1
|
Gan N, Song Y, Li Y, Liu P, Chen S, He Y, Zeng T, Wang W, Wu D. Characterization of the effects of bridging linker on the β-Lactoglobulin binding mechanism on the nanoscale metal-organic frameworks. Food Chem 2024; 464:141715. [PMID: 39442220 DOI: 10.1016/j.foodchem.2024.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Revealing the interaction modes between nanoscale metal-organic frameworks (NMOFs) and food matrix is crucial for functional release but it still remains largely unknown to date. This study specifically focused on the milk protein adsorption mechanism of NMOFs using UiO66/UiO66-NH2 and β-lactoglobulin (β-LG) as models. UiO66 and UiO66-NH2 quenched the fluorescence of β-LG via static mechanism. Due to the enhanced electrostatic forces caused by NH2, UiO66-NH2-β-LG (2.83 × 105 mol·L-1) exhibited higher binding constant than UiO66-β-LG (2.61 × 105 mol·L-1), while UiO66 with higher hydrophobicity adsorbed more β-LG. The defects of UiO influenced the binding sites on the β-LG, and the higher the defect degree, the higher the binding energy. For the stability of the system, the H-bonding between UiO66 and SER30/PRO38, and the hydrophobic interaction between UiO66-NH2 and LYS101 played important roles. Furthermore, the secondary structure content of β-LG changed after interacting with both UiO, resulting in reduced density of β-LG.
Collapse
Affiliation(s)
- Na Gan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yilin Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Peiran Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China.
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
Eslami Moghadam M, Tavakoli Hafshajani K, Sohrabi N, Rezaeisadat M, Oftadeh M. Platinum (II) complex of isopentyl glycine ligand: DNA binding, molecular dynamic, and anticancer activity against breast cancer. J Biomol Struct Dyn 2024; 42:8229-8241. [PMID: 37578043 DOI: 10.1080/07391102.2023.2246564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
In this paper, we performed thorough experimental and theoretical calculations to examine the interaction between Pt derivative, as an anticancer, and ct-DNA. The mode of DNA binding with [Pt(NH3)2(Isopentylgly)]NO3, where Isopentylgly is Isopentyl glycine, was evaluated by various spectroscopic methods, docking, and molecular dynamics simulation studies. UV-Vis and fluorescence spectroscopic titration results and CD spectra of DNA-drug showed this interaction is via groove binding. Also, thermal stability studies or DNA melting temperature changes (ΔTm), as well as the quenching emissions monitoring proved it. Also, the thermodynamic parameter and binding constant displayed that complex-DNA formation is a spontaneous process, and H-binding and also groove binding were found to be the main forces. Theoretical studies stated [Pt(NH3)2(Isopentylgly)]NO3-DNA formation occurs on C-G center on DNA, along with rising DNA-compound stability. IC50 value against the human breast cell line probably is due to the Isopentyl glycine ligand in the structure of the Pt compound, and it was obtained more than cisplatin and less than carboplatin against the MCF7 cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Nasrin Sohrabi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | | | - Mohsen Oftadeh
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
3
|
Rupreo V, Tissopi R, Baruah K, Roy AS, Bhattacharyya J. Multispectroscopic and Theoretical Investigation on the Binding Interaction of a Neurodegenerative Drug, Lobeline with Human Serum Albumin: Perturbation in Protein Conformation and Hydrophobic-Hydrophilic Surface. Mol Pharm 2024; 21:4169-4182. [PMID: 39037173 DOI: 10.1021/acs.molpharmaceut.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Lobeline (LOB), a naturally occurring alkaloid, has a broad spectrum of pharmacological activities and therapeutic potential, including applications in central nervous system disorders, drug misuse, multidrug resistance, smoking cessation, depression, and epilepsy. LOB represents a promising compound for developing treatments in various medical fields. However, despite extensive pharmacological profiling, the biophysical interaction between the LOB and proteins remains largely unexplored. In the current article, a range of complementary photophysical and cheminformatics methodologies were applied to study the interaction mechanism between LOB and the carrier protein HSA. Steady-state fluorescence and fluorescence lifetime experiments confirmed the static-quenching mechanisms in the HSA-LOB system. "K" (binding constant) of the HSA-LOB system was determined to be 105 M-1, with a single preferable binding site in HSA. The forces governing the HSA-LOB stable complex were analyzed by thermodynamic parameters and electrostatic contribution. The research also investigated how various metal ions affect complex binding. Site-specific binding studies depict Site I as probable binding in HSA by LOB. We conducted synchronous fluorescence, 3D fluorescence, and circular dichroism studies to explore the structural alteration occurring in the microenvironment of amino acids. To understand the robustness of the HSA-LOB complex, we used theoretical approaches, including molecular docking and MD simulations, and analyzed the principal component analysis and free energy landscape. These comprehensive studies of the structural features of biomolecules in ligand binding are of paramount importance for designing targeted drugs and delivery systems.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Rengka Tissopi
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Kakali Baruah
- Department of Chemical & Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Atanu Singha Roy
- Department of Chemical & Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| |
Collapse
|
4
|
Quraishi S, Nudrat S, Kumari K, Marboh EWM, Aguan K, Singha Roy A. Elucidation of inhibitory effects of bioactive anthraquinones towards formation of DNA advanced glycation end products (DNA-AGEs). Int J Biol Macromol 2024; 269:131810. [PMID: 38677669 DOI: 10.1016/j.ijbiomac.2024.131810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
DNA is essential in biological processes as it directs transcription and translation assisting in RNA and protein synthesis. Extended periods of elevated blood glucose levels cause non-enzymatic DNA glycation, which results in the formation of DNA-AGEs and the production of free radicals, causing structural perturbation of DNA. In this work, we have investigated the glycation of calf thymus (ct-DNA) DNA and examined its inhibition by two anthraquinone derivatives, purpurin and aloin. Ribose sugar served as the glycating agent inducing non-enzymatic glycation of DNA and subsequent DNA-AGEs formation. UV-vis and fluorescence spectroscopic methods were utilized to characterize DNA-AGE formation in vitro. Circular dichroism (CD) spectroscopy was used to observe the structural disruption of DNA caused by glycation. The changes in AGEs fluorescence intensity and melting temperature (Tm) were measured to assess the inhibition of glycation process by aloin and purpurin. These derivatives demonstrated inhibitory effects via binding to glycating sites of ct-DNA or by scavenging free radicals generated during glycation. The current study elucidates the inhibitory actions of aloin and purpurin on DNA glycation, suggesting their possible applications in mitigating the adverse consequences linked to increased ribose concentrations.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Sadia Nudrat
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Erica W M Marboh
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
5
|
Asgharzadeh S, Shareghi B, Farhadian S. Probing the toxic effect of chlorpyrifos as an environmental pollutant on the structure and biological activity of lysozyme under physiological conditions. CHEMOSPHERE 2024; 355:141724. [PMID: 38499074 DOI: 10.1016/j.chemosphere.2024.141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
The pervasive use of pesticides like chlorpyrifos (CPY) has been associated with deleterious effects on biomolecules, posing significant risks to environmental integrity, public health, and overall ecosystem equilibrium. Accordingly, in this study, we investigated the potential binding interaction between the well-conserved enzyme, lysozyme (LSZ), and CPY through various spectroscopic techniques and molecular modeling. The UV-vis absorption and fluorescence experiments confirmed the complex formation and static quenching of the intrinsic fluorescence intensity. LSZ revealed a singular binding site for CPY, with binding constants around 105 M-1 across different temperature ranges. Analysis of thermodynamic parameters showed the spontaneous nature of the complexation process, while also revealing the pivotal role of hydrophobic interactions in stabilizing the LSZ-CPY system. According to circular dichroism and Fourier transform infrared studies, CPY binding changed the secondary structure of LSZ by boosting α-helix presence and reducing the levels of β-sheet and β-turn content. Further, CPY decreased the stability and activity of LSZ. Computational docking delineated the specific and highly preferred binding site of CPY within the structure of LSZ. Molecular dynamic simulation indicated the enduring stability of the LSZ/CPY complex and revealed structural modifications in the LSZ after binding with CPY. This research provides a detailed understanding of the intermolecular dynamics between CPY and LSZ, concurrently elucidating the molecular-level implications for the potential hazards of pesticides in the natural environment.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
6
|
Jiang D, Li Z, Liu H, Liu H, Xia X, Xiang X. Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin delivery: Molecular docking, stability and bioactivity. Food Chem 2024; 438:137963. [PMID: 37976878 DOI: 10.1016/j.foodchem.2023.137963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The growing recognition of luteolin (Lu) as a vital functional component is attributed to its notable bioactive properties. However, the effective use of Lu is hindered by its inherent limitations related to water solubility, stability, and bioavailability. Here, we aim to develop sesame leaves-derived exosome-like nanovesicles (Exo) for Lu delivery (Exo@Lu) as vehicles. The encapsulation mechanism, solubility, stability, and bioactivity of Exo@Lu were thoroughly evaluated. Exo enriched abundant lipids, proteins, and phenolic compounds with an encapsulation efficiency of ∼ 91.9 % and a loading capacity of ∼ 20.5 % for Lu. The primary binding forces responsible for the encapsulation were hydrogen bonds and van der Waals forces. After encapsulation, the water solubility and stability of Lu were significantly improved under various conditions, including thermal, light, storage, ionic strength, and pH. Exo@Lu maintained structural integrity during simulated digestion, enhancing bioaccessibility and efficacy in mitigating oxidative stress and inflammatory response compared to Exo and free Lu.
Collapse
Affiliation(s)
- Dan Jiang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ziliang Li
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hongyan Liu
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Huihui Liu
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Xiaoyang Xia
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Xia Xiang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Jalan A, Moyon NS. Molecular interactions and binding dynamics of Alpelisib with serum albumins: insights from multi-spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2024; 42:2127-2143. [PMID: 37098825 DOI: 10.1080/07391102.2023.2203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Alpelisib (ALP) is a potent anti-cancer drug showing promising activity against advanced breast cancers. Hence, profound understanding of its binding dynamics within the physiological system is vital. Herein, we have investigated interaction of ALP with human serum albumin (HSA) and bovine serum albumin (BSA) using spectroscopic techniques like absorption, fluorescence, time-resolved, synchronous and 3D-fluorescence, FRET, FT-IR, CD, and molecular docking studies. The intrinsic fluorescence of both BSA and HSA quenched significantly by ALP with an appreciable red shift in its emission maxima. Stern-Volmer analysis showed increase in Ksv with temperature indicating involvement of dynamic quenching process. This was further validated by no significant change in absorption spectrum of BSA and HSA (at 280 nm) upon ALP interaction, and by results of fluorescence time-resolved lifetime studies. ALP exhibited moderately strong binding affinity with BSA (of the order 106 M-1) and HSA (of the order 105 M-1), and the major forces accountable for stabilizing the interactions are hydrophobic forces. Competitive drug binding experiments and molecular docking suggested that ALP binds to site I in subdomain IIA of BSA and HSA. The Förster distance r was found to be less than 8 nm and 0.5 Ro < r < 1.5 Ro which suggests possible energy transfer between donors BSA/HSA and acceptor ALP. Synchronous and 3D-fluoresecnce, FT-IR and CD studies indicated that ALP induces conformational changes of BSA and HSA upon interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Jalan
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| | - N Shaemningwar Moyon
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| |
Collapse
|
8
|
Quraishi S, Saha D, Kumari K, Jha AN, Roy AS. Non-covalent binding interaction of bioactive coumarin esculetin with calf thymus DNA and yeast transfer RNA: A detailed investigation to decipher the binding affinities, binding location, interacting forces and structural alterations at a molecular level. Int J Biol Macromol 2024; 257:128568. [PMID: 38061533 DOI: 10.1016/j.ijbiomac.2023.128568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Esculetin is a well-known coumarin derivative found abundantly in nature possessing an extensive array of pharmacological and therapeutic properties. Consequently, to comprehend its molecular recognition mechanism, our objective is to conduct a complete investigation of its interactions with the nucleic acid, specifically ct-DNA, and t-RNA, using spectroscopic and computational techniques. The intrinsic fluorescence of esculetin is quenched when it interacts with ct-DNA and t-RNA, and this occurs through a static quenching mechanism. The thermodynamic parameters demonstrated that the interaction is influenced by hydrogen bonding and weak van der Waals forces. CD and FT-IR results revealed no conformational changes in ct-DNA and t-RNA structure on binding with esculetin. Furthermore, competitive displacement assay with ethidium bromide, melting temperature, viscosity measurement, and potassium iodide quenching experiments, reflected that esculetin probably binds to the minor groove of ct-DNA. The molecular docking results provided further confirmation for the spectroscopic findings, including the binding location of esculetin and binding energies of esculetin complexes with ct-DNA and t-RNA. Molecular dynamics simulation studies demonstrated the conformational stability and flexibility of nucleic acids.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India.
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
9
|
Akbari V, Ghobadi S. Evaluation of the effect of phenylpropanoids on the binding of heparin to human serum albumin and glycosylated human serum albumin concerning anticoagulant activity: A comparison study. Int J Biol Macromol 2024; 257:128732. [PMID: 38092116 DOI: 10.1016/j.ijbiomac.2023.128732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The nonenzymatic advanced glycation end products (AGEs) and the accumulation of AGEs are the two main factors associated with the long-term pathogenesis of diabetes. Human serum albumin (HSA) as the most abundant serum protein has a higher fortuity to be modified by nonenzymatic glycation. In this study, the interaction of three phenylpropanoids (caffeic acid (Caf), p-coumaric acid (Cou), and cinnamic acid (Cin)) toward HSA and glycosylated HSA (gHSA) was analyzed by multiple spectroscopic techniques combined with molecular docking. The formation of fibrils in HSA and gHSA was confirmed by the Thioflavin T (ThT) assay. The phenylpropanoids have shown anti-fibrillation properties in vitro. The obtained thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the main forces in the binding interaction, and the quenching mechanism of the protein fluorescence is static. Molecular docking results, as well as the in vitro results, showed that Caf, Cou, and Cin exhibit more stable interactions with HSA, respectively. In addition, molecular docking analysis showed that Caf and Cou interact well with K199. Given the critical role of K199 in HSA glycosylation in diabetic patients, this process inhibits the interaction of stabilizer compounds and thus accelerates gHSA aggregation.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| |
Collapse
|
10
|
Baruah K, Singh AK, Kumari K, Nongbri DL, Jha AN, Singha Roy A. Interactions of Turmeric- and Curcumin-Functionalized Gold Nanoparticles with Human Serum Albumin: Exploration of Protein Corona Formation, Binding, Thermodynamics, and Antifibrillation Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1381-1398. [PMID: 38159065 DOI: 10.1021/acs.langmuir.3c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In order to better understand the bioavailability and biocompatibility of polyphenol-assisted surface-modified bioengineered nanoparticles in nanomedicine applications, here, we address a series of photophysical experiments to quantify the binding affinity of serum albumin toward polyphenol-capped gold nanoparticles. For this, two different gold nanoparticles (AuNPs) were synthesized via the green synthesis approach, where curcumin and turmeric extract act as reducing as well as capping agents. The size, surface charge, and surface plasmon bands of the AuNPs were highly affected by the adsorption of human serum albumin (HSA) during protein corona formation, which was investigated using dynamic light scattering (DLS), ξ-potential, ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM) measurements. Fluorescence-based methods, absorbance, and SERS experiments were carried out to evaluate the binding aspects of AuNPs with HSA. We found that the AuNPs show moderate binding affinity toward HSA (Kb ∼ 104 M-1), irrespective of the capping agents on the surface. Hydrophobic association, along with some contribution of electrostatic interaction, played a key role in the binding process. The binding interaction was more toward the subdomain IIA region of HSA, as indicated by the competitive displacement studies using site-specific binders (warfarin and flufenamic acid). Because of the large surface curvature of small-sized AuNPs, the secondary structural conformations of HSA were slightly altered, as revealed by circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and surface-enhanced Raman scattering (SERS) measurements. Additionally, the findings of the binding interactions were re-evaluated using molecular dynamics (MD) simulation studies by determining the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and changes in the binding energy of HSA upon complexation with AuNPs. To determine the tentative evidence for pharmacokinetic administration, these biocompatible AuNPs were applied to inhibit the amyloid fibril formation of HSA and monitored by using the thioflavin T (ThT) assay, ANS fluorescence assay, fluorescence microscopic imaging, and FESEM. AuNPs were found to show better resistance toward fibrillation of the adsorbed protein.
Collapse
Affiliation(s)
- Kakali Baruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Ajit Kumar Singh
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kalpana Kumari
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam India
| | - Dasuk Lyngdoh Nongbri
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| |
Collapse
|
11
|
Sarmah S, Konthoujam I, Prakash V, Aguan K, Singha Roy A. Unleashing the binding interaction of chrysin-Cu(II) complex with the biomacromolecular targets: further studies of cell cytotoxicity and radical scavenging properties. J Biomol Struct Dyn 2024:1-17. [PMID: 38189346 DOI: 10.1080/07391102.2023.2300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Flavonoids are significant dietary components and have ability to coordinate with metal ions to produce novel drug discovery leads that are superior to those of the parent flavonoids. Here, in this report, we have synthesized chrysin-Cu(II) complex (as per reported article) and characterized it further with different analytical techniques. The synthesized complex was evaluated for radical scavenging and cell cytotoxicity studies where it exhibited enhanced activity as compared to bare chrysin. The interaction studies of the complex with ct-DNA (Kb ⁓ 105 M-1), human serum albumin (HSA) and ovalbumin (Kb ⁓ 104 M-1) were evaluated using multi-spectroscopic and molecular docking studies. Groove binding mode with ct-DNA was observed as confirmed from competitive displacement studies, viscosity measurement, melting temperature estimation and docking analyses. The complex exhibited comparatively higher affinity towards ct-DNA which indicated it efficient transportation by the carrier proteins and controlled release in the target DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Vivek Prakash
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| |
Collapse
|
12
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Li M, Kong J, Chen Y, Li Y, Xuan H, Liu M, Zhang Q, Liu J. Comparative interaction study of soy protein isolate and three flavonoids (Chrysin, Apigenin and Luteolin) and their potential as natural preservatives. Food Chem 2023; 414:135738. [PMID: 36841103 DOI: 10.1016/j.foodchem.2023.135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
In this work, the potential of soy protein isolate (SPI)-luteolin (Lut)/apigenin (Ap)/chrysin (Chr) complexes as natural preservatives for food and cosmetics was evaluated by comparing their interactional and functional properties with structure-activity relationship. The results of spectrometry and molecular docking indicated that the B-ring hydroxylation of flavonoids affected their binding constants with SPI, which were determined as Lut (1.45 × 106 L/mol) > Ap (2.04 × 105 L/mol) > Chr (3.81 × 104 L/mol) at 298.15 K. It demonstrated that the hydrogen bonding force played an important role in binding flavonoids to SPI. Moreover, the anti-oxidation ability, antimicrobial effect, and foaming properties were positively correlated with increase in number of hydroxyl groups on the B-ring, but the amount and type of the preservative should be adjusted aimed at the nutrition components. This study provides a theoretical basis for the use of flavonoids and SPI-flavonoid complexes as natural preservatives for food and cosmetics.
Collapse
Affiliation(s)
- Mingyuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jing Kong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yutong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|
14
|
Baruah K, Konthoujam I, Lyndem S, Aguan K, Singha Roy A. Complexation of turmeric and curcumin mediated silver nanoparticles with human serum albumin: Further investigation into the protein-corona formation, anti-bacterial effects and cell cytotoxicity studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122540. [PMID: 36848856 DOI: 10.1016/j.saa.2023.122540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biosynthesized noble metal nanoparticles have been of recent interest due to their broad implications in the future biomedicinal field. We have synthesized silver nanoparticle using turmeric-extract and its major component curcumin as reducing and stabilizing agents. Further, we have investigated the protein-NPs interaction focusing the inspection of the role of biosynthesized AgNPs on any conformational changes of the protein, binding and thermodynamic parameters using spectroscopic techniques. Fluorescence quenching studies revealed that both CUR-AgNPs and TUR-AgNPs have moderate binding affinities (∼104 M-1) towards human serum albumin (HSA) and static quenching mechanism was involved in the binding. Estimated thermodynamic parameters indicate the involvement of hydrophobic forces in the binding processes. The surface charge potential of the biosynthesized AgNPs became more negative upon complexation with HSA as observed from Zeta potential measurements. Antibacterial efficacies of the biosynthesized AgNPs were evaluated against Escherichia coli (gram-negative) and Enterococcus faecalis (gram-positive) bacterial strains. The AgNPs were found to destroy the cancer (HeLa) cell lines in vitro. The overall findings of our study successfully outline the detailed insight of the protein corona formation by biocompatible AgNPs and their biological applications concerning the future scope in the biomedicinal field.
Collapse
Affiliation(s)
- Kakali Baruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
15
|
Ansari S, Zia MK, Fatima S, Ahsan H, Khan FH. Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach : Interaction of morin with α 2M. J Biol Phys 2023; 49:235-255. [PMID: 36913165 PMCID: PMC10160284 DOI: 10.1007/s10867-023-09629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamila Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
16
|
Tavakoli Hafshajani K, Sohrabi N, Eslami Moghadam M, Oftadeh M. Spectroscopy and molecular dynamic study of the interaction of calf thymus DNA by anticancer Pt complex with butyl glycine ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122826. [PMID: 37216815 DOI: 10.1016/j.saa.2023.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Despite the past few decades since the discovery of anticancer drugs, there is still no definitive treatment for its treatment. Cisplatin is a chemotherapy medication used to treat some cancers. In this research, the DNA binding affinity of Pt complex with butyl glycine ligand was studied by various spectroscopy methods and simulation studies. Fluorescence and UV-Vis spectroscopic data showed groove binding in ct-DNA-[Pt(NH3)2(butylgly)]NO3 complex formation by the spontaneous process. The results were also confirmed by small changes in CD spectra and thermal study (Tm), as well as the quenching emission of [Pt(NH3)2(butylgly)]NO3 complex on DNA. Finally, thermodynamic and binding parameters displayed that hydrophobic forces are the main forces. Based on docking simulation, [Pt(NH3)2(butylgly)]NO3 could bind to DNA and via minor groove binding on C-G center on DNA, formed a stable DNA complex.
Collapse
Affiliation(s)
| | - Nasrin Sohrabi
- Department of Chemistry, Payame Noor University (PNU), P.O.Box 19395-4697, Tehran, Iran.
| | | | - Mohsen Oftadeh
- Department of Chemistry, Payame Noor University (PNU), P.O.Box 19395-4697, Tehran, Iran
| |
Collapse
|
17
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
18
|
Fecka I, Bednarska K, Kowalczyk A. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf ( Mentha × piperita L.) and Its Polyphenols. Molecules 2023; 28:molecules28062865. [PMID: 36985839 PMCID: PMC10056224 DOI: 10.3390/molecules28062865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3-77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 μM/mL of polyphenols, including ~1.4 μM/mL of flavonoids and ~0.4 μM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-β-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control.
Collapse
Affiliation(s)
- Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
- Committee for Therapeutics and Drug Sciences, Polish Academy of Sciences, pl. Defilad 1, 00-901 Warszawa, Poland
| | - Katarzyna Bednarska
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| | - Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
19
|
Haque M, Konthoujam I, Lyndem S, Koley S, Aguan K, Singha Roy A. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J Mater Chem B 2023; 11:1998-2015. [PMID: 36752685 DOI: 10.1039/d2tb02265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sudipta Koley
- Department of Physics, Amity University, Kolkata 700135, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
20
|
Kaci H, Bodnárová S, Fliszár-Nyúl E, Lemli B, Pelantová H, Valentová K, Bakos É, Özvegy-Laczka C, Poór M. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother 2023; 157:114078. [PMID: 36481402 DOI: 10.1016/j.biopha.2022.114078] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Green Chemistry Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
21
|
Manivel P, Marimuthu P, Yu S, Chen X. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. J Chem Inf Model 2022; 62:6133-6147. [PMID: 36398926 DOI: 10.1021/acs.jcim.2c01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.
Collapse
Affiliation(s)
- Perumal Manivel
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL─Biochemistry) and Pharmaceutical Science Laboratory (PSL─Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, TurkuFI-20520, Finland
| | - Sun Yu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
22
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Shimul IM, Moshikur RM, Minamihata K, Moniruzzaman M, Kamiya N, Goto M. Choline oleate based micellar system as a new approach for Luteolin formulation: Antioxidant, antimicrobial, and food preservation properties evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Rupreo V, Luikham S, Bhattacharyya J. PROTEIN BINDING CHARACTERISTICS OF YOHIMBINE, A NATURAL INDOLE ALKALOID BASED DRUG FOR ERECTILE DYSFUNCTION. LUMINESCENCE 2022; 37:1532-1540. [PMID: 35816091 DOI: 10.1002/bio.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Even to this day, talking about sexual-dysfunctions largely remains a taboo. Hence less studies were recorded and fewer remedies given. Erectile dysfunction (ED) is one of the most commonly treated psychological disorders which leads to major distress, interpersonal limitation and reduces the quality of life & marriage. This study aimed to assess a plant-derived molecule, Yohimbine (Yoh, a β-carboline indole-alkaloid; often used for ED treatment) and its potential binding phenomenon with hemoglobin (Hb). Successful binding of the Yoh with Hb is evident from spectroscopic and molecular-docking results. Yoh quenched the fluorescence of Hb efficiently through static mode. The binding affinity was in the order of 105 M-1 with 1:1 stoichiometry. Thermodynamic analyses concluded that the protein-ligand association to be spontaneous and attributed by entropy-driven exothermic-binding. Non-polyelectrolytic factor was the core, dominating factor. The structural aspects have been deciphered through infra-red spectroscopy and computational-methods. The giant 3D-protein moiety was significantly perturbed through drug-binding. Hydrophobic forces and hydrogen bonding participation were stipulated by molecular modeling data. This study reveals the detailed interaction pattern and molecular mechanism of Hb-Yoh binding; correlating the structure-function relationship for the first time; therefore, holds enormous importance from the standpoint of rational and efficient drug-designing & development.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| |
Collapse
|
25
|
Li Z, Gan N, Sun Q, Zhang Q, Yang J, Yi B, Liao X, Zhu D, Li T, Li H. Study on the interactions between nicotine γ-rezocine formic acid salt and pepsin: Multispectroscopy, molecular docking, and molecular dynamics simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Haque M, Lyndem S, Singha Roy A. Interaction Properties of Biosynthesized Cadmium Sulphide Quantum Dots with Human Serum Albumin: Further Investigation of Antibacterial Activities and Sensing Applications. LUMINESCENCE 2022; 37:837-853. [PMID: 35297173 DOI: 10.1002/bio.4228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
Synthesis of low dimensional quantum dots (QDs) (1-10 nm) via green route has garnered great interest having the prospective use in many biological applications (diagnosis, drug delivery and in vivo sensing), which is difficult to achieve by chemical synthesize methods having larger QDs particles or hazardous reagents required for synthesizing of QDs. Here, we have synthesized biogenic cadmium sulphide (CdS) QDs using green tea extract as reducing agents that were homogeneous and smaller size particles 2-4 nm. We also elucidate the (a) protein binding, (b) antibacterial and (c) sensing applications of biogenic CdS QDs in this present work. The biosynthesized CdS QDs were found to have extensive antibacterial activity against both gram-negative E. coli and gram-positive E. faecalis bacterial strains. Since the introduction of QDs in biological media, they can form protein-QDs complex; hence we investigate the binding interaction of CdS QDs with the carrier protein human serum albumin (HSA) in vitro. The synthesized CdS QDs quenched the intrinsic fluorescence of HSA through static quenching mechanism and binding constant (Kb ) was found in order of 104 M-1 . It was also observed that presence of biogenic CdS QDs affects the HSA-ligand interactions in vitro. The synthesized CdS showed highly effective sensors for tetracycline, rifampicin and bilirubin with LOD values of 99, 141 and 29 ng/mL respectively.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| |
Collapse
|
27
|
Combined spectroscopic and computational approaches for the recognition of bioactive flavonoid 6-hydroxyflavone by human serum albumin: Effects of non-enzymatic glycation in the binding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Peng CY, Zhu HD, Zhang L, Li XF, Zhou WN, Tu ZC. Urolithin A alleviates advanced glycation end-product formation by altering protein structures, trapping methylglyoxal and forming complexes. Food Funct 2021; 12:11849-11861. [PMID: 34734623 DOI: 10.1039/d1fo02631c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urolithin A (UroA) is a first-in-class natural compound derived from the gut microbiota-derived metabolites of ellagitannins. This research for the first time evaluates the mechanisms of UroA inhibiting advanced glycation end-product (AGE) formation by fluorescence spectroscopy, molecular docking, liquid chromatography (LC) and LC-Oribitrap tandem mass spectrometry. The results indicated that UroA exhibited a good suppression effect on the formation of AGEs in human serum albumin (HSA)-fructose and HSA-methylglyoxal (MGO) systems. Further mechanism analysis revealed that UroA alleviated AGE formation by changing the conformational structure of HSA, trapping reactive MGO to form mono-MGO-UroA complexes, promoting the exposure of chromophores to a more hydrophobic micro-environment, and forming stable UroA-HSA complexes. UroA bound with HSA in an equimolar manner, the binding was an exothermic spontaneous process, subdomain IIIA was the preferred binding pocket, and hydrogen bonding, hydrophobic interactions and van der Waals forces were the major interaction forces. The number of glycation sites detected in glycated HSA was reduced by 1 and 2, respectively, when 181.82 and 363.64 μM UroA was added. These could provide an insight into the mechanism of UroA inhibiting HSA glycation, and highlight its value as a promising glycation inhibitor in the prevention of diabetic complications.
Collapse
Affiliation(s)
- Chun-Yan Peng
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Hua-Dong Zhu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Lu Zhang
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Xiao-Feng Li
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Wen-Na Zhou
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. .,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
29
|
Comparing the interaction of four structurally similar coumarins from Fraxinus Chinensis Roxb. with HSA through multi-spectroscopic and docking studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Menezes TM, Neto AMDS, Gubert P, Neves JL. Effects of human serum albumin glycation on the interaction with the tyrosine kinase inhibitor pazopanib unveiled by multi-spectroscopic and bioinformatic tools. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Li Y, Li N, Chen F, Yang X, Lei Y, Liu Y, Tuo X. Evaluation of binding properties of human serum albumin and mono-benzyl phthalate (MBZP): Multi-spectroscopic analysis and computer simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Evaluation of interactions between food colorant, tartrazine, and Apo-transferrin using spectroscopic analysis and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Nassab CN, Arooj M, Shehadi IA, Parambath JBM, Kanan SM, Mohamed AA. Lysozyme and Human Serum Albumin Proteins as Potential Nitric Oxide Cardiovascular Drug Carriers: Theoretical and Experimental Investigation. J Phys Chem B 2021; 125:7750-7762. [PMID: 34232651 DOI: 10.1021/acs.jpcb.1c04614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide-containing drugs present a critical remedy for cardiovascular diseases. Nitroglycerin (NG, O-NO) and S-nitrosoglutathione (SNG, S-NO) are the most common nitric oxide drugs for cardiovascular diseases. Insights regarding the binding affinity of NO drugs with lysozyme and human serum albumin (HSA) proteins and their dissociation mechanism will provide inquisitive information regarding the potential of the proteins as drug carriers. For the first time, the binding interactions and affinities are investigated using molecular docking, conventional molecular dynamics, steered molecular dynamics, and umbrella sampling to explore the ability of both proteins to act as nitric oxide drug carriers. The molecular dynamics simulation results showed higher stability of lysozyme-drug complexes compared to HSA. For lysozyme, cardiovascular drugs were bound in the protein cavity mainly by the electrostatic and hydrogen bond interactions with residues ASP53, GLN58, ILE59, ARG62, TRP64, ASP102, and TRP109. For HSA, key binding residues were ARG410, TYR411, LYS414, ARG485, GLU450, ARG486, and SER489. The free energy profiles produced from umbrella sampling also suggest that lysozyme-drug complexes had better binding affinity than HSA-drug. Binding characteristics of nitric oxide-containing drugs NG and SNG to lysozyme and HSA proteins were studied using fluorescence and UV-vis absorption spectroscopy. The relative change in the fluorescence intensity as a function of drug concentrations was analyzed using Stern-Volmer calculations. This was also confirmed by the change in the UV-vis spectra. Fluorescence quenching results of both proteins with the drugs, based on the binding constant values, demonstrated significantly weak binding affinity to NG and strong binding affinity to SNG. Both computational and experimental studies provided important data for understanding protein-drug interactions and will aid in developing potential drug carrier systems in cardiovascular diseases.
Collapse
Affiliation(s)
- Chahlaa N Nassab
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Ihsan A Shehadi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Javad B M Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Sofian M Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
34
|
A comparative study of structural and dynamical properties of bovine serum albumin in the presence of spermine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis. Int J Biol Macromol 2020; 165:2275-2285. [PMID: 33058977 DOI: 10.1016/j.ijbiomac.2020.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
The post-translational modification of proteins by nonenzymatic glycation (NEG) and the accumulation of AGEs are the two underlying factors associated with the long-term pathogenesis in diabetes. Glyoxal (GO) is a reactive intermediate which has the ability to modify proteins and generate AGEs at a faster rate. Human serum albumin (HSA) being the most abundant serum protein has a higher chance to be modified by NEG. The key objective of the present study is to investigate the potency of chrysin and luteolin as antiglycating and antifibrillating agents in the GO-mediated glycation and fibril formation of HSA. AGEs formation were confirmed from the absorption and fluorescence spectral measurements. Both the flavonoids were able to quench the AGEs fluorescence intensity in vitro indicating the antiglycating nature of the molecules. The formation of fibrils in the GO-modified HSA was confirmed by the Thioflavin T (ThT) fluorescence assay and the flavonoids were found to exihibit the antifibrillation properties in vitro. Docking results suggested that both the flavonoids interact with various amino acid residues of subdomain IIA including glycation prone lysines and arginines via non-covalent forces and further stabilized the structure of HSA, which further explains their mechanisms of action as antiglycating and antifibrillating agents.
Collapse
|
36
|
Xue P, Zhang G, Zhang J, Ren L. Interaction of flavonoids with serum albumin: A review. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111278. [PMID: 33167830 DOI: 10.2174/1389203721666201109112220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are plant products abundant in every day diet and claimed to be beneficial for human health. After absorption, flavonoids are transported by the serum albumin (SA), the most abundant carrier blood protein, through formation of flavonoids-SA complex. This review deals with the current state of knowledge on flavonoids-SA complex over the past 10 years, mainly involved multi-spectroscopic techniques and molecular dynamics simulation studies to explore the binding mechanism, thermodynamics and structural aspects of flavonoids binding to SA. Especially, the novel method, capillary electrophoresis, high performance affinity chromatography approach, native mass spectrometry and microscale thermophoresis used in characterization of the interaction between flavonoids and SA as well as flavonoid-based fluorescent probe for SA measurement are also included in this review.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Guangjie Zhang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| |
Collapse
|