1
|
Ren H, Liu Y, Gong Z, Tan B, Deng H, Xiong J, Shao P, Dai Q, Cao J, Marzouki R. Pumpkin Leaf Extract Crop Waste as a New Degradable and Environmentally Friendly Corrosion Inhibitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5738-5752. [PMID: 38450610 DOI: 10.1021/acs.langmuir.3c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE.
Collapse
Affiliation(s)
- Haiqin Ren
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yan Liu
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Zhili Gong
- School of Transportation and Municipal Engineering, Chongqing Jianzhu College, Chongqing 400072, China
| | - Bochuan Tan
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hongda Deng
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Junle Xiong
- Chongqing Kunding Environmental Protection Technology Co., Ltd. Chongqing 401331, China
| | - Peng Shao
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Qingwei Dai
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiangtao Cao
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Riadh Marzouki
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Zhang K, Wang W, Wang Y, Wang W, Wang N, Pu J, Li Q, Yao Y. Organic molecule-assisted intermediate adsorption for conversion of CO 2 to CO by electrocatalysis. Chem Commun (Camb) 2023. [PMID: 38009219 DOI: 10.1039/d3cc04916g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Currently, Zn-based catalysts for electrochemical CO2 reduction reactions are limited by their moderate carbophilicity, resulting in low catalytic activity and CO selectivity. To this end, we selected 5-mercapto-1-methylimidazole, a small molecule that possesses the ability to both coordinate to Zn and interact with the intermediates, to modify electrochemically deposited Zn nanosheets. The interaction between them effectively enhances intermediate adsorption by lowering the Gibbs free energy, which leads to an increase of the Faraday efficiency to 1.9 times and the CO partial current density to 3.0 times that of the pristine sample (-1.0 V vs. RHE).
Collapse
Affiliation(s)
- Kai Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Wenyuan Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Ying Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Wenhui Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Nanyang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Jun Pu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Qiulong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Zhang X, Zhang Y, Li W, Zhang S, Tan B, He W, Liu Y, Zhang C. Evaluation of N and S Codoped Carbon Dots as an Environment Friendly and High-Efficiency Inhibitor for X65 Steel in an Acidic Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14384-14395. [PMID: 37770467 DOI: 10.1021/acs.langmuir.3c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The high content of nitrogen and sulfur-doped carbon dots (N, S-CDs) was designed to prevent the corrosion of X65 steel in an acidic medium. The corrosion-inhibiting abilities of related nanomaterials for X65 steel were acquired by electrochemical experiments, and the corroded products were investigated by FT-IR, XPS, and Raman analysis. The conclusions confirm that the N, S-CDs are a high-efficiency inhibitor. When the concentration is 200 mg/L, the inhibitive efficiency of X65 steel can reach up to 99.1% and it interacts with X65 steel through chemical and physical adsorption. Additionally, results from the spectroscopic studies show that the S-group is the main contributor to the chemical adsorption process.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wenpo Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shengtao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Bochuan Tan
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Weiping He
- Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
| | - Yuanhai Liu
- Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
| | - Chenyu Zhang
- Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
| |
Collapse
|
4
|
Ouyang C, Wang Z, Tan B, Brahmia A. Insights into the Anticorrosion Performance of Solanum lyratum Leaf Extract for Copper in Sulfuric Acid Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6666-6680. [PMID: 37126522 DOI: 10.1021/acs.langmuir.2c03396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, Solanum lyratum leaves were prepared into a corrosion inhibitor by a pure water extraction method. As a natural plant, S. lyratum leaf extract as a corrosion inhibitor has green features. S. lyratum leaf extract (SLLE) can effectively inhibit the corrosion of Cu in H2SO4 solution. The protective effect on copper in 0.5 mol/L H2SO4 solution was studied by electrochemical measurement, Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and theoretical calculation. These results showed that the maximum corrosion inhibition efficiency (η) of SLLE for copper obtained in the electrochemical measurement at different temperatures is more than 90%. The adsorption of SLLE on copper surfaces conforms to the Langmuir isotherm adsorption model. FTIR and XPS showed the bonding information. SEM and AFM proved that the SLLE can protect the copper from corrosion media. The interaction and inhibition mechanism between the SLLE and copper surface was further revealed at the molecular level by theoretical calculation.
Collapse
Affiliation(s)
- Congrui Ouyang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Zhenqiang Wang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Bochuan Tan
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Ameni Brahmia
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences, University of Sfax, 1171, Sfax 3000, Tunisia
| |
Collapse
|
5
|
Alkaloid Extract of Ageratina adenophora Stem as Green Inhibitor for Mild Steel Corrosion in One Molar Sulfuric Acid Solution. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Green corrosion inhibitors are of great interest due to their exciting and environmentally friendly behavior in mild steel corrosion control during and after the acid cleaning process. Herein, alkaloids were extracted from the stem of Ageratina adenophora and were ensured by qualitative chemical tests as well as spectroscopic test methods. The corrosion inhibition efficacy of the alkaloids against mild steel corrosion was evaluated by gravimetric, electrochemical and EIS measurement methods. In addition, the adsorption isotherm, free energy of adsorption and thermodynamic parameters of the process were evaluated. The investigations indicated the most promising inhibition efficacy of the alkaloids for mild steel corrosion. The adsorption isotherm study revealed that the adsorption of inhibitor molecules on the MS interface was manifested by dominant physisorption followed by chemisorption. Free energy and thermodynamic parameters are well suited to endothermic processes.
Collapse
|
6
|
Li B, Wang W, Chen L, Zheng X, Gong M, Fan J, Tang L, Shi Q, Zhu G. Corrosion Inhibition Effect of Magnolia Grandiflora Leaves Extract on Mild Steel in Acid Solution. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Chen J, Wu Y, Guo L, Li W, Tan B, Brahmia A. Insight into the anti-corrosion mechanism of Pisum sativum L leaves extract as the degradable inhibitor for Q235 steel in sulfuric acid medium. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Exploring of an ecological corrosion inhibitor of wood hibiscus leaf extract for the Cu/H2SO4 system based on experimental study and theoretical calculations. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using natural plant extracts on metallic substances is the most frequently studied green corrosion inhibition approach in corrosion science. In this work, Coriaria nepalensis Stem Alkaloid (CNSA) has been successfully extracted and characterized by qualitative chemical (Mayer’s and Dragendroff’s) test and spectroscopic (UV and FTIR) measurement. CNSA has been employed as a green inhibitor for Mild Steel (MS) corrosion subjected to 1 M H2SO4 solution. The corrosion inhibition efficacy has been assessed by weight loss and polarization measurement methods. The effect of inhibitor concentration, immersion period, and temperature on the inhibition efficiency for the MS immersed in both acid and inhibitor solutions of different concentrations have been investigated. The maximum inhibition effect observed for CNSA is 96.4% for MS immersed in 1000 ppm inhibitor solution for 6 h at 18 °C by the weight loss measurement method. Similarly, the polarization measurement method observed a 97.03% inhibition efficiency for MS immersed for 3 h. The adsorption of inhibitor molecules on the MS surface aligns with the Langmuir model. The free energy of adsorption obtained is −28.75 kJ/mol indicating physical adsorption dominance over chemical adsorption. These findings suggested that CNSA has greater potential as an efficient green inhibitor.
Collapse
|
10
|
Zeng J, Tan B, Zhang S, Li W. The behavior of two indazole derivatives on the copper/sulfuric acid interface in terms of adsorption and corrosion inhibition. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Acacia catechu Bark Alkaloids as Novel Green Inhibitors for Mild Steel Corrosion in a One Molar Sulphuric Acid Solution. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In situ corrosion inhibition in acid cleaning processes by using green inhibitors is at the forefront of corrosion chemistry. Plant extracts, especially alkaloids, are known to be good corrosion inhibitors against mild steel corrosion. In this research, alkaloids extracted from Acacia catechu have been used as green corrosion inhibitors for mild steel corrosion in a 1 M H2SO4 solution. Qualitative chemical tests and FTIR measurements have been performed to confirm the alkaloids in the extract. The inhibition efficiency of the extract has been studied by using weight-loss and potentiodynamic polarization methods. A weight-loss measurement has been adopted for the study of inhibitor’s concentration effect, with a variation employed to measure the inhibition efficiency for time and temperature. The weight-loss measurement revealed a maximum efficiency of 93.96% after 3 h at 28 °C for a 1000 ppm alkaloid solution. The 1000 ppm inhibitor is effective up to a temperature of 48 °C, with 84.39% efficiency. The electrochemical measurement results revealed that the alkaloids act as a mixed type of inhibitor. Inhibition efficiencies of 98.91% and 98.54% in the 1000 ppm inhibitor concentration solution for the as-immersed and immersed conditions, respectively, have been achieved. The adsorption isotherm has indicated the physical adsorption of alkaloids. Further, the spontaneous and endothermic adsorption processes have been indicated by the thermodynamic parameters. The results show that alkaloids extracted from the bark of Acacia catechu can be a promising green inhibitors for mild steel corrosion.
Collapse
|
12
|
Li W, Luo W, Yu X, Ma C, Xiong Y, Tan B, Qiang Y. Adsorption and inhibition behavior of 3-chloro-6-mercaptopyridazine towards copper corrosion in sulfuric acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Tan B, Lan W, Zhang S, Deng H, Qiang Y, Fu A, Ran Y, Xiong J, Marzouki R, Li W. Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128892] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Reactivity and Fe-complexation investigation by computational simulation studies on phenyltetrazole derivatives as mild steel corrosion inhibitors in aqueous acidic medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
|
16
|
Electrochemical studies and molecular simulations on the use of molybdic acid for stabilization of AISI 304 stainless steel passive film in sulfuric acid medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Karki N, Neupane S, Gupta DK, Das AK, Singh S, Koju GM, Chaudhary Y, Yadav AP. Berberine isolated from Mahonia nepalensis as an eco-friendly and thermally stable corrosion inhibitor for mild steel in acid medium. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Cao Y, Zou C, Wang C, Chen W, Liang H, Lin S. Green corrosion inhibitor of β-cyclodextrin modified xanthan gum for X80 steel in 1 M H2SO4 at different temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
|
20
|
Hydrazone-based green corrosion inhibitors for API grade carbon steel in HCl: Insights from electrochemical, XPS, and computational studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Fernine Y, Ech-chihbi E, Arrousse N, El Hajjaji F, Bousraf F, Ebn Touhami M, Rais Z, Taleb M. Ocimum basilicium seeds extract as an environmentally friendly antioxidant and corrosion inhibitor for aluminium alloy 2024 -T3 corrosion in 3 wt% NaCl medium. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Xu S, Luo Z, Zhang J, Tan B, Zhang S, Li W. Study on corrosion inhibition performance of 1-dodecyl-3-methyl-1 h-imidazolium nitrate on Cu in the sulfuric acid environment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Al Kiey SA, Hasanin MS, Dacrory S. Potential anticorrosive performance of green and sustainable inhibitor based on cellulose derivatives for carbon steel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Hajsafari N, Razaghi Z, Tabaian SH. Electrochemical study and molecular dynamics (MD) simulation of aluminum in the presence of garlic extract as a green inhibitor. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|