1
|
Uchida S, Sugino T. Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study. Int J Mol Sci 2024; 25:8961. [PMID: 39201647 PMCID: PMC11354486 DOI: 10.3390/ijms25168961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Invasive lobular carcinoma exhibits unique morphological features frequently associated with alterations in CDH1. Although some studies have identified abnormalities in adhesion factors other than E-cadherin, the molecular mechanisms underlying E-cadherin abnormalities in CDH1-unaltered invasive lobular carcinoma remain poorly understood. In this study, we investigated the molecular underpinnings of E-cadherin dysregulation in invasive lobular carcinoma in the absence of CDH1 gene alterations, using comprehensive bioinformatic analyses. We conducted a comparative study of CDH1-mutated and non-mutated invasive lobular carcinoma and evaluated the differences in mRNA levels, reverse-phase protein array, methylation, and miRNAs. We observed that invasive lobular carcinoma cases without CDH1 alterations exhibited a significantly higher incidence of the Claudin-low subtype (p < 0.01). The results of the reverse-phase protein array indicate no significant difference in E-cadherin expression between CDH1-mutated and non-mutated cases. Therefore, abnormalities in E-cadherin production also exist in CDH1 non-mutated invasive lobular carcinoma. Considering that there are no differences in mRNA levels and methylation status, post-translational modifications are the most plausible explanation for the same. Hence, future studies should focus on elucidating the mechanism underlying E-cadherin inactivation via post-translational modifications in CDH1 non-mutated invasive lobular carcinoma.
Collapse
Affiliation(s)
- Shiro Uchida
- Division of Diagnostic Pathology, Kikuna Memorial Hospital, 4-4-27, Kikuna, Kohoku-ku, Yokohama 222-0011, Japan
- Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
| |
Collapse
|
2
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Liu L, Liu L, Wang Y, Fang Z, Bian Y, Zhang W, Wang Z, Gao X, Zhao C, Tian M, Liu X, Qin H, Guo Z, Liang X, Dong M, Nie Y, Ye M. Robust Glycoproteomics Platform Reveals a Tetra-Antennary Site-Specific Glycan Capping with Sialyl-Lewis Antigen for Early Detection of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306955. [PMID: 38084450 PMCID: PMC10916543 DOI: 10.1002/advs.202306955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Indexed: 03/07/2024]
Abstract
The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.
Collapse
Affiliation(s)
- Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
| | - Lei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Yangyang Bian
- The College of Life SciencesNorthwest UniversityXi'an710127China
| | - Wenyao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xianchun Gao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Changrui Zhao
- MOE Key Laboratory of Bio‐Intelligent Manufacturing, School of BioengineeringDalian University of TechnologyDalian116024China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Mingming Dong
- MOE Key Laboratory of Bio‐Intelligent Manufacturing, School of BioengineeringDalian University of TechnologyDalian116024China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Medical ProteomicsBeijing102206China
| |
Collapse
|
4
|
Zhang H, Liu S, Wang Y, Huang H, Sun L, Yuan Y, Cheng L, Liu X, Ning K. Deep learning enhanced the diagnostic merit of serum glycome for multiple cancers. iScience 2024; 27:108715. [PMID: 38226168 PMCID: PMC10788220 DOI: 10.1016/j.isci.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Protein glycosylation is associated with the pathogenesis of various cancers. The utilization of certain glycans in cancer diagnosis models holds promise, yet their accuracy is not always guaranteed. Here, we investigated the utility of deep learning techniques, specifically random forests combined with transfer learning, in enhancing serum glycome's discriminative power for cancer diagnosis (including ovarian cancer, non-small cell lung cancer, gastric cancer, and esophageal cancer). We started with ovarian cancer and demonstrated that transfer learning can achieve superior performance in data-disadvantaged cohorts (AUROC >0.9), outperforming the approach of PLS-DA. We identified a serum glycan-biomarker panel including 18 serum N-glycans and 4 glycan derived traits, most of which were featured with sialylation. Furthermore, we validated advantage of the transfer learning scheme across other cancer groups. These findings highlighted the superiority of transfer learning in improving the performance of glycans-based cancer diagnosis model and identifying cancer biomarkers, providing a new high-fidelity cancer diagnosis venue.
Collapse
Affiliation(s)
- Haobo Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanhui Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lukang Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youyuan Yuan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Repetto O, Vettori R, Steffan A, Cannizzaro R, De Re V. Circulating Proteins as Diagnostic Markers in Gastric Cancer. Int J Mol Sci 2023; 24:16931. [PMID: 38069253 PMCID: PMC10706891 DOI: 10.3390/ijms242316931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a highly malignant disease affecting humans worldwide and has a poor prognosis. Most GC cases are detected at advanced stages due to the cancer lacking early detectable symptoms. Therefore, there is great interest in improving early diagnosis by implementing targeted prevention strategies. Markers are necessary for early detection and to guide clinicians to the best personalized treatment. The current semi-invasive endoscopic methods to detect GC are invasive, costly, and time-consuming. Recent advances in proteomics technologies have enabled the screening of many samples and the detection of novel biomarkers and disease-related signature signaling networks. These biomarkers include circulating proteins from different fluids (e.g., plasma, serum, urine, and saliva) and extracellular vesicles. We review relevant published studies on circulating protein biomarkers in GC and detail their application as potential biomarkers for GC diagnosis. Identifying highly sensitive and highly specific diagnostic markers for GC may improve patient survival rates and contribute to advancing precision/personalized medicine.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
6
|
Piniello B, Macías-León J, Miyazaki S, García-García A, Compañón I, Ghirardello M, Taleb V, Veloz B, Corzana F, Miyagawa A, Rovira C, Hurtado-Guerrero R. Molecular basis for bacterial N-glycosylation by a soluble HMW1C-like N-glycosyltransferase. Nat Commun 2023; 14:5785. [PMID: 37723184 PMCID: PMC10507012 DOI: 10.1038/s41467-023-41238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Soluble HMW1C-like N-glycosyltransferases (NGTs) catalyze the glycosylation of Asn residues in proteins, a process fundamental for bacterial autoaggregation, adhesion and pathogenicity. However, our understanding of their molecular mechanisms is hindered by the lack of structures of enzymatic complexes. Here, we report structures of binary and ternary NGT complexes of Aggregatibacter aphrophilus NGT (AaNGT), revealing an essential dyad of basic/acidic residues located in the N-terminal all α-domain (AAD) that intimately recognizes the Thr residue within the conserved motif Asn0-X+1-Ser/Thr+2. Poor substrates and inhibitors such as UDP-galactose and UDP-glucose mimetics adopt non-productive conformations, decreasing or impeding catalysis. QM/MM simulations rationalize these results, showing that AaNGT follows a SN2 reaction mechanism in which the acceptor asparagine uses its imidic form for catalysis and the UDP-glucose phosphate group acts as a general base. These findings provide key insights into the mechanism of NGTs and will facilitate the design of structure-based inhibitors to treat diseases caused by non-typeable H. influenzae or other Gram-negative bacteria.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Javier Macías-León
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Shun Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Víctor Taleb
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Billy Veloz
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Atsushi Miyagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
- Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
7
|
Liu X, Lv K, Wang J, Lin C, Liu H, Zhang H, Li H, Gu Y, Li R, He H, Xu J. C-type lectin receptor Dectin-1 blockade on tumour-associated macrophages improves anti-PD-1 efficacy in gastric cancer. Br J Cancer 2023; 129:721-732. [PMID: 37422529 PMCID: PMC10421860 DOI: 10.1038/s41416-023-02336-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression and clinical significance of Dendritic cell-associated C-type lectin-1 (Dectin-1) in gastric cancer (GC), and to explore the mechanism of Dectin-1 regulating tumour-associated macrophage (TAM)-mediated immune evasion in GC. METHODS The association of Dectin-1+ cells with clinical outcomes was inspected by immunohistochemistry on tumour microarrays. Flow cytometry and RNA sequencing were applied to detect characteristics of T cells, phenotypic and transcriptional features of Dectin-1+ TAMs. The effect of Dectin-1 blockade was evaluated using an in vitro intervention experiment based on fresh GC tissues. RESULTS High infiltration of intratumoral Dectin-1+ cells predicted poor prognosis in GC patients. Dectin-1+ cells were mainly composed of TAMs, and the accumulation of Dectin-1+ TAMs was associated with T-cell dysfunction. Notably, Dectin-1+ TAMs exhibited an immunosuppressive phenotype. Furthermore, blockade of Dectin-1 could reprogramme Dectin-1+ TAMs and reactivate anti-tumour effects of T cells, as well as enhanced PD-1 inhibitor-mediated cytotoxicity of CD8+ T cells against tumour cells. CONCLUSIONS Dectin-1 could affect T-cell anti-tumour immune response by regulating the immunosuppressive function of TAMs, leading to poor prognosis and immune evasion in GC patients. Blockade of Dectin-1 can be used alone or in combination with current therapeutic strategies in GC.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunpeng Lv
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Li Y, Shen L, Tao K, Xu G, Ji K. Key Roles of p53 Signaling Pathway-Related Factors GADD45B and SERPINE1 in the Occurrence and Development of Gastric Cancer. Mediators Inflamm 2023; 2023:6368893. [PMID: 37662480 PMCID: PMC10471451 DOI: 10.1155/2023/6368893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
p53 can function as an independent and unfavorable prognosis biomarker in cancer patients. We tried to identify the key factors of the p53 signaling pathway involved in gastric cancer (GC) occurrence and development based on the genotype-tissue expression (GTEx) and the Cancer Genome Atlas (TCGA) screening. We downloaded gene expression data and clinical data of GC included in the GTEx and TCGA databases, followed by differential analysis. Then, the key factors in the p53 signaling pathway were identified, followed by an analysis of the correlation between key factors and the prognosis of GC patients. Human GC cell lines were selected for in vitro cell experiments to verify the effects of key prognostic factors on the proliferation, migration, invasion, and apoptosis of GC cells. We found 4,944 significantly differentially expressed genes (DEGs), of which 2,465 were upregulated and 2,479 downregulated in GC. Then, 27 DEGs were found to be involved in the p53 signaling pathway. GADD45B and SERPINE1 genes were prognostic high-risk genes. The regression coefficients of GADD45B and SERPINE1 were positive. GADD45B was poorly expressed, while SERPINE1 was highly expressed in GC tissues, highlighting their prognostic role in GC. The in vitro cell experiments confirmed that overexpression of GADD45B or silencing of SERPINE1 could inhibit the proliferation, migration, and invasion and augment the apoptosis of GC cells. Collectively, the p53 signaling pathway-related factors GADD45B and SERPINE1 may be key genes that participate in the development of GC.
Collapse
Affiliation(s)
- Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Kewei Ji
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| |
Collapse
|
9
|
Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, Wu S. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol 2023; 236:123855. [PMID: 36868337 DOI: 10.1016/j.ijbiomac.2023.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.
Collapse
Affiliation(s)
- Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Kovalenko VL, Komedchikova EN, Sogomonyan AS, Tereshina ED, Kolesnikova OA, Mirkasymov AB, Iureva AM, Zvyagin AV, Nikitin PI, Shipunova VO. Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010092. [PMID: 36678721 PMCID: PMC9862264 DOI: 10.3390/pharmaceutics15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The extreme aggressiveness and lethality of many cancer types appeal to the problem of the development of new-generation treatment strategies based on smart materials with a mechanism of action that differs from standard treatment approaches. The targeted delivery of nanoparticles to specific cancer cell receptors is believed to be such a strategy; however, there are no targeted nano-drugs that have successfully completed clinical trials to date. To meet the challenge, we designed an alternative way to eliminate tumors in vivo. Here, we show for the first time that the targeting of lectin-equipped polymer nanoparticles to the glycosylation profile of cancer cells, followed by photodynamic therapy (PDT), is a promising strategy for the treatment of aggressive tumors. We synthesized polymer nanoparticles loaded with magnetite and a PDT agent, IR775 dye (mPLGA/IR775). The magnetite incorporation into the PLGA particle structure allows for the quantitative tracking of their accumulation in different organs and the performing of magnetic-assisted delivery, while IR775 makes fluorescent in vivo bioimaging as well as light-induced PDT possible, thus realizing the theranostics concept. To equip PLGA nanoparticles with targeting modality, the particles were conjugated with lectins of different origins, and the flow cytometry screening revealed that the most effective candidate for breast cancer cell labeling is ConA, a lectin from Canavalia ensiformis. In vivo experiments showed that after i.v. administration, mPLGA/IR775-ConA nanoparticles efficiently accumulated in the allograft tumors under the external magnetic field; produced a bright fluorescent signal for in vivo bioimaging; and led to 100% tumor growth inhibition after the single session of PDT, even for large solid tumors of more than 200 mm3 in BALB/c mice. The obtained results indicate that the mPLGA/IR775 nanostructure has great potential to become a highly effective oncotheranostic agent.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Anna S. Sogomonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Ekaterina D. Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Andrei V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
- Correspondence:
| |
Collapse
|
12
|
Bian C, Sun X, Huang J, Zhang W, Mu G, Wei K, Chen L, Xia Y, Wang J. A novel glycosyltransferase-related lncRNA signature correlates with lung adenocarcinoma prognosis. Front Oncol 2022; 12:950783. [PMID: 36059686 PMCID: PMC9434379 DOI: 10.3389/fonc.2022.950783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most fatal cancers in the world. Previous studies have shown the increase in glycosylation level, and abnormal expressions of related enzymes are closely related to various cancers. Long non-coding RNAs (lncRNAs) play an important role in the proliferation, metabolism, and migration of cancer cells, but the underlying role of glycosyltransferase (GT)-related lncRNAs in LUAD remains to be elucidated. Methods We abstracted 14,056 lncRNAs from The Cancer Genome Atlas (TCGA) dataset and 257 GT-related genes from the Gene Set Enrichment Analysis (GSEA) database. Univariate, LASSO-penalized, and multivariate Cox regression analyses were conducted to construct a GT-related lncRNA prognosis model. Results A total of 2,726 GT-related lncRNAs were identified through Pearson's correlation analysis, and eight of them were utilized to construct a GT-related lncRNA model. The overall survival (OS) of the low-risk group continued to be superior to that of the high-risk group according to the subgroups classified by clinical features. The risk model was proved to have independent prognostic characteristics for LUAD by univariate and multivariate Cox regression analyses. The status of the tumor immune microenvironment and the relevant immunotherapy response was significantly different between the two risk groups. The candidate drugs aimed at LUAD subtype differentiation were identified. Conclusion We constructed a risk model comprising eight GT-related lncRNAs which was identified as an independent predictor of prognoses to predict patient survival and guide-related treatments for patients with LUAD.
Collapse
Affiliation(s)
- Chengyu Bian
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingjing Huang
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guang Mu
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Xia
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23158602. [PMID: 35955735 PMCID: PMC9369150 DOI: 10.3390/ijms23158602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.
Collapse
|
14
|
Han Q, Wang X, Ding X, Hao J, Li Q, Wang J, Yu H, Tang Z, Yang F, Cai G, Zhang D, Zhu H. Salivary Glycopatterns as Potential Non-Invasive Biomarkers for Diagnosing and Reflecting Severity and Prognosis of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:790586. [PMID: 35432212 PMCID: PMC9009518 DOI: 10.3389/fendo.2022.790586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Discriminating between diabetic nephropathy (DN) and non-diabetic renal disease (NDRD) can help provide more specific treatments. However, there are no ideal biomarkers for their differentiation. Thus, the aim of this study was to identify biomarkers for diagnosing and predicting the progression of DN by investigating different salivary glycopatterns. Lectin microarrays were used to screen different glycopatterns in patients with DN or NDRD. The results were validated by lectin blotting. Logistic regression and artificial neural network analyses were used to construct diagnostic models and were validated in in another cohort. Pearson's correlation analysis, Cox regression, and Kaplan-Meier survival curves were used to analyse the correlation between lectins, and disease severity and progression. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses were used to identify corresponding glycoproteins and predict their function. Both the logistic regression model and the artificial neural network model achieved high diagnostic accuracy. The levels of Aleuria aurantia lectin (AAL), Lycopersicon esculentum lectin (LEL), Lens culinaris lectin (LCA), Vicia villosa lectin (VVA), and Narcissus pseudonarcissus lectin (NPA) were significantly correlated with the clinical and pathological parameters related to DN severity. A high level of LCA and a low level of LEL were associated with a higher risk of progression to end-stage renal disease. Glycopatterns in the saliva could be a non-invasive tool for distinguishing between DN and NDRD. The AAL, LEL, LCA, VVA, and NPA levels could reflect the severity of DN, and the LEL and LCA levels could indicate the prognosis of DN.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jing Hao
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Qi Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dong Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Hanyu Zhu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
15
|
CircRNA ACVR2A Sponges miR-1290 to Modulate Cell Progression in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9461054. [PMID: 35186081 PMCID: PMC8850074 DOI: 10.1155/2022/9461054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Background In recent years, the abnormal expression of circRNAs has been identified to be strongly associated with tumor tissues. In this study, we focused on circACVR2A with a remarkably upregulated expression in gastric tissues and further explored its role in the pathogenic progression of gastric cancer (GC). Methods The differentially expressed circACVR2A in GC tissues and four cell lines (MKN-45, SNU-1, HGC-27, and SGC-7901) was identified by qRT-PCR method. Then, the effect of circACVR2A and miR-1290 on HGC-27 cell proliferation was measured by CCK8 and the colony formation methods. The effect of circACVR2A and miR-1290 on HGC-27 cell metastasis was estimated by transwell assay. The interaction of circACVR2A and miR-1290 was further detected. Results The relative level of circACVR2A in GC tissues and cell lines is remarkably upregulated. The downregulation of circACVR2A promotes GC cell proliferation and metastasis and suppressed the expression level of E-cadherin and Vimentin. The miR-1290 inhibitor reversed the effect of circACVR2A on cell progression in GC cell. Conclusion circACVR2A competitively sponged miR-1290 and was exerted as a tumor suppressor gene oncogene via a circACVR2A/miR-1290 axis, suggesting it as a possible biomarker for GC therapy.
Collapse
|
16
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Mucin 1 as a Molecular Target of a Novel Diisoquinoline Derivative Combined with Anti-MUC1 Antibody in AGS Gastric Cancer Cells. Molecules 2021; 26:molecules26216504. [PMID: 34770912 PMCID: PMC8588261 DOI: 10.3390/molecules26216504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The aim of the study was to examine the molecular mechanism of the anticancer action of a monoclonal antibody against MUC1 and a diisoquinoline derivative (OM-86II) in human gastric cancer cells. METHODS The cell viability was measured by the MTT assay. The disruption of mitochondrial membrane potential and activity of caspase-8 and caspase-9 was performed by flow cytometry. Fluorescent microscopy was used to confirm the proapoptotic effect of compounds. LC3A, LC3B and Beclin-1 concentrations were analyzed to check the influence of the compounds on induction of autophagy. ELISA assessments were performed to measure the concentration of mTOR, sICAM1, MMP-2, MMP-9 and pro-apoptotic Bax. RESULTS The anti-MUC1 antibody with the diisoquinoline derivative (OM-86II) significantly reduced gastric cancer cells' viability. This was accompanied by an increase in caspase-8 and caspase-9 activity as well as high concentrations of pro-apoptotic Bax. We also proved that the anti-MUC1 antibody with OM-86II decreased the concentrations of MMP-9, sICAM1 and mTOR in gastric cancer cells. After 48 h of incubation with such a combination, we observed higher levels of the crucial component of autophagosomes (LC3) and Beclin-1. CONCLUSIONS Our study proved that the anti-MUC1 antibody sensitizes human gastric cancer cells to the novel diisoquinoline derivative (OM-86II) via induction of apoptosis and autophagy, and inhibition of selected proteins such as mTOR, sICAM1 and MMP-9.
Collapse
|
18
|
Radziejewska I, Supruniuk K, Czarnomysy R, Buzun K, Bielawska A. Anti-Cancer Potential of Afzelin towards AGS Gastric Cancer Cells. Pharmaceuticals (Basel) 2021; 14:973. [PMID: 34681197 PMCID: PMC8539446 DOI: 10.3390/ph14100973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Afzelin demonstrates anti-inflammatory and anti-cancer properties. Our purpose was to assess its influence on apoptosis, Bax, caspases, MUC1, cancer-related carbohydrate antigens, enzymes participating in their formation, and galectin-3 in AGS gastric cancer cells. A total of 60 and 120 μM afzelin was used in all experiments. Flow cytometry was applied to determine apoptotic response. Western blotting and RT PCR were used to detect the expression of mentioned factors. Flavonoid at higher concentration revealed slight apoptotic respond. Bax, caspase-3, -8, -9 increased upon afzelin action. Stimulatory effect of the flavonoid on MUC1 cytoplasmic tail and extracellular domain in cell lysates and on MUC1 gene was revealed. MUC1 release into the culture medium was inhibited by the flavonoid. The 60 μM afzelin dose stimulated GalNAcTL5 protein expression and inhibited C1GalT1. ST6GalNAcT mRNA was inhibited by both flavonoid doses. ST3GalT was inhibited by 120 μM afzelin on protein and mRNA level. Lewisa/b protein was reduced by both afzelin concentrations. FUT3 and FUT4 mRNA was inhibited by 120 μM dose of afzelin. Galectin-3 protein increased in cell lysates and decreased in culture supernatant by 60 and 120 μM flavonoid. Galectin-3 gene expression was stimulated by two used concentrations of afzelin in comparison to control. We conclude that afzelin can be considered as the potential anti-cancer agent, supporting conventional cancer treatment.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Katarzyna Supruniuk
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland;
| | - Kamila Buzun
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (K.B.); (A.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (K.B.); (A.B.)
| |
Collapse
|
19
|
Combined Action of Anti-MUC1 Monoclonal Antibody and Pyrazole-Platinum(II) Complexes Reveals Higher Effectiveness towards Apoptotic Response in Comparison with Monotherapy in AGS Gastric Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13070968. [PMID: 34206951 PMCID: PMC8309157 DOI: 10.3390/pharmaceutics13070968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
MUC1 mucin is a transmembrane glycoprotein aberrantly overexpressed and underglycosylated in most epithelium origin cancers. Combining chemotherapeutics with monoclonal antibodies toward cancer-related antigens is one of the new strategies in cancer therapies. In this study, we assessed the effectiveness of 10 μM cisplatin (cisPt), two pyrazole-platinum(II) complexes (PtPz4 and PtPz6), and 5 μg/mL anti-MUC1 used as monotherapy, as well as cisplatin and its derivatives combined with mAb on apoptotic response and specific cancer-related sugar antigens in AGS gastric cancer cells. Flow cytometry, RT-PCR, Western blotting, and ELISA tests were applied to determine the influence of examined compounds on analyzed factors. PtPz6 combined with anti-MUC1 revealed the strongest apoptotic response compared to control and monotherapy. The combined action of both cisPt derivatives and anti-MUC1 was more effective than monotherapy in relation to Bad, Bcl-xL, Bcl-2, caspase-9, caspase-3, as well as pro- and cleaved caspase-3 protein, and T, sialyl Tn sugar antigens in cell lysates, and Tn, T, sialyl Tn, sialyl T antigens in culture medium. Additionally, PtPz4 administrated with mAb was revealed to be more potent than used alone with regard to Bax protein and Bid expression, and PtPz6 used in complex with anti-MUC1 revealed more efficient action towards Akt and sialyl T antigen expression. These data indicate the rationality of the potential application of combined treatment of anti-MUC1 and cisPt derivatives in gastric cancer therapy.
Collapse
|
20
|
El Rami FE, Barsoumian HB, Khneizer GW. Hereditary diffuse gastric cancer therapeutic roadmap: current and novel approaches in a nutshell. Ther Adv Med Oncol 2020; 12:1758835920967238. [PMID: 33193828 PMCID: PMC7607792 DOI: 10.1177/1758835920967238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is a rare malignancy characterized by autosomal dominant inheritance of pathological variants of the CDH1 gene encoding E-cadherin, which is involved in cell–cell adhesion, maintenance of epithelial architecture, tumor suppression, and regulation of intracellular signaling pathways. Late-stage recognition of HDGC is typically associated with a poor clinical outcome due to its metastatic potential and risk of lobular breast cancer (LBC) development. The American College of Gastroenterology issued guidelines to evaluate HDGC, test for CDH1 genetic variants, and recommend prophylactic gastrectomy for carriers of CDH1 mutations. If surgery is not pursued, endoscopy is a surveillance alternative, although it carries a limited ability to detect malignant foci. As part of clinical research efforts, novel endoscopy advances are currently studied, and a center of excellence for HDGC was created for a comprehensive multidisciplinary team approach. Within this review, we cover current conventional treatment modalities such as gastrectomy and chemotherapy, as the mainstay treatments, in addition to Pembrolizumab, an immune checkpoint inhibitor, as the last therapeutic resort. We also shed light on novel and promising approaches with emphasis on immunotherapy to treat HDGC. We further break down the therapeutic paradigms to utilize molecular tools, antibodies against checkpoint inhibitors, TGF-β and tyrosine kinase inhibitors, cell-based adoptive therapies, and oncolytic viral therapies. We aim to expand the understanding on how to modulate the tumor microenvironment to tip the balance towards an anti-tumor phenotype, prevent metastasis of the primary disease, and potentially alter the therapeutic landscape for HDGC.
Collapse
Affiliation(s)
- Fadi E El Rami
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gebran W Khneizer
- Department of Internal Medicine, Indiana University Hospital, 550 N University Blvd, Suite 1501, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Zhou W, Jiang R, Wang Y, Li Y, Sun Z, Zhao H. hsa_circ_001653 up-regulates NR6A1 expression and elicits gastric cancer progression by binding to microRNA-377. Exp Physiol 2020; 105:2141-2153. [PMID: 33006200 DOI: 10.1113/ep088399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does hsa_circ_001653 influence the development of gastric cancer (GC) and if so how? What is the main finding and its importance? Bioinformatics analysis revealed the presence of differentially expressed hsa_circ_001653 in GC and adjacent normal tissues, and this was strongly related to the pathology of patients with GC. Knockdown of hsa_circ_001653 suppressed the proliferation, invasion and migration of GC cells, while inducing cell apoptosis via miR-377-mediated NR6A1 inhibition. The effect of hsa_circ_001653 and miR-377 on tumour growth in GC was further confirmed in vivo. ABSTRACT Gastric cancer (GC) is one of the leading causes of human mortality through malignant tumours. Circular RNAs (circRNAs) have been identified as binding to microRNAs (miRNAs) to modulate the progression of tumours. This study explores the role of hsa_circ_001653, a newly identified circRNA, in the development of GC. hsa_circ_001653 expression was measured in 86 paired normal and tumour tissues surgically resected from GC patients. Cross-talk between hsa_circ_001653 and microRNA-377 (miR-377)/nuclear receptor subfamily 6, group A, member 1 (NR6A1) was assessed using bioinformatics analysis, dual-luciferase reporter assay, Ago2 immunoprecipitation and western blot analysis. A series of functional experiments were carried out to elucidate the role of hsa_circ_001653 in GC cell proliferation, invasion, migration and apoptosis, and its underlying molecular mechanisms. Nude mice were inoculated with GC cells for in vivo analysis. hsa_circ_001653 was found to be an up-regulated circRNA in GC tissues and cells. Down-regulation of hsa_circ_001653 inhibited GC cell proliferation, migration and invasion, while stimulating cell apoptosis. hsa_circ_001653 was found to bind to miR-377, which targeted NR6A1 and repressed its expression. Inhibition of miR-377 and overexpression of NR6A1 restored the proliferation, migration and invasion in GC cells lacking hsa_circ_001653. Furthermore, inhibition of hsa_circ_001653 attenuated tumour growth in nude mice inoculated with GC cells. Collectively, the demonstration that hsa_circ_001653 exerts its anticancer effects by regulating the miR-377-NR6A1 axis increases our understanding of gastric cancer pathophysiology. The findings uncover new potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Wuyuan Zhou
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Rongke Jiang
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yu Wang
- Department of General Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yanfang Li
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Ziqian Sun
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Hongying Zhao
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| |
Collapse
|
22
|
Abstract
The pandemic of novel coronavirus disease (COVID-19) caused by the Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) creates an immense menace to public health worldwide. Currently, the World Health Organization (WHO) has recognized the novel coronavirus as the main cause of global pandemic. Patients infected with this virus generally show fever, nausea, and respiratory illness, while some patients also manifest gastrointestinal symptoms such as abdominal pain, vomiting, and diarrhea. Traces of SARS-CoV-2 RNA have been found in gastrointestinal cells. Further angiotensin converting enzyme 2 (ACE2) the known receptor for the virus is extensively expressed in these cells. This implies that gastrointestinal tract can be infected and can also present them as a replication site for SARS-CoV-2, but since this infection may lead to multiple organ failure, therefore identification of another receptor is a plausible choice. This review aims to provide comprehensive information about probable receptors such as sialic acid and CD147 which may facilitate the virus entry. Several potential targets are mentioned which can be used as a therapeutic approach for COVID-19 and associated GI disorders. The gut microbiomes are responsible for high levels of interferon-gamma which causes hyper-inflammation and exacerbates the severity of the disease. Briefly, this article highlights the gut microbiome’s relation and provides potential diagnostic approaches like RDT and LC-MS for sensitive and specific identification of viral proteins. Altogether, this article reviews epidemiology, probable receptors and put forward the tentative ideas of the therapeutic targets and diagnostic methods for COVID-19 with gastrointestinal aspect of disease.
Collapse
|
23
|
Zhao J, Qin R, Chen H, Yang Y, Qin W, Han J, Wang X, Ren S, Sun Y, Gu J. A nomogram based on glycomic biomarkers in serum and clinicopathological characteristics for evaluating the risk of peritoneal metastasis in gastric cancer. Clin Proteomics 2020; 17:34. [PMID: 32968368 PMCID: PMC7501696 DOI: 10.1186/s12014-020-09297-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Peritoneal metastasis (PM) in gastric cancer (GC) remains an untreatable disease, and is difficult to diagnose preoperatively. Here, we aim to establish a novel prediction model. Methods The clinicopathologic characteristics of a cohort that included 86 non-metastatic GC patients and 43 PMGC patients from Zhongshan Hospital were retrospectively analysed to identify PM associated variables. Additionally, mass spectrometry and glycomic analysis were applied in the same cohort to find glycomic biomarkers in serum for the diagnosis of PM. A nomogram was established based on the associations between potential risk variables and PM. Results Overexpression of 4 N-glycans (H6N5L1E1: m/z 2620.93; H5N5F1E2: m/z 2650.98; H6N5E2, m/z 2666.96; H6N5L1E2, m/z 2940.08); weight loss ≥ 5 kg; tumour size ≥ 3 cm; signet ring cell or mucinous adenocarcinoma histology type; poor differentiation; diffuse or mixed Lauren classification; increased CA19-9, CA125, and CA724 levels; decreased lymphocyte count, haemoglobin, albumin, and pre-albumin levels were identified to be associated with PM. A nomogram that integrated with five independent risk factors (weight loss ≥ 5 kg, CA19-9 ≥ 37 U/mL, CA125 ≥ 35 U/mL, lymphocyte count < 2.0 * 10 ~ 9/L, and H5N5F1E2 expression ≥ 0.0017) achieved a good performance for diagnosis (AUC: 0.892, 95% CI 0.829–0.954). When 160 was set as the cut-off threshold value, the proposed nomogram represented a perfectly discriminating power for both sensitivity (0.97) and specificity (0.88). Conclusions The nomogram achieved an individualized assessment of the risk of PM in GC patients; thus, the nomogram could be used to assist clinical decision-making before surgery.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ruihuan Qin
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China.,Chinese Institute for Brain Research, Beijing, 102206 China
| | - Hao Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Yupeng Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Wenjun Qin
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Jing Han
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Shifang Ren
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| |
Collapse
|
24
|
Hu X, Tang F, Liu P, Zhong T, Yuan F, He Q, von Itzstein M, Li H, Weng L, Yu X. Structural and Functional Insight Into the Glycosylation Impact Upon the HGF/c-Met Signaling Pathway. Front Cell Dev Biol 2020; 8:490. [PMID: 32626713 PMCID: PMC7314907 DOI: 10.3389/fcell.2020.00490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Upon interactions with its specific ligand hepatocyte growth factor (HGF), the c-Met signal is relayed to series of downstream pathways, exerting essential biological roles. Dysregulation of the HGF-c-Met signaling pathway has been implicated in the onset, progression and metastasis of various cancers, making the HGF-c-Met axis a promising therapeutic target. Both c-Met and HGF undergo glycosylation, which appears to be biologically relevant to their function and structural integrity. Different types of glycoconjugates in the local cellular environment can also regulate HGF/c-Met signaling by distinct mechanisms. However, detailed knowledge pertaining to the glycosylation machinery of the HGF-c-Met axis as well as its potential applications in oncology research is yet to be established. This mini review highlights the significance of the HGF-c-Met signaling pathway in physiological and pathological context, and discusses the molecular mechanisms by which affect the glycosylation of the HGF-c-Met axis. Owing to the crucial role played by glycosylation in the regulation of HGF/c-Met activity, better understanding of this less exploited field may contribute to the development of novel therapeutics targeting glycoepitopes.
Collapse
Affiliation(s)
- Xinyue Hu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Feiyu Tang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peilin Liu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Taowei Zhong
- College of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology in Hunan Province, Central South University, Changsha, China
| | - Xing Yu
- College of Medicine, Hunan Normal University, Changsha, China.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
25
|
Corso G, Figueiredo J, De Angelis SP, Corso F, Girardi A, Pereira J, Seruca R, Bonanni B, Carneiro P, Pravettoni G, Guerini Rocco E, Veronesi P, Montagna G, Sacchini V, Gandini S. E-cadherin deregulation in breast cancer. J Cell Mol Med 2020; 24:5930-5936. [PMID: 32301282 PMCID: PMC7294130 DOI: 10.1111/jcmm.15140] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
E‐cadherin protein (CDH1 gene) integrity is fundamental to the process of epithelial polarization and differentiation. Deregulation of the E‐cadherin function plays a crucial role in breast cancer metastases, with worse prognosis and shorter overall survival. In this narrative review, we describe the inactivating mechanisms underlying CDH1 gene activity and its possible translation to clinical practice as a prognostic biomarker and as a potential targeted therapy.
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Federica Corso
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonia Girardi
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Raquel Seruca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Patricia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Division of Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy
| | - Giacomo Montagna
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Virgilio Sacchini
- Department of Oncology and Hemato-Oncology, Faculty of Medicine, University of Milan, Milan, Italy.,Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
26
|
Fernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, Reis CA, Santos LL, Ferreira JA. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Am J Cancer Res 2020; 10:4903-4928. [PMID: 32308758 PMCID: PMC7163443 DOI: 10.7150/thno.42480] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.
Collapse
|
27
|
Glioblastomas exploit truncated O -linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proc Natl Acad Sci U S A 2020; 117:3693-3703. [PMID: 32019882 DOI: 10.1073/pnas.1907921117] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163+ TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1+ TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation.
Collapse
|
28
|
Kim S. Ricin B-like lectin orthologues from two mushrooms, Hericium erinaceus and Stereum hirsutum, enable recognition of highly fucosylated N-glycans. Int J Biol Macromol 2020; 147:560-568. [PMID: 31931062 DOI: 10.1016/j.ijbiomac.2020.01.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
The mushroom Hericium erinaceus contains isolectins, including the ricin B-like lectin HEL1 and the core 1 O-glycan-binding lectin HEL2. Recombinant HEL2 reportedly binds O-linked glycans, but recombinant HEL1 (rHEL1) has not been characterized. HEL1 and Stereum hirsutum lectin (SHL1) orthologues, which contain the typical (QxW)3 ricin-B like motif, were evaluated. Interestingly, under non-denaturing conditions, recombinant SHL1 (rSHL1) existed as a trimer and exhibited agglutination activity, whereas rHEL1 existed as a monomer with no agglutination activity. The hemagglutination activity of rSHL1 was inhibited by N-linked glycoprotein transferrin. A glycan-array analysis revealed that the two recombinant lectins had different binding intensities toward fucosylated N-glycans harboring fucose-α(1,2) galactose or fucose-α(1,4) N-acetylglucosamine. Isothermal calorimetry showed that compared with rHEL1, rSHL1 interacted more strongly with transferrin, a fucosylated glycoprotein, than with other fucosylated disaccharide glycoconjugates. Finally, rSHL1 and rHEL1 were comparable in their ability to detect highly fucosylated N-glycans within glycoproteins on the surface of SW1116 human colorectal carcinoma cells. Therefore, these ricin B-like lectins might enable detection of highly fucosylated glycoepitopes on cancer cells for diagnostic applications.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
29
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
30
|
Gomes C, Almeida A, Barreira A, Calheiros J, Pinto F, Abrantes R, Costa A, Polonia A, Campos D, Osório H, Sousa H, Pinto-de-Sousa J, Kolarich D, Reis CA. Carcinoembryonic antigen carrying SLe X as a new biomarker of more aggressive gastric carcinomas. Am J Cancer Res 2019; 9:7431-7446. [PMID: 31695778 PMCID: PMC6831293 DOI: 10.7150/thno.33858] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Malignant transformation of gastric cells is accompanied by the deregulated expression of glycosyltransferases leading to the biosynthesis of tumor-associated glycans such as the sialyl-Lewis X antigen (SLex). SLex presence on cell surface glycoconjugates increases the invasive capacity of gastric cancer cells and is associated with tumor metastasis. ST3Gal IV enzyme is involved in the synthesis of SLex antigen and overexpressed in gastric carcinomas. Herein, we identified the glycoproteins carrying SLex in gastric cancer cells overexpressing ST3Gal IV enzyme and evaluated their biomarker potential for gastric carcinoma. Methods: SLex modified glycoproteins were identified applying western blot and mass spectrometry. Immunoprecipitation, proximity ligation assay (PLA), E-selectin binding assay and CRISPR/cas9 knockout experiments were performed to characterize the presence of SLex on the identified glycoprotein. Protein N-glycans of the SLex protein carrier were in deep analyzed by porous-graphitized-carbon liquid-chromatography and tandem mass spectrometry glycomics. In silico expression analysis of α2-3 sialyltransferase ST3Gal IV and SLex protein carrier was performed and the conjoint expression of the SLex modified glycoproteins evaluated by immunohistochemistry and PLA in a series of gastric carcinomas. Results: Carcinoembryonic antigen (CEA; CEACAM5) was identified and validated by different methodologies as a major carrier of SLex. N-glycomics of CEA revealed that complex N-glycans are capped with α2-3 linked sialic acid (Neu5Acα2-3Galβ1-4GlcNAc). Data set analysis of ST3Gal IV and CEA showed that ST3Gal IV expression was associated with patient´s poor survival, whereas CEA did not show any prognostic value. The co-expression of both CEA and SLeX was observed in 86,3% of gastric carcinoma cases and 74,5% of the total cases displayed the conjoint CEA+SLexin situ PLA expression. This expression was associated with clinicopathological features of the tumors, including infiltrative pattern of tumor growth, presence of venous invasion and patient's poor survival. CEA immunoprecipitation from gastric carcinoma tissues also confirmed the presence of SLex. Conclusion: CEA is the major glycoprotein carrying SLex in gastric carcinoma and the conjoint detection of CEA-SLex is associated with aggressive tumor features highlighting its PLA detection as a biomarker of gastric cancer patient prognosis for theranostic applications.
Collapse
|
31
|
Axford J, Alavi A, Cummings R, Lauc G, Opdenakker G, Reis C, Rudd P. Translational glycobiology: from bench to bedside. J R Soc Med 2019; 112:424-427. [PMID: 31526214 DOI: 10.1177/0141076819865863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The importance of sugars to protein function is real and is of significant clinical relevance. Technology advances enable large population studies to be carried out, shedding light on individual sugar variation and variations with time. Three-dimensional mass spectroscopy on solid pathological specimens is going to open up a whole new world of pathology visualisation. The door is now open to exploit carbohydrate recognition in new therapeutics by identifying novel biomarkers in cancer to aid diagnosis, and also providing therapeutic targets for treatment. Glycan age correlates with biological age. This means we can map the reversal of biological age with exercise and diet.
Collapse
Affiliation(s)
- John Axford
- The Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - Azita Alavi
- The Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - Rick Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, USA
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Ghislain Opdenakker
- Department of Microbiology and Immunology, University of Leuven, KU Leuven, BE-3000 Leuven, Belgium
| | - Celso Reis
- Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Pauline Rudd
- National Institute for Bioprocessing Research and Training, Dublin A94 X099, Ireland
| |
Collapse
|
32
|
Ma M, Fu Y, Zhou X, Guan F, Wang Y, Li X. Functional roles of fucosylated and O-glycosylated cadherins during carcinogenesis and metastasis. Cell Signal 2019; 63:109365. [PMID: 31352008 DOI: 10.1016/j.cellsig.2019.109365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022]
Abstract
Reduced cellular adhesiveness as a result of cadherin dysfunction is a defining feature of cancer and the mechanism involved in many aspects. Glycosylation is one of the most important post-translational modifications to cadherin. Major changes of glycosylation on cadherins can affect its stability, trafficking, and cell-adhesion properties. It has been reported that the different glycoforms of cadherins are promising biomarkers in cancer, with potential clinical application to constitute targets for the development of new therapies. Among the various glycoforms of cadherins, fucosylated and O-glycosylated cadherins are attracting more attention for their important roles in regulating cadherin functions during carcinogenesis. This review will discuss the most recent insights of the functional roles of fucosylated and O-glycosylated cadherins and their regulation mechanisms during carcinogenesis and metastasis. In summary, more understanding of fucosylated and O-glycosylated cadherins will lead to development of novel therapeutic approaches targeted to cancer.
Collapse
Affiliation(s)
- Minxing Ma
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China; Department of Oncology, the Fifth People's Hospital of Qinghai Province, Xining, China
| | - Yutong Fu
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China.
| | - Xiang Li
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
33
|
Gebrehiwot AG, Melka DS, Kassaye YM, Gemechu T, Lako W, Hinou H, Nishimura SI. Exploring serum and immunoglobulin G N-glycome as diagnostic biomarkers for early detection of breast cancer in Ethiopian women. BMC Cancer 2019; 19:588. [PMID: 31208374 PMCID: PMC6580580 DOI: 10.1186/s12885-019-5817-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alterations in protein glycosylation patterns have potentially been targeted for biomarker discovery in a wide range of diseases including cancer. Although there have been improvements in patient diagnosis and survival for breast cancer (BC), there is no clinically validated serum biomarker for its early diagnosis. Here, we profiled whole serum and purified Immunoglobulin G (IgG) fraction N-glycome towards identification of non-invasive glycan markers of BC. METHODS We employed a comprehensive glycomics approach by integrating glycoblotting-based glycan purification with MALDI-TOF/MS based quantitative analysis. Sera of BC patients belonging to stages I-IV and normal controls (NC) were collected from Ethiopian women during 2015-2016. IgG was purified by affinity chromatography using protein G spin plate and further subjected to glycoblotting for glycan release. Mass spectral data were further processed and evaluated rigorously, using various bioinformatics and statistical tools. RESULTS Out of 35 N-glycans that were significantly up-regulated in the sera of all BC patients compared to the NC, 17 complex type N-glycans showed profound expression abundance and diagnostic potential (AUC = 0.8-1) for the early stage (I and II) BC patients. Most of these glycans were core-fucosylated, multiply branched and sialylated structures, whose abundance has been strongly associated with greater invasive and metastatic potential of cancer. N-glycans quantified form IgG confirmed their abundance in BC patients, of which two core-fucosylated and agalactosylated glycans (m/z 1591, 1794) could specifically distinguish (AUC = 0.944 and 0.921, p ≤ 0.001) stage II patients from NC. Abundance of such structural features in IgG is associated with a decrease in its immunosuppressive potential towards tumor cells, which in part may correlate with the aggressive nature of BC commonly noticed in black population. CONCLUSIONS Our comprehensive study has addressed for the first time both whole serum and IgG N-glycosylation signatures of native black women suffering from BC and revealed novel glyco-biomarkers with marked overexpression and distinguishing ability at early stage patients. Further studies on direct identification of the intact glycoproteins using a glycoprteomics approach will provide a deeper understanding of specific biomarkers towards their clinical utility.
Collapse
Affiliation(s)
- Abrha G. Gebrehiwot
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| | - Daniel Seifu Melka
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yimenashu Mamo Kassaye
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tufa Gemechu
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021 Japan
| |
Collapse
|
34
|
Zhang J, Zhong Y, Zhang P, Du H, Shu J, Liu X, Zhang H, Guo Y, Jia Z, Niu L, Yang F, Li Z. Identification of abnormal fucosylated-glycans recognized by LTL in saliva of HBV-induced chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Glycobiology 2019; 29:242-259. [PMID: 30535277 DOI: 10.1093/glycob/cwy108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/12/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Abstract
The hepatitis B virus (HBV)-induced chronic liver diseases are serious health threats worldwide. There is evidence to display the alterations of salivary N-linked glycans related to the development of HBV-infected liver diseases. Here, we further investigated the alterations of fucosylated N/O-glycans recognized by LTL in saliva from 120 subjects (30 healthy volunteers (HV), 30 patients with hepatitis B (HB), 30 patients with hepatic cirrhosis (HC), and 30 patients with hepatocellular carcinoma (HCC)) using salivary microarrys and MALDI-TOF/TOF-MS. The results showed that the expression level of fucosylated glycans recognized by LTL was significantly increased in HCC compared with other subjects (P < 0.0001). Besides, the fucosylated glycoproteins were isolated from pooled saliva of HV, HB, HC, and HCC by LTL-magnetic particle conjugates. Then, N/O- glycans were released from the isolated glycoproteins with PNGase F and NaClO, and were identified by MALDI-TOF-MS, respectively. Totally, there were 21/20, 25/18, 29/19, and 28/24 N/O-glycan peaks that were identified and annotated with proposed structures in saliva of HV, HB, HC, and HCC. Among the total, there were 8 N-glycan peaks (e.g., m/z 1905.634, 2158.777 and 2905.036) and 15 O-glycan peaks (e.g., 1177.407, 1308.444 and 1322.444) that only presented in patients with HBV-induced liver diseases. One N-glycan peak (m/z 2205.766) was unique in HC, and 9 O-glycan peaks (e.g., m/z 1157.420, 1163.417 and 1193.402) were unique in HCC. This study could facilitate the discovery of biomarkers for HC and HCC based on precise alterations of fucosylated N/O-glycans in saliva.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Peixin Zhang
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhansheng Jia
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Niu
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institution of Biophysics, Chineses Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institution of Biophysics, Chineses Academy of Sciences, Beijing, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
35
|
Shu J, Dang L, Zhang D, Shah P, Chen L, Zhang H, Sun S. Dynamic analysis of proteomic alterations in response to N-linked glycosylation inhibition in a drug-resistant ovarian carcinoma cell line. FEBS J 2019; 286:1594-1605. [PMID: 30884134 DOI: 10.1111/febs.14811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/04/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation inhibition can improve the efficacy of antitumor drugs and enhance the apoptosis of cancer cells, thus holding great potential for cancer treatment. Inhibition of N-glycosylation induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), and eventually triggers ER stress-related apoptosis. Unfortunately, the detailed timeline of these cell responses and protein expression alterations related to N-glycosylation inhibition is not explicit yet, and the pathways involved in different stages of N-glycosylation inhibition still need to be characterized. In this study, the dynamic proteome alterations related to N-glycosylation inhibition were investigated by further analyzing our previously published quantitative proteomics data from tunicamycin (TM)-treated ovarian carcinoma (OVCAR-3) cells. The results revealed that N-glycosylation inhibition not only directly affects the expression of glycosylated proteins but also alters an extended scale of proteins. Functional annotation of these altered proteins demonstrated that proteins related to ER stress start changing within 6 h, followed by UPR within 24 h, and eventually ER stress-related apoptosis is triggered after 48 h, indicating the conversion of cellular response from positive to negative. The dynamic proteome data presented here provide important information for better understanding of the significance of N-glycosylation to cell survival and TM-related cancer treatment.
Collapse
Affiliation(s)
- Jian Shu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dandan Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
36
|
Freitas D, Campos D, Gomes J, Pinto F, Macedo JA, Matos R, Mereiter S, Pinto MT, Polónia A, Gartner F, Magalhães A, Reis CA. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine 2019; 40:349-362. [PMID: 30662000 PMCID: PMC6413340 DOI: 10.1016/j.ebiom.2019.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Changes in glycosylation are known to play critical roles during gastric carcinogenesis. Expression of truncated O-glycans, such as the Sialyl-Tn (STn) antigen, is a common feature shared by many cancers and is associated with cancer aggressiveness and poor-prognosis. METHODS Glycoengineered cell lines were used to evaluate the impact of truncated O-glycans in cancer cell biology using in vitro functional assays, transcriptomic analysis and in vivo models. Tumor patients 'samples and datasets were used for clinical translational significance evaluation. FINDINGS In the present study, we demonstrated that gastric cancer cells expressing truncated O-glycans display major phenotypic alterations associated with higher cell motility and cell invasion. Noteworthy, the glycoengineered cancer cells overexpressing STn resulted in tumor xenografts with less cohesive features which had a critical impact on mice survival. Furthermore, truncation of O-glycans induced activation of EGFR and ErbB2 receptors and a transcriptomic signature switch of gastric cancer cells. The disclosed top activated genes were further validated in gastric tumors, revealing that SRPX2 and RUNX1 are concomitantly overexpressed in gastric carcinomas and its expression is associated with patients' poor-survival, highlighting their prognosis potential in clinical practice. INTERPRETATION This study discloses novel molecular links between O-glycans truncation frequently observed in cancer and key cellular regulators with major impact in tumor progression and patients' clinical outcome.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana A Macedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Rita Matos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Stefan Mereiter
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Marta T Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - António Polónia
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Fátima Gartner
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal.
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal; Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
37
|
Ribaldone DG, Simondi D, Petrini E, Astegiano M, Durazzo M. Non-invasive biomarkers for gastric cancer diagnosis: ready for prime time? MINERVA BIOTECNOL 2019; 31. [DOI: 10.23736/s1120-4826.18.02463-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
38
|
Jiang YY, Zheng SJ. Progress in research of sphingolipids in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:2109-2114. [DOI: 10.11569/wcjd.v26.i36.2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are a class of novel lipid bioregulatory molecules that play important roles in regulating cell growth, differentiation, proliferation, and apoptosis. Sphingolipid metabolism disorders could induce the development of various diseases including hepatocellular carcinoma (HCC). With the development of lipidomics, it has been demonstrated that sphingolipids play an increasingly essential role in the occurrence, development, and outcome of HCC. Studies have shown that sphingolipids can be used as a new biomarker for the diagnosis of HCC, and regulation of the sphingolipid metabolism pathway may be a potential target for the treatment of HCC. This paper reviews the current progress in research of sphingolipids with regard to their classification, metabolic pathways, role in the development of HCC, and the possibility as a target for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ying-Ying Jiang
- Complicated Liver Disease and Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Su-Jun Zheng
- Complicated Liver Disease and Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
39
|
Kim S. Hericium erinaceus isolectins recognize mucin-type O-glycans as tumor-associated carbohydrate antigens on the surface of K562 human leukemia cells. Int J Biol Macromol 2018; 120:1093-1102. [DOI: 10.1016/j.ijbiomac.2018.08.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023]
|
40
|
Liu M, Yu H, Zhang D, Han Q, Yang X, Liu X, Wang J, Zhang K, Yang F, Cai G, Chen X, Zhu H. Alteration of glycosylation in serum proteins: a new potential indicator to distinguish non-diabetic renal diseases from diabetic nephropathy. RSC Adv 2018; 8:38872-38882. [PMID: 35558281 PMCID: PMC9090655 DOI: 10.1039/c8ra06832a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Diabetic nephropathy (DN) and nondiabetic renal disease (NDRD) are two major categories of renal diseases in diabetes mellitus patients. The clinical differentiation among them is usually not so clear and effective. In this study, sera from DN and NDRD patients were collected, and glycan profiles of serum proteins from DN and NDRD patients were investigated and compared by using lectin microarray and lectin blot. Then, altered glycoproteins were enriched by lectin coupled magnetic particle conjugate and characterized by LC-MS/MS. We found significant change in glycan patterns between DN and NDRD patients. In particular, the relative abundance of the glycopattern of Galβ1-3GalNAc which was identified by BPL (Bauhinia purpurea lectin) was significantly decreased in DN patients compared to four types of NDRD patients (p < 0.05). Moreover, BPL blotting indicated that the proteins with a molecular weight of about 53 kDa exhibited low staining signal in DN compared to all NDRD groups, which was consistent with results of lectin microarrays. After enriching by BPL and identification by LC-MS/MS, a total of 235 and 258 proteins were characterized from NDRD and DN respectively. Among these, the relative abundance of 12 isolated serum proteins exhibited significantly alteration between DN and NDRD (p < 0.05). Our findings indicated not only the relative abundance of Galβ1-3GalNAc on serum proteins but also certain glycoproteins modified with this glycopattern showed a difference between DN and NDRD patients. This suggested that the analysis of this alteration by using urine specimens may constitute an additional valuable diagnostic tool for differentiating DN and NDRD with a non-invasive method.
Collapse
Affiliation(s)
- Moyan Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China .,Second Department of Cadre Ward, General Hospital of Jinan Military Region Jinan 250000 China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Dong Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Qiuxia Han
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University 1 East Jianshe Road Zhengzhou 450052 China
| | - Xiaoli Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| |
Collapse
|
41
|
Shu J, Yu H, Du H, Zhang J, Zhang K, Li X, Xie H, Li Z. Identification of N- and O-linked glycans recognized by AAL in saliva of patients with atrophic gastritis and gastric cancer. Cancer Biomark 2018; 22:669-681. [PMID: 29865036 DOI: 10.3233/cbm-171087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Gastric cancer (GC) is a common and fatal malignancy with a worldwide occurrence. There still lacks effective biomarkers for precisely evaluating GC. Saliva is a biological fluid with enormous diagnostic potentials which emerged many advantages. We aimed to discover the novel biomarkers for accurately distinguishing early GC based on saliva glycopatterns. METHODS We used Aleuria Aurantia Lectin (AAL)-magnetic particle conjugates to isolate fucosylated glycoproteins in the pooled saliva of healthy volunteers (HV, n= 51) and patients with atrophic gastritis (AG, n= 51) or GC (n= 51), following to release the N- and O-linked glycans from the isolated proteins with PNGase F and NaClO, and further identified the released glycans by MALDI-TOF/TOF-MS, respectively. RESULTS A total of 9/9, 8/11, and 9/9 fucosylated N-/O-linked glycans were annotated in the isolated salivary proteins from HV, AG, and GC, respectively. Among these, six fucosylated N-linked glycansand four O-linked glycans exhibited significantly increased expression levels in GC, while five fucosylated N-linked glycans and ten fucosylated O-linked glycans exhibited significantly decreased expression levels in GC. The proportion of fucosylated N-linked glycans was decreased in GC (41.66%) compared with AG (43.63%) and HV (52.57%), as well as the fucosylated O-linked glycans was apparently decreased in GC (19.58%) compared with AG (25.43%) and HV (55.54%). CONCLUSIONS This study could provide pivotal information to distinguish among HV, AG, and GC, and facilitate the discovery of biomarkers for GC diagnosis based on precise alterations of N- and O-linked glycans in saliva.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaojie Li
- Department of Pothology, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, Hunan, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Radziejewska I, Supruniuk K, Nazaruk J, Karna E, Popławska B, Bielawska A, Galicka A. Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line. Biomed Pharmacother 2018; 107:397-407. [PMID: 30099344 DOI: 10.1016/j.biopha.2018.07.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Rosmarinic acid (RA) is a natural phenylpropanoid with numerous pharmacological activities. Because of limited studies of the effects of RA action in gastric cancer cells we examined how 100 and 200 μM acid influences MMPs, TIMPs, collagen, MUC1 and specific sugar antigens in gastric adenocarcinoma CRL-1739 cells. We revealed inhibitory effect of RA on MMP-9 activity what was correlated with increased collagen type I expression, main ECM substrate degraded by MMPs. Tissue inhibitor of MMPs, TIMP-1 but not TIMP-2 was significantly decreased on the protein level and increased on mRNA level by RA action what can suggest TIMP-1 independent inhibitory action of an acid on MMP-9 activity. Glycosylation of gastric cancer proteins was also effected by RA. ELISA tests revealed inhibitory effect of an acid on Tn antigen in cell lysates and culture supernatant and on T antigen in cell lysates. RA inhibited also sialylated Tn antigen in protein of culture supernatant and sialyl T in cell lysates. Extracellular domain of MUC1 mucin, main carrier of Tn and T antigens was significantly inhibited by higher dose of RA. The data suggest potential usefulness of RA as a complementary agent supporting chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- I Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland.
| | - K Supruniuk
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| | - J Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| | - E Karna
- Department of Medicinal Chemistry, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland
| | - B Popławska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland
| | - A Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland
| | - A Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
43
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
44
|
Jang M, Koh I, Lee JE, Lim JY, Cheong JH, Kim P. Increased extracellular matrix density disrupts E-cadherin/β-catenin complex in gastric cancer cells. Biomater Sci 2018; 6:2704-2713. [PMID: 30151505 DOI: 10.1039/c8bm00843d] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During gastric cancer (GC) progression, increased extracellular matrix (ECM) deposition, notably collagen type I, correlates with an overall increase in expression of the mesenchymal phenotype. In GC tissue, the intestinal epithelium exhibits impaired cell-cell adhesion and enhanced cell-ECM adhesion. The alteration of intercellular integrity is one of tumorigenesis feature including tumor invasion and metastasis. Using a density-varying ECM, we studied the effect of ECM density on both intercellular- and ECM-interactions according to alterations of ECM-mediated signaling. A dense collagen matrix increases integrin-mediated cell-ECM interactions with phosphorylated FAK and ERK signaling in human gastric adenocarcinoma cells (AGS, MKN74), which regulates GC proliferation and the chemotherapeutic response. In addition, GC cells exhibited a disrupted membranous E-cadherin/β-catenin complex and, remarkably, showed cytoplasmic or nucleic localization of β-catenin in response to collagen density. Furthermore, we found that membranous E-cadherin/β-catenin complex could be recovered by inhibiting the phosphorylation of FAK, which in turn influences the chemotherapeutic effect. These results provide insight into how matrix density differentially regulates cancer cell phenotype and may have significant implications for the design of biomaterials with appropriate physical properties for in vitro tumor models.
Collapse
Affiliation(s)
- Minjeong Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | | | | | | | | | | |
Collapse
|
45
|
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia 2018; 20:813-825. [PMID: 30015157 PMCID: PMC6037882 DOI: 10.1016/j.neo.2018.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several universal markers have been identified for CSCs characterization; however, a specific marker has not yet been identified for different cancer types. Specific glycosylation variation plays a major role in the progression and metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
46
|
Pena-Couso L, Perea J, Melo S, Mercadillo F, Figueiredo J, Sanches JM, Sánchez-Ruiz A, Robles L, Seruca R, Urioste M. Clinical and functional characterization of the CDH1 germline variant c.1679C>G in three unrelated families with hereditary diffuse gastric cancer. Eur J Hum Genet 2018; 26:1348-1353. [PMID: 29769627 DOI: 10.1038/s41431-018-0173-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Germline changes in the CDH1 tumor suppressor gene predispose to diffuse gastric cancer and lobular breast cancer. In carriers of deleterious germline CDH1 variants, prophylactic gastrectomy is recommended. In case of germline missense variants, it is mandatory to assess the functional impact on E-cadherin, the protein encoded by CDH1, and to predict their clinical significance. Herein, we have identified a recurrent germline missense variant, c.1679C>G, segregating with gastric cancer in three unrelated Spanish families. Through genetic, transcriptional, in silico and in vitro studies, we demonstrate the deleterious effect of the c.1679C>G variant and its association with hereditary diffuse gastric cancer, providing relevant data to relatives and allowing an accurate genetic counseling.
Collapse
Affiliation(s)
- Laura Pena-Couso
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - José Perea
- Surgery Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.,Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | - Soraia Melo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Fátima Mercadillo
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
| | - João Miguel Sanches
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisboa, Portugal
| | - Antonio Sánchez-Ruiz
- Medical Oncology Service, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Luis Robles
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
47
|
The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018; 23:molecules23051151. [PMID: 29751628 PMCID: PMC6100456 DOI: 10.3390/molecules23051151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin (BabA) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 (TFF2) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.
Collapse
|
48
|
Shu J, Yu H, Li X, Zhang D, Liu X, Du H, Zhang J, Yang Z, Xie H, Li Z. Salivary glycopatterns as potential biomarkers for diagnosis of gastric cancer. Oncotarget 2018; 8:35718-35727. [PMID: 28415698 PMCID: PMC5482611 DOI: 10.18632/oncotarget.16082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer (GC) is still an extremely severe health issue with high mortality due to the lacking of effective biomarkers. In this study, we aimed to investigate the alterations of salivary protein glycosylation related to GC and assess the possibility of salivary glycopatterns as potential biomarkers for the diagnosis of GC. Firstly, 94 patients with GC (n = 64) and atrophic gastritis (AG) (n = 30), as well as 30 age- and sex-matched healthy volunteers (HV) were enrolled in the test group to probe the difference of salivary glycopatterns using lectin microarrays, the results were validated by saliva microarrays and lectin blotting analysis. Then, the diagnostic model of GC (Model GC) and AG (Model AG) were constructed based on 15 candidate lectins which exhibited significant alterations of salivary glycopattern by logistic stepwise regression. Finally, two diagnostic models were assessed in the validation group including HV (n = 30) and patients with GC (n = 23) and AG (n = 24) and achieved high diagnostic power (Model GC (AUC: 0.89, sensitivity: 0.96 and specificity: 0.80), Model AG (AUC: 0.83, sensitivity: 0.92 and specificity: 0.72)). This study provides pivotal information to distinguish HV, AG and GC based on precise alterations in salivary glycopatterns, which have great potential to be biomarkers for diagnosis of GC.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaojie Li
- Department of Pothology. First People`s Hospital of Chenzhou, Chenzhou, China
| | - Dandan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhao Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
49
|
Saeui CT, Liu L, Urias E, Morrissette-McAlmon J, Bhattacharya R, Yarema KJ. Pharmacological, Physiochemical, and Drug-Relevant Biological Properties of Short Chain Fatty Acid Hexosamine Analogues Used in Metabolic Glycoengineering. Mol Pharm 2018; 15:705-720. [PMID: 28853901 PMCID: PMC6292510 DOI: 10.1021/acs.molpharmaceut.7b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFAs (e.g., acetate vs n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g., N-acetyl vs N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates.
Collapse
Affiliation(s)
- Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Esteban Urias
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Bhattacharya
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer. Oncotarget 2018; 7:65231-65246. [PMID: 27533452 PMCID: PMC5323151 DOI: 10.18632/oncotarget.11245] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway.
Collapse
|