1
|
Jun BM, Kim D, Shin J, Chon K, Park C, Rho H. Removal of trivalent chromium ions in model contaminated groundwater using hexagonal boron nitride as an adsorbent. CHEMOSPHERE 2024; 361:142539. [PMID: 38844110 DOI: 10.1016/j.chemosphere.2024.142539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The feasibility of using hexagonal boron nitride (h-BN) to treat heavy metal Cr(III) from model contaminated groundwater was evaluated in this study by adsorption experiments and characterizations. To the best of our knowledge, this study is the first attempt to conduct the adsorption of Cr(III) by h-BN under various experimental conditions such as exposure time, ratio of adsorbates and adsorbents, solution pH, background ions with different ionic strength, and the presence of humic acids (HA) in model contaminated groundwater. The optimized h-BN showed excellent maximum adsorption capacity (i.e., 177 mg ∙ g-1) when the concentrations of Cr(III) and h-BN were 10 and 10 mg ∙ L-1, respectively. Subsequently, we confirmed there was a negligible change in the adsorption performance of Cr(III) by h-BN in the presence of co-ions (i.e., K and Mg) in concentrations in a range from 50 to 1000 mg ∙ L-1. Furthermore, the adsorption performance of Cr(III) gradually improved with HA concentrations from 2.5 to 25 mg ∙ L-1. Interestingly, the maximum adsorption performance of Cr(III) by both HA and h-BN increased until 500 mg ∙ g-1 in the presence of 25 mg ∙ L-1 HA. The adsorption mechanism was clarified by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Additionally, we successfully confirmed that h-BN could be reused until five cycles. On the basis of the adsorption performance results and characterizations, h-BN can be utilized as an efficient and practical adsorbent to treat Cr(III) in groundwater treatment.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea
| | - Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Shen W, Gao Y, Liu Z, Zhang X, Quan F, Peng X, Wang X, Li J, Qin Z, He Y, Li H. Enhanced Fe(ii)/Fe(iii) cycle by boron enabled efficient Cr(vi) removal with microscale zero-valent iron. RSC Adv 2024; 14:6719-6726. [PMID: 38405066 PMCID: PMC10884888 DOI: 10.1039/d3ra08163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
Recently, researchers have been paying much attention to zero-valent iron (ZVI) in the field of pollution remediation. However, the depressed electron transport from the iron reservoir to the iron oxide shell limited the wide application of ZVI. This study was aimed at promoting the performance of microscale ZVI (mZVI) for hexavalent chromium (Cr(vi)) removal by accelerating iron cycle with the addition of boron powder. It was found that the addition of boron powder enhanced the Cr(vi) removal rate by 2.1 times, and the proportion of Cr(iii) generation after Cr(vi) removal process also increased, suggesting that boron could promote the reduction pathway of Cr(vi) to Cr(iii). By further comparing the Cr(vi) removal percentage of Fe(iii) with or without the boron powder, we found that boron powder could promote the percentage removal of Cr(vi) with Fe(iii) from 10.1% to 33.6%. Moreover, the presence of boron powder could decrease the potential gap values (ΔEp) between Fe(iii) reduction and Fe(ii) oxidation from 0.668 V to 0.556 V, further indicating that the added boron powder could act as an electron sacrificial agent to promote the reduction process of Fe(iii) to Fe(ii), and thus enhancing the reduction of Cr(vi) with Fe(ii). This study shed light on the promoted mechanism of Cr(vi) removal with boron powder and provided an environmentally friendly and efficient approach to enhance the reactivity of the mZVI powder, which would benefit the wide application of mZVI technology in the environmental remediation field.
Collapse
Affiliation(s)
- Wenjuan Shen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yan Gao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhan Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Fengjiao Quan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Xiaobing Wang
- School of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512023 P. R. China
| | - Jianfen Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhenhua Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hui Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| |
Collapse
|
3
|
Gadore V, Mishra SR, Singh AK, Ahmaruzzaman M. Advances in boron nitride-based nanomaterials for environmental remediation and water splitting: a review. RSC Adv 2024; 14:3447-3472. [PMID: 38259991 PMCID: PMC10801356 DOI: 10.1039/d3ra08323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Boron nitride has gained wide-spread attention globally owing to its outstanding characteristics, such as a large surface area, high thermal resistivity, great mechanical strength, low density, and corrosion resistance. This review compiles state-of-the-art synthesis techniques, including mechanical exfoliation, chemical exfoliation, chemical vapour deposition (CVD), and green synthesis for the fabrication of hexagonal boron nitride and its composites, their structural and chemical properties, and their applications in hydrogen production and environmental remediation. Additionally, the adsorptive and photocatalytic properties of boron nitride-based nanocomposites for the removal of heavy metals, dyes, and pharmaceuticals from contaminated waters are discussed. Lastly, the scope of future research, including the facile synthesis and large-scale applicability of boron nitride-based nanomaterials for wastewater treatment, is presented. This review is expected to deliver preliminary knowledge of the present state and properties of boron nitride-based nanomaterials, encouraging the future study and development of these materials for their applications in various fields.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
4
|
Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, Hussaini KM, Abeed AHA. Green synthesis and characterization of silver and copper nanoparticles and their use as an effective adsorbent for chromium removal and recovery from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112575-112590. [PMID: 37833594 DOI: 10.1007/s11356-023-30141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Sattar
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Suliman M S Alghanem
- Department of Biology, College of Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan.
- Research and Knowledge Transfer, INTI International University, 71800, Putra Nilai, Malaysia.
| | - Noor Ul Ain
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Khalid Mahmud Hussaini
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Barjoveanu G, Teodosiu C, Morosanu I, Ciobanu R, Bucatariu F, Mihai M. Life Cycle Assessment as Support Tool for Development of Novel Polyelectrolyte Materials Used for Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:840. [PMID: 36903718 PMCID: PMC10005425 DOI: 10.3390/nano13050840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This life cycle assessment (LCA) study focused on comparing the environmental performances of two types of synthesis strategies for polyethyleneimine (PEI) coated silica particles (organic/inorganic composites). The classic layer-by-layer and the new approach (one-pot coacervate deposition) were the two synthesis routes that were tested for cadmium ions removal from aqueous solutions by adsorption in equilibrium conditions. Data from the laboratory scale experiments for materials synthesis, testing, and regeneration, were then fed into a life cycle assessment study so that the types and values of environmental impacts associated with these processes could be calculated. Additionally, three eco-design strategies based on material substitution were investigated. The results point out that the one-pot coacervate synthesis route has considerably lower environmental impacts than the layer-by-layer technique. From an LCA methodology point of view, it is important to consider material technical performances when defining the functional unit. From a wider perspective, this research is important as it demonstrates the usefulness of LCA and scenario analysis as environmental support tools for material developers because they highlight environmental hotspots and point out the environmental improvement possibilities from the very early stages of material development.
Collapse
Affiliation(s)
- George Barjoveanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Irina Morosanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Florin Bucatariu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marcela Mihai
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Solvent free synthesis of carbon modified hexagonal boron nitride nanorods for the adsorptive removal of aqueous phase emerging pollutants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Chang J, Yu S, Liao Y, Guan X, Gao H, Li Y. One-Step Pyrolysis Fabrication of Magnetic Bagasse Biochar Composites with Excellent Lead Adsorption Performance. ACS OMEGA 2022; 7:42854-42864. [PMID: 36467949 PMCID: PMC9713865 DOI: 10.1021/acsomega.2c04882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the present study, a magnetically separable adsorbent, manganese ferrite (MnFe2O4)/sugarcane bagasse biochar magnetic composites (MFSCBB-MCs), was fabricated through a one-step pyrolysis method. The characterization of the prepared adsorbents indicated that MnFe2O4 nanoparticles were successfully embedded into the biochar matrix, offering magnetic separability and increasing the negative charges on the surface relative to the pristine biochar. Batch adsorption tests indicated that the adsorption of lead on MFSCBB-MCs was pH- and dose-dependent. The experimental results were effectively fitted using the pseudo-second-order kinetic model (R 2 > 0.99) and the Langmuir isotherm equation (R 2 > 0.99), indicating the main chemisorption pathway and monolayer coverage process. Meanwhile, lead adsorption was found to be spontaneous and endothermic, as shown by the study of thermodynamic parameters. The maximum capacity, q m, calculated from the Langmuir model was 155.21 mg·g-1 at 25 °C, demonstrating excellent adsorption capability compared with several previously reported bagasse adsorbents. Based on adsorption mechanism analysis, physical adsorption, electrostatic attraction, and complexation were all involved in the lead(II) adsorption process on MFSCBB-MCs. Furthermore, the adsorbent was easily regenerated as indicated by the high magnetic separation and chemical desorption potential after five cycles, so it is a cost-effective and environmentally favorable adsorbent for wastewater lead removal.
Collapse
Affiliation(s)
- Jinming Chang
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong637000, China
| | - Sheng Yu
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong637000, China
| | - Yunwen Liao
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong637000, China
| | - Xiaoyu Guan
- Shaanxi
Collaborative Innovation Center of Industrial Auxiliary Chemistry
& Technology, Shaanxi University of
Science & Technology, Xian710021, China
| | - Hejun Gao
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong637000, China
| | - Yulong Li
- Key
Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong643000, China
| |
Collapse
|
8
|
Yilmaz Camoglu A, Ozdes D, Duran C. Adsorption Behaviour of EDTA Modified Magnetic Fe3O4 Coated Brewed Tea Waste on Cr(VI) Removal. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Vibrationally-resolved absorption and fluorescence spectra of chemically modified 2D hexagonal boron nitride quantum dots. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|