1
|
Agatić ZF, Tepavčević V, Puača G, Poša M. Interaction of drug molecules with surfactants below (Benesi-Hildebrand equation) and above the critical micelle concentration (Kawamura equation). Int J Pharm 2024; 665:124675. [PMID: 39265847 DOI: 10.1016/j.ijpharm.2024.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Drug molecules can interact with surfactant molecules either in their monomeric form, where the Benesi-Hildebrand equation determines the binding constant, or when a micellar pseudophase is formed, where the Kawamura equation assesses the partition coefficient. Benesi-Hildebrand plots represent the differential absorbance as a function of surfactant concentration below the critical micelle concentration (CMC), while Kawamura plots show this relationship above the CMC, where the drug can influence the CMC and needs consideration. This review aims to provide an overview of methods for evaluating drug-surfactant interactions in aqueous solutions, particularly below and above the CMC, using spectroscopic data. Understanding these interactions is crucial for pharmacodynamics, affecting drug binding, enzymatic activity, and formulation. Various surfactants were analyzed with diphenhydramine hydrochloride, levofloxacin, phenothiazine, moxifloxacin, and chlorpromazine hydrochloride to determine monomeric binding constants, while sulfathiazole, sodium valproate, cefotaxime, losartan, and metformin hydrochloride were assessed for partitioning coefficient values. Errors in Benesi-Hildebrand plots may arise from considering surfactant concentrations above the CMC, while mistakes in Kawamura plots may stem from neglecting to determine the CMC in the presence of drug molecules, which can alter the surfactant's behavior.
Collapse
Affiliation(s)
- Zita Farkaš Agatić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Vesna Tepavčević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
| | - Gorana Puača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Eleraky NE, Hassan AS, Soliman GM, Al-Gayyar MMH, Safwat MA. Rosuvastatin Flexible Chitosomes: Development, In Vitro Evaluation and Enhancement of Anticancer Efficacy Against HepG2 and MCF7 Cell Lines. AAPS PharmSciTech 2024; 25:234. [PMID: 39375273 DOI: 10.1208/s12249-024-02957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Rosuvastatin (ROS), a statin drug with promising anticancer properties has a low bioavailability of approximately 20% due to lipophilicity and first-pass metabolism. This study aimed to enhance ROS anticancer efficacy through loading into flexible chitosomes. The chitosomes were prepared starting from negatively charged liposomes through electrostatic interactions with chitosan. The conversion of zeta potential from negative to positive confirmed the successful formation of chitosomes. The chitosan coating increased the particle size and zeta potential, which ranged from 202.0 ± 1.7 nm to 504.7 ± 25.0 nm and from - 44.9 ± 3.0 mV to 50.1 ± 2.6 mV, respectively. Chitosan and drug concentrations had an important influence on the chitosome properties. The optimum chitosome formulation was used to prepare ROS-loaded flexible chitosomes using different concentrations of four edge activators. The type and concentration of edge activator influenced the particle size, drug entrapment efficiency, and drug release rate of the flexible chitosomes. Flexible chitosomes significantly increased drug permeation through rat abdominal skin compared to control transferosomes and drug solution. The optimal ROS flexible chitosomes containing sodium deoxycholate as an edge activator had a 2.23-fold increase in ROS cytotoxic efficacy against MCF7 cells and a 1.84-fold increase against HepG2 cells. These results underscore the potential of flexible chitosomes for enhancing ROS anticancer efficacy.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
Sedlarikova J, Janalikova M, Egner P, Pleva P. Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications. ACS OMEGA 2024; 9:23209-23219. [PMID: 38854547 PMCID: PMC11154913 DOI: 10.1021/acsomega.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Poloxamers (P184, P188, and P407) have been investigated as the carrier system for eugenol or thymol. A synergic effect of mixed Poloxamers was proved by enhanced micellar parameters, with a lower critical micelle concentration (about 0.06 mM) and the highest surface adsorption of 9 × 10-7 mol m-2 for P188/P407. Dynamic light scattering revealed a decrease in micellar size after loading with biomolecules. Three mathematical models were applied to study the release kinetics, of which Korsmeyer-Peppas was the best fitted model. Higher relative release was observed for Poloxamer/eugenol samples, up to a value of 0.8. Poloxamer micelles with thymol were highly influential in bacterial reduction. Single P407/eugenol micelles proved to be bacteriostatic for up to 6 h for S. aureus or up to 48 h for E. coli. Mixed micelles were confirmed to have prolonged bacteriostatic activity for up to 72 h against both bacteria. This trend was also proven by the modified Gompertz model. An optimized P188/P407/eugenol micelle was successfully used as a model system for release study with a particle size of less than 30 nm and high encapsulation efficiency surpassing 90%. The developed mixed micelles were proved to have antibiofilm activity, and thus they provide an innovative approach for controlled release with potential in topical applications.
Collapse
Affiliation(s)
- Jana Sedlarikova
- Department
of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| | - Magda Janalikova
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| | - Pavlina Egner
- Department
of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| | - Pavel Pleva
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| |
Collapse
|
4
|
Rao MR, Gaikwad P, Misal P, Gandhi SV. Phyto-cosmeceutical gel containing curcumin and quercetin loaded mixed micelles for improved anti-oxidant and photoprotective activity. Colloids Surf B Biointerfaces 2024; 237:113837. [PMID: 38508086 DOI: 10.1016/j.colsurfb.2024.113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Ultra Violet radiations induced skin damage and associated skin disorders are a widespread concern. The consequences of sun exposure include a plethora of dermal conditions like aging, solar urticaria, albinism and cancer. Sunscreens provide effective protection to skin from these damages. Besides FDA approved physical and chemical UV filters, phytoconstituents with their multi functionalities are emerging as frontrunners in Therapy of skin disorders. Objective of this study was to develop novel phyto-dermal gel (PDG) with dual action of sun protection and antioxidant potential using polymeric mixed micelles (PMMs) are nanocarriers. PMMs of Pluronic F127 and Pluronic F68 loaded with curcumin and quercetin were optimized by 32 factorial designs. Responses studied were vesicle size, SPF, entrapment efficiency of curcumin and quercetin and antioxidant activity. Droplet size ranged from 300 to 500 nm with PDI in between 0.248 and 0.584. Combination of curcumin and quercetin showed enhanced sun protection and antioxidant activity. Pluronics played a significant positive role in various parameters. In present studies vesicle size of factorial batches was found to be between 387 and 527 nm, and SPF was found to be between 18.86 and 28.32. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into Carbopol 940. Optimized PDG was evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and skin retention. Hysteresis loop in the rheogram suggested thixotropy of PDG. Syneresis for gels from day 0-30 days was found to be between 0% and 12.46% w/w. SPF of optimized PDG was 27±0.5. Optimized PDG showed no signs of erythema and edema on Wistar rats. PMMs thus effectively enhanced antioxidant and skin protective effect of curcumin and quercetin.
Collapse
Affiliation(s)
- Monica Rp Rao
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| | - Pranjali Gaikwad
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| | - Poonam Misal
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| | - Santosh V Gandhi
- Department of Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| |
Collapse
|
5
|
Yuan Y, Chen Q, Wang Z, Mi Y, Dong F, Tan W, Guo Z. Low molecular weight chitosan based GSH-responsive self-assembled cationic micelle with enhanced anti-tumor effect by combining oxidative damage and chemotherapy. Int J Biol Macromol 2024; 268:131736. [PMID: 38653433 DOI: 10.1016/j.ijbiomac.2024.131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
A novel cationic lipoic acid grafted low molecular weight chitosan (LCNE-LA) conjugate was constructed and further self-assembled into GSH-responsive cationic nanocarrier to achieve better antitumor effect by combining encapsulated chemotherapy and oxidative damage induced by ROS. The resultant LCNE-LA cationic micelle exhibited favorable physicochemical properties (low CMC, small size, positively zeta potential and good stability), excellent biosafety and desired redox sensitivity. Next, doxorubicin (Dox) was embedded into hydrophobic core to form stable Dox/LCNE-LA micelle that had superior loading capacity. The GSH-induced release behavior, cellular uptake ability, ROS generation and GSH consumption capacity and in vitro antitumor activity of Dox/LCNE-LA micelle were systematically evaluated. Consequently, Dox/LCNE-LA cationic micelle with positively charged could efficiently enter into cancer cell and redox-sensitive release Dox via disulfide-thiol exchange reaction, which usually expend abundant GSH and disrupt redox homeostasis. Studies further confirmed that Dox/LCNE-LA micelle could increase ROS and reduced GSH content which might cause oxidative damage to tumor cell. Antitumor activity indicated that Dox/LCNE-LA micelle achieved an excellent cancer-killing effect, which might be attributed to combination treatment of Dox and ROS induce oxidative damage. Overall, this research was expected to provide a platform for antitumor treatment by triggering Dox release and promoting ROS generation.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiuhong Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Jin X, Xia X, Li J, Adu-Frimpong M, Wang X, Wang Q, Wu H, Yu Q, Ji H, Toreniyazov E, Cao X, Yu J, Xu X. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv Transl Res 2024; 14:1370-1388. [PMID: 37957475 DOI: 10.1007/s13346-023-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (- 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.
Collapse
Affiliation(s)
- Xingcheng Jin
- Department of Pharmacy, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxiao Wu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Nukus, Uzbekistan
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Kaur J, Singla P, Kaur I. Binary Pluronics based mixed micellar systems: Effective solution for improved solubilization of Biochanin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123279. [PMID: 37633096 DOI: 10.1016/j.saa.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
The present work was carried out to appraise the solubilization of Biochanin (BCA), a natural hydrophobic drug in pure Pluronics (P84, P123 and F127) as well as binary mixed micelles (P84-P123 and F127-P123) followed by an interactional study using various state of art techniques. The critical micelle concentration (CMC) of binary mixtures P84-P123 and F127-P123 was found to be significantly lower than pure Pluronics justifying the candidature of mixed micelles (MMs) as a better solubilizer for BCA. UV-visible studies revealed the enhanced solubility of BCA in P84-P123 (1:2) MMs (3.51 ± 0.087 mg/mL) and F127-P123 (1:2) MMs (2.94 ± 0.046 mg/mL) as compared to micelles of pure Pluronics (10% w/v), P84 (2.25 ± 0.039 mg/mL) and F127 (1.12 ± 0.036 mg/mL). Differential pulse voltammetry (DPV) results demonstrated significantly superior binding of BCA with P84-P123 (1:2) MM (Ka = 2.60 × 105 M-1) as compared to pure P84 (Ka = 1.415 × 105 M-1). Mixed micellization (P84-P123 (1:2)) leads to increase in micellar hydrodynamic diameter (Dh = 16.09 nm) as compared to pure Pluronic P84 micelles (Dh = 15.71 nm) which was further amplified (Dh = 17.69 nm) after BCA loading. Different formulations of pure and MMs were subjected to in vitro drug release and MMs were found to slow down BCA release as compared to pure Pluronics (P84, P123). The results obtained in this study proved that P84-P123 (1:2) MMs are superior and more effective for the solubilization of BCA than pure and other MMs. Thus, the examined MMs hold the potential for advancing the development of solubilization techniques for other hydrophobic drugs with significant pharmacological value.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Chemistry, UGC-Center for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle UponTyne NE17RU, United Kingdom
| | - Inderpreet Kaur
- Department of Chemistry, UGC-Center for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
8
|
Yuan Y, Tan W, Mi Y, Wang L, Qi Z, Guo Z. Effect of Hydrophobic Chain Length in Amphiphilic Chitosan Conjugates on Intracellular Drug Delivery and Smart Drug Release of Redox-Responsive Micelle. Mar Drugs 2023; 22:18. [PMID: 38248643 PMCID: PMC10821436 DOI: 10.3390/md22010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen Qi
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Qiao B, Wang J, Qiao L, Maleki A, Liang Y, Guo B. ROS-responsive hydrogels with spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs for the repair of MRSA-infected wounds. Regen Biomater 2023; 11:rbad110. [PMID: 38173767 PMCID: PMC10761208 DOI: 10.1093/rb/rbad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
For the treatment of MRSA-infected wounds, the spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs is a promising strategy. In this study, ROS-responsive HA-PBA/PVA (HPA) hydrogel was prepared by phenylborate ester bond cross-linking between hyaluronic acid-grafted 3-amino phenylboronic acid (HA-PBA) and polyvinyl alcohol (PVA) to achieve spatiotemporally controlled release of two kinds of drug to treat MRSA-infected wound. The hydrophilic antibiotic moxifloxacin (M) was directly loaded in the hydrogel. And hydrophobic curcumin (Cur) with anti-inflammatory function was first mixed with Pluronic F127 (PF) to form Cur-encapsulated PF micelles (Cur-PF), and then loaded into the HPA hydrogel. Due to the different hydrophilic and hydrophobic nature of moxifloxacin and Cur and their different existing forms in the HPA hydrogel, the final HPA/M&Cur-PF hydrogel can achieve different spatiotemporally sequential delivery of the two drugs. In addition, the swelling, degradation, self-healing, antibacterial, anti-inflammatory, antioxidant property, and biocompatibility of hydrogels were tested. Finally, in the MRSA-infected mouse skin wound, the hydrogel-treated group showed faster wound closure, less inflammation and more collagen deposition. Immunofluorescence experiments further confirmed that the hydrogel promoted better repair by reducing inflammation (TNF-α) and promoting vascular (VEGF) regeneration. In conclusion, this HPA/M&Cur-PF hydrogel that can spatiotemporally sequential deliver antibacterial and anti-inflammatory drugs showed great potential for the repair of MRSA-infected skin wounds.
Collapse
Affiliation(s)
- Bowen Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, People’s Republic of China
| |
Collapse
|
10
|
Yuan Y, Wang Z, Su S, Mi Y, Li Q, Dong F, Tan W, Guo Z. Redox-sensitive self-assembled micelles based on low molecular weight chitosan-lipoic acid conjugates for the delivery of doxorubicin: Effect of substitution degree of lipoic acid. Int J Biol Macromol 2023; 247:125849. [PMID: 37460070 DOI: 10.1016/j.ijbiomac.2023.125849] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'‑carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior. Doxorubicin (Dox) loaded micelles were prepared by encapsulating Dox into blank micelles. The loading ability, trigger-release behavior, antitumor activity and cellular uptake of Dox loaded micelles were studied. The results demonstrated that Dox loaded micelles with superior loading ability exhibited redox-trigger behavior, strong antitumor activity and increased cellular uptake efficiency against A549 cell. Besides, the effect of DS of LA on above properties was estimated. An increase in DS of LA reduced the CMC and cumulative release amount of Dox, but improved the loading efficiency, antitumor activity, and cellular uptake of Dox loaded micelles, which resulted from stronger interaction of hydrophobic groups in micelles with the DS of LA increased. Overall, self-assembled LC-LA micelles with good biosecurity and redox-sensitive behavior hold promising application prospects in Dox delivery and improving cancer therapeutic effect of Dox.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Rafiul Islam S, Abdul Rub M, Rafikul Islam M, Hasan K, Mahbub S, Alghamdi YG, Asiri AM, Rana S, Anamul Hoque M, Shafiqul Islam D. Phase separation and aggregation phenomena of TX-100 and promethazine hydrochloride mixture: Influences of monohydroxy organic compounds. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
12
|
Dalgakiran EA, Ergin AD, Kacar G. Properties of Pluronic F68 and F127 micelles interacting furosemide from coarse-grained molecular simulations as validated by experiments. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Komisarek D, Taskiran E, Vasylyeva V. Maleic Acid as a Co-Former for Pharmaceutically Active GABA Derivatives: Mechanochemistry or Solvent Crystallization? MATERIALS (BASEL, SWITZERLAND) 2023; 16:2242. [PMID: 36984121 PMCID: PMC10054091 DOI: 10.3390/ma16062242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
In this study, we compare the mechanochemical and classical solvent crystallization methods for forming maleates of GABA and its pharmaceutically active derivatives: Pregabalin, Gabapentin, Phenibut, and Baclofen. Common characterization techniques, like powder and single crystal X-ray diffraction, IR-spectroscopy, differential scanning calorimetry, thermogravimetric analysis and 1H-NMR spectroscopy, are used for the evaluation of structural and physicochemical properties. Our work shows that maleate formation is possible with all investigated target compounds. Large increases in solubility can be achieved, especially for Pregabalin, where up to twentyfold higher solubility in its maleate compared to the pure form can be reached. We furthermore compare the mechanochemical and solvent crystallization regarding quickness, reliability of phase production, and overall product quality. A synthetic route is shown to have an impact on certain properties such as melting point or solubility of the same obtained products, e.g., for Gabapentin and Pregabalin, or lead to the formation of hydrates vs. anhydrous forms. For the GABA and Baclofen maleates, the method of crystallization is not important, and similarly, good results can be obtained by either route. In contrast, Phenibut maleate cannot be obtained pure and single-phase by either method. Our work aims to elucidate promising candidates for the multicomponent crystal formation of blockbuster GABA pharmaceuticals and highlight the usefulness of mechanochemical production routes.
Collapse
|
14
|
Direct and Reverse Pluronic Micelles: Design and Characterization of Promising Drug Delivery Nanosystems. Pharmaceutics 2022; 14:pharmaceutics14122628. [PMID: 36559122 PMCID: PMC9787366 DOI: 10.3390/pharmaceutics14122628] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pluronics are a family of amphiphilic block copolymers broadly explored in the pharmaceutical field. Under certain conditions, Pluronics self-assemble in different structures including nanosized direct and reverse micelles. This review provides an overview about the main parameters affecting the micellization process of Pluronics, such as polymer length, fragments distribution within the chain, solvents, additives and loading of cargo. Furthermore, it offers a guide about the most common techniques used to characterize the structure and properties of the micelles. Finally, it presents up-to-date approaches to improve the stability and drug loading of Pluronic micelles. Special attention is paid to reverse Pluronics and reverse micelles, currently underexplored in the literature. Pluronic micelles present a bright future as drug delivery agents. A smart design and thorough characterization will improve the transfer to clinical applications.
Collapse
|
15
|
Garg S, Peeters M, Mahajan RK, Singla P. Loading of hydrophobic drug silymarin in pluronic and reverse pluronic mixed micelles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|