1
|
do Nascimento NN, Paraíso CM, Molina LCA, Dzyazko YS, Bergamasco R, Vieira AMS. Innovative Trends in Modified Membranes: A Mini Review of Applications and Challenges in the Food Sector. MEMBRANES 2024; 14:209. [PMID: 39452821 PMCID: PMC11509346 DOI: 10.3390/membranes14100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Membrane technologies play a pivotal role in various industrial sectors, including food processing. Membranes act as barriers, selectively allowing the passage of one or other types of species. The separation processes that involve them offer advantages such as continuity, energy efficiency, compactness of devices, operational simplicity, and minimal consumption of chemical reagents. The efficiency of membrane separation depends on various factors, such as morphology, composition, and process parameters. Fouling, a significant limitation in membrane processes, leads to a decline in performance over time. Anti-fouling strategies involve adjustments to process parameters or direct modifications to the membrane, aiming to enhance efficiency. Recent research has focused on mitigating fouling, particularly in the food industry, where complex organic streams pose challenges. Membrane processes address consumer demands for natural and healthy products, contributing to new formulations with antioxidant properties. These trends align with environmental concerns, emphasizing sustainable practices. Despite numerous works on membrane modification, a research gap exists, especially with regard to the application of modified membranes in the food industry. This review aims to systematize information on modified membranes, providing insights into their practical application. This comprehensive overview covers membrane modification methods, fouling mechanisms, and distinct applications in the food sector. This study highlights the potential of modified membranes for specific tasks in the food industry and encourages further research in this promising field.
Collapse
Affiliation(s)
- Nicole Novelli do Nascimento
- Postgraduate Program in Food Science, Centre of Agrarian Sciences, State University of Maringa, Maringa 87020-900, PR, Brazil;
| | - Carolina Moser Paraíso
- Department of Chemical Engineering, State University of Maringa, Maringa 87020-900, PR, Brazil; (C.M.P.); (L.C.A.M.); (R.B.)
| | - Luiza C. A. Molina
- Department of Chemical Engineering, State University of Maringa, Maringa 87020-900, PR, Brazil; (C.M.P.); (L.C.A.M.); (R.B.)
| | - Yuliya S. Dzyazko
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, Acad Palladin Ave. 32/34, 03142 Kyiv, Ukraine
| | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringa 87020-900, PR, Brazil; (C.M.P.); (L.C.A.M.); (R.B.)
| | | |
Collapse
|
2
|
Gu S, Qu F, Qu D, Yan Z, Meng Y, Liang Y, Chang H, Liang H. Improving membrane distillation performance by Fe(II) activated sodium percarbonate oxidation during the treatment of shale gas produced water. WATER RESEARCH 2024; 262:122139. [PMID: 39068730 DOI: 10.1016/j.watres.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.
Collapse
Affiliation(s)
- Suhua Gu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Nthunya LN, Chong KC, Lai SO, Lau WJ, López-Maldonado EA, Camacho LM, Shirazi MMA, Ali A, Mamba BB, Osial M, Pietrzyk-Thel P, Pregowska A, Mahlangu OT. Progress in membrane distillation processes for dye wastewater treatment: A review. CHEMOSPHERE 2024; 360:142347. [PMID: 38759802 DOI: 10.1016/j.chemosphere.2024.142347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, 2050, Johannesburg, South Africa.
| | - Kok Chung Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Selangor, Malaysia; Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Soon Onn Lai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Selangor, Malaysia; Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | | | - Lucy Mar Camacho
- Department of Environmental Engineering, Texas A&M University-Kingsville, MSC 2013, 700 University Blvd., Kingsville, TX 78363, USA
| | - Mohammad Mahdi A Shirazi
- Centre for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Aamer Ali
- Centre for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Paulina Pietrzyk-Thel
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Agnieszka Pregowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa.
| |
Collapse
|
5
|
Cao Y, Taghvaie Nakhjiri A, Ghadiri M. Breakthrough applications of porous organic materials for membrane-based CO 2 separation: a review. Front Chem 2024; 12:1381898. [PMID: 38576848 PMCID: PMC10991746 DOI: 10.3389/fchem.2024.1381898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Over the last decades, porous organic materials (POMs) have been extensively employed in various industrial approaches including gas separation, catalysis and energy production due to possessing indisputable advantages like great surface area, high permeability, controllable pore size, appropriate functionalization and excellent processability compared to traditional substances like zeolites, Alumina and polymers. This review presents the recent breakthroughs in the multifunctional POMs for potential use in the membrane-based CO2 separation. Some examples of highly-selective membranes using multifunctional POMs are described. Moreover, various classifications of POMs following with their advantages and disadvantages in CO2 separation processes are explained. Apart from reviewing the state-of-the-art POMs in CO2 separation, the challenges/limitations of POMs with tailored structures for reasonable application are discussed.
Collapse
Affiliation(s)
- Yan Cao
- School of Computer Science and Engineering, Xi’an Technological University, Xi’an, China
| | - Ali Taghvaie Nakhjiri
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Ghadiri
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- The Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
6
|
Cao Y, Taghvaie Nakhjiri A, Ghadiri M. Numerical evaluation of sweeping gas membrane distillation for desalination of water towards water sustainability and environmental protection. Sci Rep 2024; 14:4340. [PMID: 38383602 PMCID: PMC10881985 DOI: 10.1038/s41598-024-54061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Sweeping gas membrane distillation (SGMD) is considered a membrane distillation configuration. It uses an air stream to collect the water vapour. A 2D mathematical model is prepared in the current study to predict the effect of various operating parameters on the SGMD performance. Also, the temperature distribution in the SGMD was obtained. The effect of air inlet temperature, salt concentration, feed and air flowrate on air and salted solution outlet temperature and vapour flux through the membrane is investigated. There was good agreement between experimental data and modelling outputs. It was found that increase in air inlet temperature from 40 to 72 °C was increased the outlet temperature of air stream and cold solution from 37 to 63 °C and 38 to 65 °C respectively. Furthermore, increase in air inlet temperature led to the enhancement of vapour flux in the membrane distillation. Also, the salt concentration and feed flow rate did not have meaningful influence on the outlet temperatures, however, the flux was increased by increasing feed flowrate.
Collapse
Affiliation(s)
- Yan Cao
- School of Computer Science and Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Ali Taghvaie Nakhjiri
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Ghadiri
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- The Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
7
|
Huang Y, Li H, Wang Z, Fu Y, Chen Y, Wang X. Enzymatic synthesis of branched chain fatty acid-enriched structured triacylglycerols via esterification with glycerol. Food Chem 2023; 429:136943. [PMID: 37517224 DOI: 10.1016/j.foodchem.2023.136943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
While branched-chain fatty acids (BCFA)-enriched triacylglycerols (TAG) has various health benefits, its preparation has not been reported. This study aimed to synthesize high-purity BCFA-enriched structured TAG. First, BCFA was enriched from lanolin through saponification, calcification, and urea complexation. Next, BCFA-enriched TAG was synthesized by enzymatic esterification of BCFA and glycerol. Then, lipases were screened by molecular docking and practical experiments, which suggested that Lipozyme 435 was the best lipase for esterification since it had the lowest binding energy. Structured TAG containing 92.23% BCFA was synthesized under conditions optimized by single-factor experiments. Furthermore, molecular distillation was adapted to remove excess fatty acids and small molecule impurities. Finally, high-purity BCFA-enriched structured lipid containing 70.26% TAG was obtained. Overall, this study successfully developed a method for synthesizing BCFA-enriched structured TAG, which holds great promise for applications in value-added foods.
Collapse
Affiliation(s)
- Yaqi Huang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, PR China
| | - Houyue Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, PR China
| | - Zixin Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, PR China
| | - Yang Chen
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Yuan S, Ajam H, Sinnah ZAB, Altalbawy FMA, Abdul Ameer SA, Husain A, Al Mashhadani ZI, Alkhayyat A, Alsalamy A, Zubaid RA, Cao Y. The roles of artificial intelligence techniques for increasing the prediction performance of important parameters and their optimization in membrane processes: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115066. [PMID: 37262969 DOI: 10.1016/j.ecoenv.2023.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Membrane-based separation processes has been recently of significant global interest compared to other conventional separation approaches due to possessing undeniable advantages like superior performance, environmentally-benign nature and simplicity of application. Computational simulation of fluids has shown its undeniable role in modeling and simulation of numerous physical/chemical phenomena including chemical engineering, chemical reaction, aerodynamics, drug delivery and plasma physics. Definition of fluids can be occurred using the Navier-Stokes equations, but solving the equations remains an important challenge. In membrane-based separation processes, true perception of fluid's manner through disparate membrane modules is an important concern, which has been significantly limited applying numerical/computational procedures such s computational fluid dynamics (CFD). Despite this noteworthy advantage, the optimization of membrane processes using CFD is time-consuming and expensive. Therefore, combination of artificial intelligence (AI) and CFD can result in the creation of a promising hybrid model to accurately predict the model results and appropriately optimize membrane processes and phase separation. This paper aims to provide a comprehensive overview about the advantages of commonly-employed ML-based techniques in combination with the CFD to intelligently increase the optimization accuracy and predict mass transfer and the unfavorable events (i.e., fouling) in various membrane processes. To reach this objective, four principal strategies of AI including SL, USL, SSL and ANN were explained and their advantages/disadvantages were discussed. Then after, prevalent ML-based algorithm for membrane-based separation processes. Finally, the application potential of AI techniques in different membrane processes (i.e., fouling control, desalination and wastewater treatment) were presented.
Collapse
Affiliation(s)
- Shuai Yuan
- Information Engineering College, Yantai Institute of Technology, Yantai, Shandong 264005, China.
| | - Hussein Ajam
- Department of Intelligent Medical Systems, Al Mustaqbal University College, Babylon 51001, Iraq
| | - Zainab Ali Bu Sinnah
- Mathematics Department, University Colleges at Nairiyah, University of Hafr Al Batin, Saudi Arabia
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Ahmed Husain
- Department of Medical Instrumentation, Al-farahidi University, Baghdad, Iraq
| | | | - Ahmed Alkhayyat
- Scientific Research Centre of the Islamic University, The Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yan Cao
- School of Computer Science and Engineering, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
9
|
Kadhim MM, Taha A, Mahal RK, Hachim SK, Abdullaha SA, Rheima AM. Molecular modeling for sensing of cisplatin drug by graphdiyne: electronic study via DFT. J Mol Model 2023; 29:129. [PMID: 37016077 DOI: 10.1007/s00894-023-05511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/11/2023] [Indexed: 04/06/2023]
Abstract
CONTEXT By utilizing first-principles calculations, we studied the electronic properties of graphdiyne nanosheet (GDY) and its Si-doped counterpart, Si-GDY. Both GDY and Si-GDY sheet surfaces were examined for the drug cisplatin (CP) adsorption using adsorption energy, charge transfer, and changes in electrical conductivity as indicators. Pure GDY has little affinity for CP, according to this study. Only 7.83% of the GDY surface's bandwidth energy changed after CP adsorption. CP on Si-GDY has a gaseous energy value of -18.75 kcal/mol and an aqueous energy value of - 49.39 kcal/mol. METHODS The prescribed medications' water-phase solubility is determined by their solvation energy value. These charges are transferred between CP and the Si-GDY sheet, which is extremely positively charged, and this gives CP the necessary binding energy. After CP adsorption, electrical conductivity of Si-GDY increased by approximately 19.01%.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq.
| | - Ali Taha
- Pharmacy College, Al-Farahidi University, Baghdad, 10022, Iraq
| | | | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, 64001, Iraq
| | | | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
10
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
11
|
Tomczak W, Gryta M, Kowalczyk K. The influence of storage time on the performance of polypropylene membranes applied for membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sensing of Acetaminophen Drug Using Silicon-Doped Graphdiyne: a DFT Inspection. Appl Biochem Biotechnol 2023; 195:610-622. [PMID: 36114923 DOI: 10.1007/s12010-022-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Using first-principles calculations, we studied the electronic properties of graphdiyne (GDY) nanosheet and its Si-doped counterpart, SiGDY. Both GDY and SiGDY sheet surfaces were examined for acetaminophen (AP) drug adsorption using adsorption energy, charge transfer, and change in electrical conductivity (as indicators). As shown in this study, pure GDY has little affinity for AP. In specific, only 7.83 percent of the GDY surface's bandwidth energy changed after AP adsorption. On SiGDY, AP has a gaseous energy value of - 18.75 kcal/mol, as well as an aqueous energy value of - 49.39 kcal/mol. The water-phase solubility of the prescribed medications is determined using their solvation energy value. These charges are transferred between AP and the SiGDY sheet, which is extremely positively charged, giving AP the necessary binding energy. After AP adsorption, the electrical conductivity of SiGDY was increased by approximately 19.01 percent.
Collapse
|
13
|
Jin H, Andalib V, Yasin G, Bokov DO, Kamal M, Alashwal M, Ghazali S, Algarni M, Mamdouh A. Computational simulation using machine learning models in prediction of CO2 absorption in environmental applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Development of a machine learning computational technique for estimation of molecular diffusivity of nonelectrolyte organic molecules in aqueous media. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Optimization and design of machine learning computational technique for prediction of physical separation process. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Tomczak W, Gryta M. The Impact of Operational Parameters on Polypropylene Membrane Performance during the Separation of Oily Saline Wastewaters by the Membrane Distillation Process. MEMBRANES 2022; 12:membranes12040351. [PMID: 35448321 PMCID: PMC9027506 DOI: 10.3390/membranes12040351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
In the present study, membrane distillation (MD) was applied for the treatment of oily saline wastewaters produced on ships sailing the Baltic Sea. For comparison purposes, experiments were also carried out with model NaCl solutions, the Baltic Seawater and oil in water emulsions. The commercial Accurel PP V8/2 membranes (Membrana GmbH, Germany) were used. In order to investigate the impact of the operational parameters on the process performance, the experiments were conducted under various values of the feed flow velocity (from 0.03 to 0.12 m/s) and the feed temperature (from 323 to 343 K). The obtained results highlight the potential of PP membranes application for a stable and reliable long-term treatment of oily wastewater. It was demonstrated that the permeate flux increased significantly with increasing feed temperature. However, the lower temperature ensured the limited scaling phenomenon during the treatment of oily wastewaters. Likewise, increasing the feed flow velocity was beneficial to the increase in the flux. Moreover, it was found that performing a cyclic rinsing of the module with a 3% HCl solution is an effective method to maintain a satisfactory module performance. The present study sheds light on improving the MD for the treatment of oily wastewaters.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence: (W.T.); (M.G.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
- Correspondence: (W.T.); (M.G.)
| |
Collapse
|
17
|
Numerical assessment of the influence of helical baffle on the hydrothermal aspects of nanofluid turbulent forced convection inside a heat exchanger. Sci Rep 2022; 12:2245. [PMID: 35145137 PMCID: PMC8831557 DOI: 10.1038/s41598-022-06049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 01/20/2023] Open
Abstract
This study is devoted to the numerical assessment of the influence of helical baffle on the hydrothermal aspects and irreversibility behavior of the turbulent forced convection flow of water-CuO nanofluid (NF) inside a hairpin heat exchanger with 100 mm length, 10 mm inner tube internal diameter, and 15 mm outer diameter internal diameter. The variations of the first-law and second-law performance metrics are investigated in terms of Reynolds number (Re = 5000-10,000), volume concentration of NF ([Formula: see text]) and baffle pitch (B = 25-100 mm). The results show that the NF Nusselt number grows with the rise of both the Re and [Formula: see text] whereas it declines with the rise of B. In addition, the outcomes depicted that the rise of both Re and [Formula: see text] results in the rise of pressure drop, while it declines with the increase of B. Moreover, it was found that the best thermal performance of NF is equal to 1.067, which belongs to the case B = 33.3 mm, [Formula: see text]=2%, and Re = 10,000. Furthermore, it was shown that irreversibilities due to fluid friction and heat transfer augment with the rise of Re while the rise of B results in the decrease of frictional irreversibilities. Finally, the outcomes revealed that with the rise of B, the heat transfer irreversibilities first intensify and then diminish.
Collapse
|
18
|
Chen P, Ansari MJ, Bokov D, Suksatan W, Rahman ML, Sarjadi MS. A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
A state of art review of the viscosity behavior of nano-lubricants containing MWCNT nanoparticles: Focusing on engine lubrication goals. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|