copper sulphide nanoparticles: An effective catalyst for visible light driven degradation of methlyene blue dye. CHEMOSPHERE 2021; 277:130202. [PMID: 33774243 DOI: 10.1016/j.chemosphere.2021.130202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The current work highlights the potential aptitude of copper sulphide (CuS) nanoparticles as cost and energy-effective photo-catalyst for degrading methlyene blue dye under visible light. The surface modified CuS nanoparticles with dopamine (DOP) were prepared by using fast and cost effective microwave assisted methodology. Here, DOP act as biological ligand for the reduction and capping of CuS nanoparticles. The structural and morphological analyses revealed the size controlled synthesis of CuS in presence of DOP with higher thermal stability. The bio-compatibility and non-toxic behaviour of CuS@DOP nanoparticles was evaluated against L929 cell lines and on E. coli and S. aureus strains. The visible light driven photocatalytic activity of the synthesized CuS@DOP was scrutinized for the degradation of methylene blue (MB) dyes, as a model of water contaminants. The photocatalytic degradation of MB by CuS@DOP attained 97% after 10 min of visible light irradiation. The effect of catalyst dose, pH, initial concentration of MB dye, electrolytes, contact time, synergic effect of photolysis and catalysis were studied in detail for optimizing the degradation efficiency of CuS@DOP. The mechanism of CuS@DOP photocatalysis and the formed degraded products were analyzed by using LC/MS technique. The reusability and stability of photocatalyst was confirmed by reusing the catalyst for six successive runs with catalytic performance as high as 80%. Thus, CuS@DOP NPs acted as cost effective, non-toxic visible light driven photo-catalyst for the degradation of organic dye from waste water.
Collapse
Affiliation(s)
- Deepak Rohilla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
32
|
Donya H, Darwesh R, Ahmed MK. Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int J Biol Macromol 2021; 186:897-908. [PMID: 34273344 DOI: 10.1016/j.ijbiomac.2021.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Ternary nanocomposites, including graphene oxide (GO), hydroxyapatite (HAP), and cadmium selenite (CdSe) have been encapsulated into nanofibrous scaffolds of polylactic acid. These compositions were indexed as HAP@PLA (C1), CdSe@PLA (C2), HAP/CdSe@PLA (C3), HAP/GO@PLA (C4), and HAP/CdSe/GO@PLA (C5). Structural confirmation is executed by XRD and XPS techniques, while FESEM performs morphological characteristics. CdSe and GO dopants cause a significant increase in nanofiber diameter, HAP/GO@PLA (C4), showing thin surface fibers with fiber diameter up to 3.1 μm, followed by HAP/CdSe/GO@PLA (C4) composite that belongs to filament size up to 2.1 μm. On the other hand, the mechanical properties reveal that the dual dopant composites HAP/CdSe@PLA (C3) and HAP/GO@PLA (C4) hit the maximum tensile fracture values with 1.49 ± 0.3 and 0.99 ± 0.2 MPa. Further, the ternary C5 composite represents the lowest contact angle of 86.1 ± 3.7°. The antibacterial activity increased from 32.4 ± 9.7 and 28.4 ± 6.5% to be 85.3 ± 4.6 and 88.1 ± 5.6% for C1 and C5, respectively, against both E. coli and S. aureus in dark conditions. Moreover, the antibacterial potency enhanced from 75.4 ± 7.6 to be 83.5 ± 6.5 from dark to light conditions against E. coli for the composition of PLA containing the binary composition of HAP/CdSe.
Collapse
Affiliation(s)
- Hossam Donya
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M K Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt.
| |
Collapse
|
33
|
Abd El-Kader M, Awwad NS, Ibrahium HA, Ahmed M. Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: electrical behavior, cell viability, and thermal stability. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 13:1878-1886. [DOI: 10.1016/j.jmrt.2021.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Al-Wafi R, Mansour SF, AlHammad MS, Ahmed MK. Biological response, antibacterial properties of ZrO 2/hydroxyapatite/graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications. Int J Pharm 2021; 601:120517. [PMID: 33775723 DOI: 10.1016/j.ijpharm.2021.120517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Designing proper nanofibrous scaffolds for wound healing applications is a necessity for improving the health care system. Hydroxyapatite (HAP), zirconia (ZrO2), and graphene oxide (GO) nanosheets have been encapsulated in mono, di, or tri phases into nanofibrous scaffolds of polylactic acid (PLA). The structure of nanofibrous scaffolds is confirmed using XRD, XPS, while FESEM inspected the surface morphology. The surface morphology detection exhibited that the scaffolds have been formed in networked nanofibers with diameters from 1.19 to 2.38 to 0.59-1.42 µm, while the maximum height of the roughness increased from 610.4 to 809 nm for HAP@PLA and HAP/ZrO2/GO@PLA, respectively. The contact angle was measured and showed a decreasing trend from 101.2 ± 4.1° and 89.1 ± 5.4° for HAP@PLA and HAP/ZrO2/GO@PLA nanofibrous scaffolds. Moreover, the mechanical properties were examined and revealed that ZrO2 dopant induced a significant enhancement into the tensile strength, which increased from 3.49 ± 0.3 to 8.45 ± 1.1 MPa for the nanofibrous scaffolds of HAP@PLA and HAP/ZrO2/GO@PLA, respectively. The incorporation of ternary phases into PLA nanofibers promoted the cell viability to be around 98.2 ± 5%. The antibacterial potency has been investigated and showed that the activity increased to 69.2 ± 3.6 and 78.1 ± 4.5% against E. coli and S. aureus, respectively. Additionally, human fibroblasts proliferated on the surface and pores of nanofibrous scaffolds and significantly grown upon the compositional variation.
Collapse
Affiliation(s)
- Reem Al-Wafi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S F Mansour
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M S AlHammad
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M K Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El‑Sheikh Zayed 12588, Egypt; Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt.
| |
Collapse
|
35
|
Abdullah FH, Abu Bakar NHH, Abu Bakar M. Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124779. [PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
Collapse
Affiliation(s)
- F H Abdullah
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - N H H Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - M Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
36
|
Mostafa AM. The enhancement of nonlinear absorption of Zn/ZnO thin film by creation oxygen vacancies via infrared laser irradiation and coating with Ag thin film via pulsed laser deposition. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Menazea A, El-Newehy MH, Thamer BM, El-Naggar ME. Preparation of antibacterial film-based biopolymer embedded with vanadium oxide nanoparticles using one-pot laser ablation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Alrafai HA, Ali Al-Ahmed Z, Ahmed MK, Afifi M, Shoueir KR, Abu-Rayyan A. The degradation of methylene blue dye using copper-doped hydroxyapatite encapsulated into polycaprolactone nanofibrous membranes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01623g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methylene blue is degraded under visible light irradiation in the presence of the nanofibrous membranes of PCL containing modified HAP with different contents of Cu ions.
Collapse
Affiliation(s)
- H. A. Alrafai
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Zehbah Ali Al-Ahmed
- College of Art and Sciences, King Khalid University, Dhahran Al Jounb, Saudi Arabia
| | - M. K. Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt
| | - M. Afifi
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt
- Ultrasonic Laboratory, National Institute of Standards, Giza, Egypt
| | - Kamel R. Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Ahmed Abu-Rayyan
- Department of Chemistry, Faculty of Science, Applied Science Private University, P. O. BOX 166, Amman 11931, Jordan
| |
Collapse
|
39
|
Menazea A, Awwad NS. Pulsed Nd:YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Mwafy EA, Mostafa AM. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|