1
|
Rakcho Y, Naboulsi A, Bouzid T, Abouliatim Y, Benhammou A, Abourriche A, Alami J. Treating waste with waste: Treatment of textile wastewater using upcycled food waste as a pore-forming agent in the fabrication of ceramic membranes employing DOE/FFD design. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:632-643. [PMID: 39492079 DOI: 10.1016/j.wasman.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
This study investigates a novel method for food waste management by using it as a sustainable replacement for conventional pore-forming agents in ceramic membrane production. The membranes were analyzed using various techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and a universal testing machine. The morphologies of the membranes were observed using scan electron microscopy (SEM). The effects of particle size (45-125 μm), pore-forming agent (5-20 wt%), and sintering temperature (900-1150 °C) on the porosity and mechanical strength of the membranes were investigated using the Design of Experiments (DoE) and Response Surface Methodology (RSM). The optimized membrane was evaluated for its performance in filtering industrial textile wastewater. It achieved impressive results, with approximately 98.4 % removal of turbidity and 71.3 % removal of chemical oxygen demand. This research paves the way for optimizing ceramic membrane fabrication using upcycled food waste, promoting sustainability and offering potential solutions for both food waste management and industrial wastewater treatment challenges.
Collapse
Affiliation(s)
- Yassine Rakcho
- Laboratory Materials, Processes, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, Safi 46000, Morocco.
| | - Aicha Naboulsi
- Laboratory Analytical and Molecular Chemistry, Faculty Poly Disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Taoufiq Bouzid
- Laboratory Analytical and Molecular Chemistry, Faculty Poly Disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Younes Abouliatim
- Laboratory of Process and Environmental Engineering (L.P.E.E), Higher School of Technology of Casablanca, Hassan II University, Route del Jadida, km 7, BP 8012 Oasis Casablanca, Morocco
| | - Abdelaziz Benhammou
- Laboratory Materials, Processes, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, Safi 46000, Morocco
| | - Abdelkrim Abourriche
- Laboratory Materials, Processes, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, Safi 46000, Morocco
| | - Jones Alami
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
2
|
Torabi Fard N, Ahmad Panahi H, Moniri E, Reza Soltani E, Mahdavijalal M. Stimuli-Responsive Dendrimers as Nanoscale Vectors in Drug and Gene Delivery Systems: A Review Study. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:4959-4985. [DOI: 10.1007/s10924-024-03280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 01/06/2025]
|
3
|
Derakhshan S, Panahi HA, Nikpour Nezhati M. Preparation and application of novel thermo-sensitive molecularly imprinted polymer for selective extraction of omeprazole from pharmaceutical formulation and biological fluids. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2197552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Setareh Derakhshan
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
Hassani F, Heydarinasab A, Ahmad Panahi H, Moniri E. Surface modification of tungsten disulfide nanosheets with pH/Thermosensitive polymer and polyethylenimine dendrimer for near-infrared triggered drug delivery of letrozole. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Khedri D, Hassani AH, Moniri E, Ahmad Panahi H, Khaleghian M. Temperature-responsive graphene oxide/N-isopropylacrylamide/2-allylphenol nanocomposite for the removal of phenol and 2,4-dichlorophenol from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2494-2508. [PMID: 35931852 DOI: 10.1007/s11356-022-22389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel thermo-responsive polymer was synthesized with efficient grafting of N-isopropylacrylamide as a thermosensitive polymer onto the graphene oxide surface for the efficient removal of phenol and 2,4-dichlorophenol from aqueous solutions. The synthesized polymer was conjugated with 2-allylphenol. Phenol and 2,4-dichlorophenol were monitored by ultra-performance liquid chromatography system equipped with a photodiode array detector. The nanoadsorbent was characterized by different techniques. The nanoadsorbent revealed high adsorption capacity where the removal percentages of 91 and 99% were found under optimal conditions for phenol and 2,4-dichlorophenol, respectively (for phenol; adsorbent dosage = 0.005 g, pH = 8, temperature= 25 °C, contact time = 60 min; for 2,4-dichlorophenol; adsorbent dosage = 0.005 g, pH = 5, temperature = 25 °C, contact time = 10 min). Adsorption of phenol and 2,4-dichlorophenol onto nanoadsorbent followed pseudo-second-order kinetic and Langmuir isotherm models, respectively. The values of ΔG (average value = - 11.39 kJ mol-1 for phenol and 13.42 kJ mol-1 for 2,4-dichlorophenol), ΔH (- 431.72 J mol-1 for phenol and - 15,721.8 J mol-1 for 2,4-dichlorophenol), and ΔS (35.39 J mol-1 K-1 for phenol and - 7.40 J mol-1 K-1 for 2,4-dichlorophenol) confirmed spontaneous and exothermic adsorption. The reusability study indicated that the adsorbent can be reused in the wastewater treatment application. Thermosensitive nanoadsorbent could be used as a low-cost and efficient sorbent for phenol and 2,4-dichlorophenol removal from wastewater samples.
Collapse
Affiliation(s)
- Daryoush Khedri
- Department of Environmental Engineering, Faculty of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Elham Moniri
- Department of Chemistry, Varamin (Pishva) Branch, Islamic Azad University, Varamin, Iran.
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnoosh Khaleghian
- Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
6
|
A novel pH-and temperature sensitive polymer based on MoS2 modified poly (N-Isopropyl Acrylamide)/ allyl acetoacetate for doxorubicin delivery: synthesis, characterization, in-vitro release and cytotoxicity studies. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
7
|
Hashem HM, Motawea A, Kamel AH, Bary EMA, Hassan SSM. Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Sci Rep 2022; 12:18037. [PMID: 36302929 PMCID: PMC9614003 DOI: 10.1038/s41598-022-22878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC50 of VEN alone was 217.55 μg/mL, then VEN-NFs recorded an IC50 value of 250.62 μg/mL, and plain NFs showed the lowest toxicity and IC50 440.48 μg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.
Collapse
Affiliation(s)
- Heba M. Hashem
- grid.10251.370000000103426662Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Amira Motawea
- grid.10251.370000000103426662Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ayman H. Kamel
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt ,grid.413060.00000 0000 9957 3191Chemistry Department, College of Science, Bahrain University, Sakhir, 32038 Bahrain
| | - E. M. Abdel Bary
- grid.10251.370000000103426662Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Saad S. M. Hassan
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt
| |
Collapse
|
8
|
Evaluation of folic acid-conjugated chitosan grafted Fe3O4/graphene oxide as a pH- and magnetic field-responsive system for adsorption and controlled release of gemcitabine. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|