1
|
Zhao J, Kang M, Li H, Rong L, Wang Y, Xue Y, Yao Y, Fang Y. QRICH1 suppresses pediatric T-cell acute lymphoblastic leukemia by inhibiting GRP78. Cell Death Dis 2024; 15:646. [PMID: 39227586 PMCID: PMC11371816 DOI: 10.1038/s41419-024-07040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that commonly affects children and adolescents with a poor prognosis. The terminal unfolded protein response (UPR) is an emerging anti-cancer approach, although its role in pediatric T-ALL remains unclear. In our pediatric T-ALL cohort from different centers, a lower QRICH1 expression was found associated with a worse prognosis of pediatric T-ALL. Overexpression of QRICH1 significantly inhibited cell proliferation and stimulated apoptosis of T-ALL both in vitro and in vivo. Upregulation of QRICH1 significantly downregulated 78 KDa glucose-regulated protein (GRP78) and upregulated CHOP, thus activating the terminal UPR. Co-overexpression of GRP78 in T-ALL cells overexpressing QRICH1 partially reverted the inhibited proliferation and stimulated apoptosis. QRICH1 bound to the residues Asp212 and Glu155 of the nucleotide-binding domain (NBD) of GRP78, thereby inhibiting its ATP hydrolysis activity. In addition, QRICH1 was associated with endoplasmic reticulum (ER) stress in T-ALL, and overexpression of QRICH1 reversed drug resistance. Overall, low QRICH1 expression is an independent risk factor for a poor prognosis of pediatric T-ALL. By inhibiting GRP78, QRICH1 suppresses pediatric T-ALL.
Collapse
Affiliation(s)
- Ji'ou Zhao
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huimin Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liucheng Rong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaping Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuqian Yao
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Bartkowiak-Wieczorek J, Malesza M, Malesza I, Hadada T, Winkler-Galicki J, Grzelak T, Mądry E. Methylsulfinyl Hexyl Isothiocyanate (6-MSITC) from Wasabi Is a Promising Candidate for the Treatment of Cancer, Alzheimer's Disease, and Obesity. Nutrients 2024; 16:2509. [PMID: 39125389 PMCID: PMC11313713 DOI: 10.3390/nu16152509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Methylsulfinyl hexyl isothiocyanate (6-MSITC) isolated from Eutrema japonicum is a promising candidate for the treatment of breast cancer, colorectal and stomach cancer, metabolic syndrome, heart diseases, diabetes, and obesity due to its anti-inflammatory and antioxidant properties. Also, its neuroprotective properties, improving cognitive function and protecting dopaminergic neurons, make it an excellent candidate for treating neurodegenerative diseases like dementia, Alzheimer's, and Parkinson's disease. 6-MSITC acts on many signaling pathways, such as PPAR, AMPK, PI3K/AKT/mTOR, Nrf2/Keap1-ARE, ERK1/2-ELK1/CHOP/DR5, and MAPK. However, despite the very promising results of in vitro and in vivo animal studies and a few human studies, the molecule has not yet been thoroughly tested in the human population. Nonetheless, wasabi should be classified as a "superfood" for the primary and secondary prevention of human diseases. This article reviews the current state-of-the-art research on 6-MSITC and its potential clinical uses, discussing in detail the signaling pathways activated by the molecule and their interactions.
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Michał Malesza
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Ida Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Tomasz Hadada
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Jakub Winkler-Galicki
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Teresa Grzelak
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Edyta Mądry
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| |
Collapse
|
3
|
Simbilyabo LZ, Yang L, Wen J, Liu Z. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target. CNS Neurosci Ther 2024; 30:e14839. [PMID: 39021040 PMCID: PMC11255034 DOI: 10.1111/cns.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.
Collapse
Affiliation(s)
- Lucette Z. Simbilyabo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Ke CH, Wu HY, Wang YS, Huang WH, Lin CS. Tumors Established in a Defective Immune Environment Reprogram the Oncogenic Signaling Pathways to Escalate Tumor Antigenicity. Biomedicines 2024; 12:846. [PMID: 38672200 PMCID: PMC11047836 DOI: 10.3390/biomedicines12040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Tumors developed in immunocompromised hosts are more immunogenic. However, few studies have addressed the potential mechanisms underlying the high immunogenicity of tumors found in a suppressed immune system. Therefore, we aimed to elucidate the impacts of the immune system on tumor behaviors and immunogenicity sculpting. A murine colorectal adenocarcinoma cell line, CT26wt, was administrated into immunocompetent (BALB/c) and immunocompromised (NOD.SCID) mice, respectively. On day 11, the CT26 cells slowly progressed in the NOD.SCID mice compared to the BALB/c mice. We then performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) and analyzed the differentially expressed proteins (DEPs). The DEPs participated in numerous oncogenic pathways, PI3K/AKT/mTOR cell signaling, and the silencing of several tumor suppressors, such as PTEN and RBL1, during tumorigenesis. On day 34, the CT26/SCID tumors inversely became malignant counterparts; then the CT26/SCID tumors were harvested and re-inoculated into immunocompetent mice (CT26/SCID-Re tumors) to determine the immunogenicity. The CT26/SCID-Re tumor growth rate significantly decreased. Furthermore, increased infiltrations of dendritic cells and tumor-infiltrating T lymphocytes were found in the CT26/SCID-Re tumors. These findings suggest that immunogenic tumors might express multiple tumor rejection antigens, unlike wild-type tumors, and attract more immune cells, therefore decreasing the growth rate. Collectively, our study first revealed that in immunodeficient hosts, tumor suppressors were silenced and oncogenic signaling pathways were changed during the initial phase of tumor development. With tumor progression, the tumor antigens were overexpressed, exhibiting elevated immunogenicity. This study offers a hint on the mechanisms of tumorigenesis and provides a niche for investigating the interaction between host immunity and cancer development.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.K.); (Y.-S.W.)
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Shan Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.K.); (Y.-S.W.)
- Uni-Pharma Co., Ltd., Taipei 11494, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.K.); (Y.-S.W.)
| |
Collapse
|
5
|
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40. [PMID: 38509524 PMCID: PMC10956371 DOI: 10.1186/s10020-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Nan Deng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiayi Peng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
6
|
Coulet M, Lachkar S, Leduc M, Trombe M, Gouveia Z, Perez F, Kepp O, Kroemer G, Basmaciogullari S. Identification of Small Molecules Affecting the Secretion of Therapeutic Antibodies with the Retention Using Selective Hook (RUSH) System. Cells 2023; 12:1642. [PMID: 37371112 DOI: 10.3390/cells12121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin-SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway.
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Sylvie Lachkar
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | | | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | | |
Collapse
|
7
|
Petrosyan E, Fares J, Fernandez LG, Yeeravalli R, Dmello C, Duffy JT, Zhang P, Lee-Chang C, Miska J, Ahmed AU, Sonabend AM, Balyasnikova IV, Heimberger AB, Lesniak MS. Endoplasmic Reticulum Stress in the Brain Tumor Immune Microenvironment. Mol Cancer Res 2023; 21:389-396. [PMID: 36652630 PMCID: PMC10159901 DOI: 10.1158/1541-7786.mcr-22-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Immunotherapy has emerged as a powerful strategy for halting cancer progression. However, primary malignancies affecting the brain have been exempt to this success. Indeed, brain tumors continue to portend severe morbidity and remain a globally lethal disease. Extensive efforts have been directed at understanding how tumor cells survive and propagate within the unique microenvironment of the central nervous system (CNS). Cancer genetic aberrations and metabolic abnormalities provoke a state of persistent endoplasmic reticulum (ER) stress that in turn promotes tumor growth, invasion, therapeutic resistance, and the dynamic reprogramming of the infiltrating immune cells. Consequently, targeting ER stress is a potential therapeutic approach. In this work, we provide an overview of how ER stress response is advantageous to brain tumor development, discuss the significance of ER stress in governing antitumor immunity, and put forth therapeutic strategies of regulating ER stress to augment the effect of immunotherapy for primary CNS tumors.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Luis G. Fernandez
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Ragini Yeeravalli
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Crismita Dmello
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Joseph T. Duffy
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Peng Zhang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jason Miska
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Atique U. Ahmed
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Irina V. Balyasnikova
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
8
|
Zhu P, Li T, Li Q, Gu Y, Shu Y, Hu K, Chen L, Peng X, Peng J, Hao L. Mechanism and Role of Endoplasmic Reticulum Stress in Osteosarcoma. Biomolecules 2022; 12:1882. [PMID: 36551309 PMCID: PMC9775044 DOI: 10.3390/biom12121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, often occurring in children and adolescents. The etiology of most patients is unclear, and the current conventional treatment methods are chemotherapy, radiotherapy, and surgical resection. However, the sensitivity of osteosarcoma to radiotherapy and chemotherapy is low, and the prognosis is poor. The development of new and useful treatment strategies for improving patient survival is an urgent need. It has been found that endoplasmic reticulum (ER) stress (ERS) affects tumor angiogenesis, invasion, etc. By summarizing the literature related to osteosarcoma and ERS, we found that the unfolded protein response (UPR) pathway activated by ERS has a regulatory role in osteosarcoma proliferation, apoptosis, and chemoresistance. In osteosarcoma, the UPR pathway plays an important role by crosstalk with autophagy, oxidative stress, and other pathways. Overall, this article focuses on the relationship between ERS and osteosarcoma and reviews the potential of drugs or gene targets associated with ERS for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yawen Gu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
10
|
Ebrahimi N, Saremi J, Ghanaatian M, Yazdani E, Adelian S, Samsami S, Moradi N, Rostami Ravari N, Ahmadi A, Hamblin MR, Aref AR. The role of endoplasmic reticulum stress in the regulation of long noncoding RNAs in cancer. J Cell Physiol 2022; 237:3752-3767. [PMID: 35959643 DOI: 10.1002/jcp.30846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells must overcome a variety of external and internal stresses to survive and proliferate. These unfavorable conditions include the accumulation of mutations, nutrient deficiency, oxidative stress, and hypoxia. These stresses can cause aggregation of misfolded proteins inside the endoplasmic reticulum. Under these conditions, the cell undergoes endoplasmic reticulum stress (ER-stress), and consequently initiates the unfolded protein response (UPR). Activation of the UPR triggers transcription factors and regulatory factors, including long noncoding RNAs (lncRNAs), which control the gene expression profile to maintain cellular stability and hemostasis. Recent investigations have shown that cancer cells can ensure their survival under adverse conditions by the UPR affecting the expression of lncRNAs. Therefore, understanding the relationship between lncRNA expression and ER stress could open new avenues, and suggest potential therapies to treat various types of cancer.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Jahrom, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahar Samsami
- Biotechnology Department of Fasa University of Medical Science, Fasa, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Nadi Rostami Ravari
- Department of Biology, Faculty of Science, Islamic Azad University, Kerman, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Xsphera Biosciences, Translational Medicine group, 6 Tide Street, Boston, MA, 02210, USA
| |
Collapse
|
11
|
Quwaider D, Corchete LA, Martín-Izquierdo M, Hernández-Sánchez JM, Rojas EA, Cardona-Benavides IJ, García-Sanz R, Herrero AB, Gutiérrez NC. RNA sequencing identifies novel regulated IRE1-dependent decay targets that affect multiple myeloma survival and proliferation. Exp Hematol Oncol 2022; 11:18. [PMID: 35361260 PMCID: PMC8969279 DOI: 10.1186/s40164-022-00271-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Background IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. Methods In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. Results Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. Conclusion This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00271-4.
Collapse
Affiliation(s)
- Dalia Quwaider
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Marta Martín-Izquierdo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Elizabeta A Rojas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ignacio J Cardona-Benavides
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ramón García-Sanz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Ana B Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Norma C Gutiérrez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain. .,Hematology Department, University Hospital of Salamanca, Salamanca, Spain. .,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain.
| |
Collapse
|
12
|
Wang P, Han L, Yu M, Cao Z, Li X, Shao Y, Zhu G. The Prognostic Value of PERK in Cancer and Its Relationship With Immune Cell Infiltration. Front Mol Biosci 2021; 8:648752. [PMID: 33937330 PMCID: PMC8085429 DOI: 10.3389/fmolb.2021.648752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein that functions as an endoplasmic reticulum (ER) stress sensor to regulate global protein synthesis. Recent research studies suggest that PERK, as an important receptor protein of unfolded protein response, is involved in the pathogenesis of many cancers. This study aimed to investigate PERK expression and its relationship with prognosis in pan-cancer and attempted to explore the relevant mechanism of PERK involved in the regulation of cancer pathogenesis. Methods: The Oncomine and TIMER databases were used to analyze the expression of PERK between pan-cancer samples and normal samples. Survival analysis was performed using the PrognoScan, Kaplan–Meier (K-M) plotter, and UALCAN databases. Gene set enrichment analysis (GSEA) was used to perform the functional enrichment analysis of the PERK gene in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and thyroid carcinoma (THCA). The TIMER database was used to investigate the correlation between PERK expression and tumor-infiltrating immune cells and analyze the relationship of PERK with marker genes of immune cells which were downloaded from the CellMarker database in BRCA, HNSC, and THCA. Results: PERK was differentially expressed in various cancers, such as breast cancer, liver cancer, lung cancer, gastric carcinoma, lymphoma, thyroid cancer, leukemia, and head and neck squamous cell carcinomas. The high expression of PERK was associated with a poor prognosis in KIRP, LGG, BRCA, and THCA and with a favorable prognosis in HNSC. The results of GSEA indicated that PERK was mainly enriched in immune-related signaling pathways in BRCA, HNSC, and THCA. Moreover, PERK expression was significant positively correlated with infiltrating levels of macrophages and dendritic cells and was strongly associated with a variety of immune markers, especially macrophage mannose receptor 1 (MRC1, also called CD206) and T-helper cells (Th). Conclusion: The high expression of PERK could promote the infiltration of multiple immune cells in the tumor microenvironment and could deteriorate the outcomes of patients with breast and thyroid cancers, suggesting that PERK as well as tumor-infiltrating immune cells could be taken as potential biomarkers of prognosis.
Collapse
Affiliation(s)
- Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Liying Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Moxin Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Zhengyu Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Xiaoning Li
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yunxia Shao
- Department of Nephrology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| |
Collapse
|
13
|
Capaci V, Mantovani F, Del Sal G. Amplifying Tumor-Stroma Communication: An Emerging Oncogenic Function of Mutant p53. Front Oncol 2021; 10:614230. [PMID: 33505920 PMCID: PMC7831039 DOI: 10.3389/fonc.2020.614230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
TP53 mutations are widespread in human cancers. An expanding body of evidence highlights that, in addition to their manifold cell-intrinsic activities boosting tumor progression, missense p53 mutants enhance the ability of tumor cells to communicate amongst themselves and with the tumor stroma, by affecting both the quality and the quantity of the cancer secretome. In this review, we summarize recent literature demonstrating that mutant p53 enhances the production of growth and angiogenic factors, inflammatory cytokines and chemokines, modulates biochemical and biomechanical properties of the extracellular matrix, reprograms the cell trafficking machinery to enhance secretion and promote recycling of membrane proteins, and affects exosome composition. All these activities contribute to the release of a promalignant secretome with both local and systemic effects, that is key to the ability of mutant p53 to fuel tumor growth and enable metastatic competence. A precise knowledge of the molecular mechanisms underlying the interplay between mutant p53 and the microenvironment is expected to unveil non-invasive biomarkers and actionable targets to blunt tumor aggressiveness.
Collapse
Affiliation(s)
- Valeria Capaci
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Fiamma Mantovani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giannino Del Sal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Cancer Cell Signalling Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
14
|
Rauter T, Burgstaller S, Gottschalk B, Ramadani-Muja J, Bischof H, Hay JC, Graier WF, Malli R. ER-to-Golgi Transport in HeLa Cells Displays High Resilience to Ca 2+ and Energy Stresses. Cells 2020; 9:E2311. [PMID: 33080790 PMCID: PMC7603030 DOI: 10.3390/cells9102311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
One third of all human proteins are either transmembrane or soluble secretory proteins that first target the endoplasmic reticulum (ER). These proteins subsequently leave the ER and enter the Golgi apparatus via ER-Golgi intermediate vesicular structures. Live-cell imaging of cargos fused to fluorescent proteins (FPs) enables the high-resolution visualization and characterization of secretory transport processes. Here, we performed fluorescence time-lapse imaging to assess the Ca2+ and energy dependency of ER-to-Golgi transport in living HeLa cells, a cancer cell model which has been well investigated. Our data revealed that ER-to-Golgi transport remained highly efficient in the absence of ATP-generating substrates, despite clear reductions in cytosolic and mitochondrial ATP levels under these energy stress conditions. However, cell treatment with 2-deoxy-D-glucose (2-DG), which severely diminished subcellular ATP levels, abolished ER-to-Golgi transport. Interestingly, while 2-DG elevated cytosolic Ca2+ levels and reduced long-distance movements of glycosylphosphatidylinositol (GPI)-positive vesicles, robust short-term ER Ca2+ mobilizations, which strongly affected the motility of these vesicles, did not considerably impair ER-to-Golgi transport. In summary, we highlight that ER-to-Golgi transport in HeLa cells remains functional despite high energy and Ca2+ stress levels.
Collapse
Affiliation(s)
- Thomas Rauter
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Jesse C. Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS 302A, Missoula, MT 59812-4824, USA;
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
15
|
Zhang K, Liu H, Song Z, Jiang Y, Kim H, Samavati L, Nguyen HM, Yang ZQ. The UPR Transducer IRE1 Promotes Breast Cancer Malignancy by Degrading Tumor Suppressor microRNAs. iScience 2020; 23:101503. [PMID: 32911332 PMCID: PMC7490531 DOI: 10.1016/j.isci.2020.101503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of inositol-requiring enzyme 1 (IRE1), the primary transducer of Unfolded Protein Response (UPR), has been observed in tumor initiation and progression, but the underlying mechanism remains to be further elucidated. In this study, we identified that the IRE1 gene is frequently amplified and over-expressed in aggressive luminal B breast cancer cells and that IRE1 upregulation is significantly associated with worse overall survival of patients with breast cancer. IRE1 processes and mediates degradation of a subset of tumor suppressor microRNAs (miRNAs), including miR-3607, miR-374a, and miR-96, via a mechanism called Regulated IRE1-Dependent Decay (RIDD). IRE1-dependent degradation of tumor suppressor miR-3607 leads to elevation of RAS oncogene GTPase RAB3B in breast cancer cells. Inhibition of IRE1 endoribonuclease activity with the pharmacological compound 4μ8C or genetic approaches effectively suppresses luminal breast cancer cell proliferation and aggressive cancer phenotypes. Our work revealed the IRE1-RIDD-miRNAs pathway that promotes malignancy of luminal breast cancer.
Collapse
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Hui Liu
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yuanyuan Jiang
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Zeng-Quan Yang
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA. Secretion of pro-oncogenic AGR2 protein in cancer. Heliyon 2020; 6:e05000. [PMID: 33005802 PMCID: PMC7519367 DOI: 10.1016/j.heliyon.2020.e05000] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
Collapse
Affiliation(s)
- Nurshahirah Ashikin Moidu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Tranter D, Paatero AO, Kawaguchi S, Kazemi S, Serrill JD, Kellosalo J, Vogel WK, Richter U, Mattos DR, Wan X, Thornburg CC, Oishi S, McPhail KL, Ishmael JE, Paavilainen VO. Coibamide A Targets Sec61 to Prevent Biogenesis of Secretory and Membrane Proteins. ACS Chem Biol 2020; 15:2125-2136. [PMID: 32608972 PMCID: PMC7497630 DOI: 10.1021/acschembio.0c00325] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023]
Abstract
Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target of CbA remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the Sec61 protein translocon. CbA binding to Sec61 results in broad substrate-nonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61 that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61α mutations identified from human HCT116 cells suggests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61α mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61α resistance mutations identified the CbA-resistant mutation S71P, which confirms nonidentical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A, and ipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines. Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved drug-like properties that are based on the coibamide pharmacophore.
Collapse
Affiliation(s)
- Dale Tranter
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Anja O. Paatero
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Shinsaku Kawaguchi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soheila Kazemi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jeffrey D. Serrill
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Juho Kellosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Walter K. Vogel
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Uwe Richter
- Molecular
and Integrative Biosciences Research Programme, Faculty of Biological
and Environmental Sciences, University of
Helsinki, Helsinki, 00014, Finland
| | - Daphne R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Xuemei Wan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Christopher C. Thornburg
- Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | | |
Collapse
|
18
|
Capaci V, Bascetta L, Fantuz M, Beznoussenko GV, Sommaggio R, Cancila V, Bisso A, Campaner E, Mironov AA, Wiśniewski JR, Ulloa Severino L, Scaini D, Bossi F, Lees J, Alon N, Brunga L, Malkin D, Piazza S, Collavin L, Rosato A, Bicciato S, Tripodo C, Mantovani F, Del Sal G. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun 2020; 11:3945. [PMID: 32770028 PMCID: PMC7414119 DOI: 10.1038/s41467-020-17596-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.
Collapse
Affiliation(s)
- Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Lorenzo Bascetta
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Marco Fantuz
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | | | | | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Andrea Bisso
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Alexander A Mironov
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 85152, Martinsried, Germany
| | - Luisa Ulloa Severino
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Denis Scaini
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Fleur Bossi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Jodi Lees
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Noa Alon
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Silvano Piazza
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy.
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
19
|
Díaz MI, Díaz P, Bennett JC, Urra H, Ortiz R, Orellana PC, Hetz C, Quest AFG. Caveolin-1 suppresses tumor formation through the inhibition of the unfolded protein response. Cell Death Dis 2020; 11:648. [PMID: 32811828 PMCID: PMC7434918 DOI: 10.1038/s41419-020-02792-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.
Collapse
Affiliation(s)
- María I Díaz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Paula Díaz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Jimena Castillo Bennett
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Laboratory of Proteostasis Control and Biomedicine, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rina Ortiz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Pamela Contreras Orellana
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
- FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Laboratory of Proteostasis Control and Biomedicine, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
20
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
21
|
Lee H, Kim SJ, Shin H, Kim YP. Collagen-Immobilized Extracellular FRET Reporter for Visualizing Protease Activity Secreted by Living Cells. ACS Sens 2020; 5:655-664. [PMID: 32036648 DOI: 10.1021/acssensors.9b01456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the diverse roles of cell-secreted proteases in the extracellular matrix (ECM), classical methods to analyze protease activity have not been explored at the cell culture site. Here, we report a stable, matrix-sticky, and protease-sensitive extracellular reporter that comprises a collagen-binding protein and a Förster resonance energy transfer (FRET) coupler of an enhanced green fluorescent protein and a small dye molecule. The extracellular FRET reporter via split intein-mediated protein trans-splicing is able to adhere to collagen matrices, leading to fluorescence changes by matrix metalloproteinase-2 (MMP2) activity during living cell culture without impeding cell viability. When a proMMP2 mutant (Y581A) with altered protease secretion and activity was transfected into cancer cells, the reporter revealed a dramatic reduction in MMP2 activity in both two- and three-dimensional culture systems, compared with cells transfected with wild-type proMMP2. Our reporter is immediately amenable to monitor protease activity in diverse ECM-resident cells as well as to study protease-related extracellular signaling and tissue remodeling.
Collapse
Affiliation(s)
- Hawon Lee
- Department of Life Science, BK21 Plus Bio-Defense Research Team, Hanyang University, Seoul 04763, Republic of Korea
| | - Se-jeong Kim
- Department of Bioengineering, BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science, BK21 Plus Bio-Defense Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
22
|
Endoplasmic Reticulum Stress Signaling in Cancer Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:934-946. [PMID: 32112719 DOI: 10.1016/j.ajpath.2020.01.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
To survive, cancer cells must resist numerous internal and environmental insults associated with neoplasia that jeopardize proteostasis within the endoplasmic reticulum (ER). Solid and hematopoietic tumors often experience genomic instability, oncogene activation, increased protein secretion demands, and somatic mutations in proteins handled by the secretory pathway that impede their folding. Invasion or metastasis into foreign environments can expose tumor cells to hypoxia, oxidative stress, lack of growth signals, inadequate amino acid supplies, glucose deprivation, and lactic acidosis, all of which pose challenges for protein processing in the ER. Together, these conditions can promote the buildup of misfolded proteins in the ER to cause ER stress, which then activates the unfolded protein response (UPR). An intracellular signaling network largely initiated by three ER transmembrane proteins, the UPR constantly surveils protein folding conditions within the ER lumen and when necessary initiates counteractive measures to maintain ER homeostasis. Under mild or moderate levels of ER stress, the homeostatic UPR sets in motion transcriptional and translational changes that promote cell adaption and survival. However, if these processes are unsuccessful at resolving ER stress, a terminal UPR program dominates and actively signals cell suicide. This article summarizes the mounting evidence that cancer cells are predisposed to ER stress and vulnerable to targeted interventions against ongoing UPR signaling.
Collapse
|
23
|
Jaud M, Philippe C, Di Bella D, Tang W, Pyronnet S, Laurell H, Mazzolini L, Rouault-Pierre K, Touriol C. Translational Regulations in Response to Endoplasmic Reticulum Stress in Cancers. Cells 2020; 9:cells9030540. [PMID: 32111004 PMCID: PMC7140484 DOI: 10.3390/cells9030540] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.
Collapse
Affiliation(s)
- Manon Jaud
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Weiwei Tang
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Henrik Laurell
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Inserm UMR1048, I2MC (Institut des Maladies Métaboliques et Cardiovasculaires), BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Laurent Mazzolini
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Christian Touriol
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Correspondence:
| |
Collapse
|
24
|
Luesch H, Paavilainen VO. Natural products as modulators of eukaryotic protein secretion. Nat Prod Rep 2020; 37:717-736. [PMID: 32067014 DOI: 10.1039/c9np00066f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to the end of 2019Diverse natural product small molecules have allowed critical insights into processes that govern eukaryotic cells' ability to secrete cytosolically synthesized secretory proteins into their surroundings or to insert newly synthesized integral membrane proteins into the lipid bilayer of the endoplasmic reticulum. In addition, many components of the endoplasmic reticulum, required for protein homeostasis or other processes such as lipid metabolism or maintenance of calcium homeostasis, are being investigated for their potential in modulating human disease conditions such as cancer, neurodegenerative conditions and diabetes. In this review, we cover recent findings up to the end of 2019 on natural products that influence protein secretion or impact ER protein homeostasis, and serve as powerful chemical tools to understand protein flux through the mammalian secretory pathway and as leads for the discovery of new therapeutics.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, P.O. Box 100485, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
25
|
Jin Y, Saatcioglu F. Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends Cancer 2020; 6:160-171. [PMID: 32061305 DOI: 10.1016/j.trecan.2019.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells exploit many of the cellular adaptive responses to support their survival needs. One of these is the unfolded protein response (UPR), a highly conserved signaling pathway that is mounted in response to endoplasmic reticulum (ER) stress. Recent work showed that steroid hormones, in particular estrogens and androgens, regulate the canonical UPR pathways in breast cancer (BCa) and prostate cancer (PCa). In addition, UPR has pleiotropic effects in advanced disease and development of therapy resistance. These findings implicate the UPR pathway as a novel target in hormonally regulated cancers in the clinic. Here, we review the potential therapeutic value of recently developed small molecule inhibitors of UPR in hormone regulated cancers.
Collapse
Affiliation(s)
- Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
26
|
Abstract
Numerous zinc ectoenzymes are folded and activated in the compartments of the early secretory pathway, such as the ER and the Golgi apparatus, before reaching their final destination. During this process, zinc must be incorporated into the active site; therefore, metalation of the nascent protein is indispensable for the expression of the active enzyme. However, to date, the molecular mechanism underlying this process has been poorly investigated. This is in sharp contrast to the physiological and pathophysiological roles of zinc ectoenzymes, which have been extensively investigated over the past decades. This manuscript concisely outlines the present understanding of zinc ectoenzyme activation through metalation by zinc and compares this with copper ectoenzyme activation, in which elaborate copper metalation mechanisms are known. Moreover, based on the comparison, several hypotheses are discussed. Approximately 80 years have passed since the first zinc enzyme was identified; therefore, it is necessary to improve our understanding of zinc ectoenzymes from a biochemical perspective, which will further our understanding of their biological roles.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies , Kyoto University , Kyoto 606-8502 , Japan
| |
Collapse
|
27
|
Live cell imaging of signaling and metabolic activities. Pharmacol Ther 2019; 202:98-119. [DOI: 10.1016/j.pharmthera.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
28
|
Subtype-specific secretomic characterization of pulmonary neuroendocrine tumor cells. Nat Commun 2019; 10:3201. [PMID: 31324758 PMCID: PMC6642156 DOI: 10.1038/s41467-019-11153-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pulmonary neuroendocrine (NE) cancer, including small cell lung cancer (SCLC), is a particularly aggressive malignancy. The lineage-specific transcription factors Achaete-scute homolog 1 (ASCL1), NEUROD1 and POU2F3 have been reported to identify the different subtypes of pulmonary NE cancers. Using a large-scale mass spectrometric approach, here we perform quantitative secretome analysis in 13 cell lines that signify the different NE lung cancer subtypes. We quantify 1,626 proteins and identify IGFBP5 as a secreted marker for ASCL1High SCLC. ASCL1 binds to the E-box elements in IGFBP5 and directly regulates its transcription. Knockdown of ASCL1 decreases IGFBP5 expression, which, in turn, leads to hyperactivation of IGF-1R signaling. Pharmacological co-targeting of ASCL1 and IGF-1R results in markedly synergistic effects in ASCL1High SCLC in vitro and in mouse models. We expect that this secretome resource will provide the foundation for future mechanistic and biomarker discovery studies, helping to delineate the molecular underpinnings of pulmonary NE tumors. Secreted proteins present a rich resource of potential cancer biomarkers. Here, the authors use mass spectrometry to analyze secretome remodeling in pulmonary neuroendocrine lung cancer cell lines and validate potential biomarkers and therapeutic targets in vitro and in mouse models.
Collapse
|
29
|
Robinson JL, Feizi A, Uhlén M, Nielsen J. A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome. Cell Rep 2019; 26:2622-2635.e5. [PMID: 30840886 PMCID: PMC6441842 DOI: 10.1016/j.celrep.2019.02.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The collection of proteins secreted from a cell-the secretome-is of particular interest in cancer pathophysiology due to its diagnostic potential and role in tumorigenesis. However, cancer secretome studies are often limited to one tissue or cancer type or focus on biomarker prediction without exploring the associated functions. We therefore conducted a pan-cancer analysis of secretome gene expression changes to identify candidate diagnostic biomarkers and to investigate the underlying biological function of these changes. Using transcriptomic data spanning 32 cancer types and 30 healthy tissues, we quantified the relative diagnostic potential of secretome proteins for each cancer. Furthermore, we offer a potential mechanism by which cancer cells relieve secretory pathway stress by decreasing the expression of tissue-specific genes, thereby facilitating the secretion of proteins promoting invasion and proliferation. These results provide a more systematic understanding of the cancer secretome, facilitating its use in diagnostics and its targeting for therapeutic development.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
30
|
Chaiyawat P, Sungngam P, Teeyakasem P, Sirikaew N, Klangjorhor J, Settakorn J, Diskul-Na-Ayudthaya P, Chokchaichamnankit D, Srisomsap C, Svasti J, Pruksakorn D. Protein profiling of osteosarcoma tissue and soft callus unveils activation of the unfolded protein response pathway. Int J Oncol 2019; 54:1704-1718. [PMID: 30816440 PMCID: PMC6438438 DOI: 10.3892/ijo.2019.4737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Oncogenic drivers of osteosarcoma remain controversial due to the complexity of the genomic background of the disease. There are limited novel therapeutic options, and the survival rate of patients with osteosarcoma has not improved in decades. Genomic instability leads to complexity in various pathways, which is potentially revealed at the protein level. Therefore, the present study aimed to identify the mechanisms involved in the oncogenesis of osteosarcoma using proteomics and bioinformatics tools. As clinical specimens from patients are the most relevant disease-related source, expression patterns of proteins in osteosarcoma tissues were compared with soft tissue callus from donors containing high numbers of osteoblastic cells. Two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS) successfully identified 33 differentially expressed proteins in the osteosarcoma tissues compared with the soft tissue callus. Among these proteins, 29 proteins were significantly upregulated in osteosarcoma. A functionally grouped network of the overexpressed proteins, that was created using the ClueGo and CluePedia applications, demonstrated that the unfolded protein response (UPR) pathway was activated mainly through the activating transcription factor 6 arm in osteosarcoma. The results of proteomics analysis were confirmed by elevated expression of UPR-related chaperone proteins, including 78 kDa glucose-related protein (GRP78), endoplasmin, calreticulin and prelamin-A/C, in the patient-derived primary cells and osteosarcoma cell lines. Furthermore, the expression of GRP78, a master regulator of the UPR, was enhanced in the osteosarcoma tissues of patients that were resistant to double regimen of doxorubicin and a platinum-based drug. The findings of the present study suggest that targeting the UPR pathway may be promising for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patsadakorn Sungngam
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Song M, Cubillos-Ruiz JR. Endoplasmic Reticulum Stress Responses in Intratumoral Immune Cells: Implications for Cancer Immunotherapy. Trends Immunol 2019; 40:128-141. [DOI: 10.1016/j.it.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
|
32
|
Almiron Bonnin DA, Havrda MC, Israel MA. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target. Cancer Res 2018; 78:6031-6039. [PMID: 30333116 DOI: 10.1158/0008-5472.can-18-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
Cellular secretion is an important mediator of cancer progression. Secreted molecules in glioma are key components of complex autocrine and paracrine pathways that mediate multiple oncogenic pathologies. In this review, we describe tumor cell secretion in high-grade glioma and highlight potential novel therapeutic opportunities. Cancer Res; 78(21); 6031-9. ©2018 AACR.
Collapse
Affiliation(s)
- Damian A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mark A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
33
|
Asha K, Sharma-Walia N. Virus and tumor microenvironment induced ER stress and unfolded protein response: from complexity to therapeutics. Oncotarget 2018; 9:31920-31936. [PMID: 30159133 PMCID: PMC6112759 DOI: 10.18632/oncotarget.25886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum (ER) stress can be activated by various pathological and physiological conditions including the unfolded protein response (UPR) to restore homeostasis. The UPR signaling pathways initiated by double-stranded RNA-activated protein kinase (PKR) like ER kinase (PERK), inositol requiring enzyme 1 α (IRE1α), and activating transcription factor 6 (ATF6) are vital for tumor growth, aggressiveness, microenvironment remodeling, and resistance to cancer therapeutics. This review focuses on the role of ER stress and activity of UPR signaling pathways involved in tumor formation and uncontrolled cell proliferation during various cancers and viral malignancies.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| |
Collapse
|
34
|
Tesei A, Cortesi M, Zamagni A, Arienti C, Pignatta S, Zanoni M, Paolillo M, Curti D, Rui M, Rossi D, Collina S. Sigma Receptors as Endoplasmic Reticulum Stress "Gatekeepers" and their Modulators as Emerging New Weapons in the Fight Against Cancer. Front Pharmacol 2018; 9:711. [PMID: 30042674 PMCID: PMC6048940 DOI: 10.3389/fphar.2018.00711] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Mayra Paolillo
- Pharmacology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Curti
- Laboratory of Cellular and Molecular Neuropharmacology, Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Rubio-Patiño C, Bossowski JP, Chevet E, Ricci JE. Reshaping the Immune Tumor Microenvironment Through IRE1 Signaling. Trends Mol Med 2018; 24:607-614. [DOI: 10.1016/j.molmed.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
|
36
|
Lhomond S, Avril T, Dejeans N, Voutetakis K, Doultsinos D, McMahon M, Pineau R, Obacz J, Papadodima O, Jouan F, Bourien H, Logotheti M, Jégou G, Pallares‐Lupon N, Schmit K, Le Reste P, Etcheverry A, Mosser J, Barroso K, Vauléon E, Maurel M, Samali A, Patterson JB, Pluquet O, Hetz C, Quillien V, Chatziioannou A, Chevet E. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol Med 2018; 10:emmm.201707929. [PMID: 29311133 PMCID: PMC5840541 DOI: 10.15252/emmm.201707929] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor aggressiveness. Evidence suggests that the endoplasmic reticulum (ER), a major site for protein folding and quality control, plays a critical role in cancer development. This concept is valid in glioblastoma multiform (GBM), the most lethal primary brain cancer with no effective treatment. We previously demonstrated that the ER stress sensor IRE1α (referred to as IRE1) contributes to GBM progression, through XBP1 mRNA splicing and regulated IRE1-dependent decay (RIDD) of RNA Here, we first demonstrated IRE1 signaling significance to human GBM and defined specific IRE1-dependent gene expression signatures that were confronted to human GBM transcriptomes. This approach allowed us to demonstrate the antagonistic roles of XBP1 mRNA splicing and RIDD on tumor outcomes, mainly through selective remodeling of the tumor stroma. This study provides the first demonstration of a dual role of IRE1 downstream signaling in cancer and opens a new therapeutic window to abrogate tumor progression.
Collapse
Affiliation(s)
| | - Tony Avril
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | | | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece,Department of Biochemistry & BiotechnologyUniversity of ThessalyLarissaGreece
| | - Dimitrios Doultsinos
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Mari McMahon
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance,Apoptosis Research CentreSchool of Natural SciencesNUI GalwayGalwayIreland
| | - Raphaël Pineau
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Joanna Obacz
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Olga Papadodima
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
| | - Florence Jouan
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Heloise Bourien
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Marianthi Logotheti
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece,e‐NIOS PCKallithea‐AthensGreece
| | - Gwénaële Jégou
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | | | | | - Pierre‐Jean Le Reste
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Department of NeurosurgeryUniversity Hospital PontchaillouRennesFrance
| | - Amandine Etcheverry
- Integrated Functional Genomics and Biomarkers TeamUMR6290, CNRSUniversité de Rennes 1RennesFrance
| | - Jean Mosser
- Integrated Functional Genomics and Biomarkers TeamUMR6290, CNRSUniversité de Rennes 1RennesFrance
| | - Kim Barroso
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Elodie Vauléon
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Marion Maurel
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance,Apoptosis Research CentreSchool of Natural SciencesNUI GalwayGalwayIreland
| | - Afshin Samali
- Apoptosis Research CentreSchool of Natural SciencesNUI GalwayGalwayIreland
| | | | - Olivier Pluquet
- Institut Pasteur de LilleCNRS UMR8161 “Mechanisms of Tumourigenesis and Targeted Therapies”Université de LilleLilleFrance
| | - Claudio Hetz
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile,Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile,Center for Geroscience, Brain Health and MetabolismSantiagoChile,Buck Institute for Research on AgingNovatoCAUSA,Department of Immunology and Infectious diseasesHarvard School of Public HealthBostonMAUSA
| | - Véronique Quillien
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece,e‐NIOS PCKallithea‐AthensGreece
| | - Eric Chevet
- INSERM U1242, “Chemistry, Oncogenesis, Stress, Signaling”Université de Rennes 1RennesFrance,Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| |
Collapse
|
37
|
Liu XJ, Wei J, Shang YH, Huang HC, Lao FX. Modulation of AβPP and GSK3β by Endoplasmic Reticulum Stress and Involvement in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1157-1170. [PMID: 28339396 DOI: 10.3233/jad-161111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a dementia disease with neuronal loss and synaptic impairment. This impairment is caused, at least partly, by the generation of two main AD hallmarks, namely the hyperphosphorylated tau protein comprising neurofibrillary tangles and senile plaques containing amyloid-β (Aβ) peptides. The amyloid-β protein precursor (AβPP) and glycogen synthase kinase-3β (GSK3β) are two main proteins associated with AD and are closely correlated with these hallmarks. Recently, both of the proteins were reported to be modulated by endoplasmic reticulum stress (ERS) and are involved in the pathogenesis of AD. The mechanism of ERS plus the modulation of AβPP processing and GSK3β activity by ERS in AD are summarized and explored in this review.
Collapse
Affiliation(s)
- Xin-Jun Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Jun Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| |
Collapse
|
38
|
González-Quiroz M, Urra H, Limia CM, Hetz C. Homeostatic interplay between FoxO proteins and ER proteostasis in cancer and other diseases. Semin Cancer Biol 2018; 50:42-52. [PMID: 29369790 DOI: 10.1016/j.semcancer.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided.
Collapse
Affiliation(s)
- Matías González-Quiroz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Celia María Limia
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
39
|
Obacz J, Avril T, Rubio-Patiño C, Bossowski JP, Igbaria A, Ricci JE, Chevet E. Regulation of tumor-stroma interactions by the unfolded protein response. FEBS J 2017; 286:279-296. [PMID: 29239107 DOI: 10.1111/febs.14359] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a conserved adaptive pathway that helps cells cope with the protein misfolding burden within the endoplasmic reticulum (ER). Imbalance between protein folding demand and capacity in the ER leads to a situation called ER stress that is often observed in highly proliferative and secretory tumor cells. As such, activation of the UPR signaling has emerged as a key adaptive mechanism promoting cancer progression. It is becoming widely acknowledged that, in addition to its intrinsic effect on tumor biology, the UPR can also regulate tumor microenvironment. In this review, we discuss how the UPR coordinates the crosstalk between tumor and stromal cells, such as endothelial cells, normal parenchymal cells, and immune cells. In addition, we further describe the involvement of ER stress signaling in the response to current treatments as well as its impact on antitumor immunity mainly driven by immunogenic cell death. Finally, in this context, we discuss the relevance of targeting ER stress/UPR signaling as a potential anticancer approach.
Collapse
Affiliation(s)
- Joanna Obacz
- Inserm U1242 'Chemistry, Oncogenesis, Stress & Signaling', Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugene Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242 'Chemistry, Oncogenesis, Stress & Signaling', Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugene Marquis, Rennes, France
| | | | | | - Aeid Igbaria
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Eric Chevet
- Inserm U1242 'Chemistry, Oncogenesis, Stress & Signaling', Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugene Marquis, Rennes, France
| |
Collapse
|
40
|
Role of the unfolded protein response in tumor cell characteristics and cancer outcome. Curr Opin Oncol 2017; 29:41-47. [PMID: 27845970 DOI: 10.1097/cco.0000000000000339] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW In the present review, we discuss the possible role of the unfolded protein response (UPR) in the acquisition of tumor cell characteristics and in the prognosis of cancer outcome, which could assist and contribute to the development of more promising therapeutic strategies. RECENT FINDINGS Accumulating evidence supports the idea that alteration of endoplasmic reticulum proteostasis is a key player in cancer development and aggressiveness. Some UPR components were reported as independent prognostic biomarker. Recent evidence supports a relationship between the UPR activation status and prognosis of tumors. This may represent an interesting avenue for better characterization of carcinogenesis and tumor type. SUMMARY The contribution of the UPR to the characteristics of malignant tumors is complex and dependent on both intrinsic (e.g. oncogene addiction) and extrinsic (e.g. hypoxia) contexts. Through adaptation to severe microenvironmental conditions, UPR branches are generally a survival strategy for cancer cells, which are able to cope with this challenging context. We address the question of whether the activation status of the UPR is related to tumor properties and discuss the role of the UPR in the clinical context.
Collapse
|
41
|
Vanacker H, Vetters J, Moudombi L, Caux C, Janssens S, Michallet MC. Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance. Trends Cancer 2017; 3:491-505. [PMID: 28718404 DOI: 10.1016/j.trecan.2017.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis results in ER stress and activation of the unfolded protein response (UPR). This response alleviates cell stress, and is activated in both tumor cells and tumor infiltrating immune cells. The UPR plays a dual function in cancer biology, acting as a barrier to tumorigenesis at the premalignant stage, while fostering cancer maintenance in established tumors. In infiltrating immune cells, the UPR has been involved in both immunosurveillance and immunosuppressive functions. This review aims to decipher the role of the UPR at different stages of tumorigenesis and how the UPR shapes the balance between immunosurveillance and immune escape. This knowledge may improve existing UPR-targeted therapies and the design of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hélène Vanacker
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Jessica Vetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium and Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Lyvia Moudombi
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Sophie Janssens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium and Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Marie-Cécile Michallet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France.
| |
Collapse
|
42
|
Doultsinos D, Avril T, Lhomond S, Dejeans N, Guédat P, Chevet E. Control of the Unfolded Protein Response in Health and Disease. SLAS DISCOVERY 2017; 22:787-800. [PMID: 28453376 DOI: 10.1177/2472555217701685] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) is an integrated, adaptive biochemical process that is inextricably linked with cell homeostasis and paramount to maintenance of normal physiological function. Prolonged accumulation of improperly folded proteins in the endoplasmic reticulum (ER) leads to stress. This is the driving stimulus behind the UPR. As such, prolonged ER stress can push the UPR past beneficial functions such as reduced protein production and increased folding and clearance to apoptotic signaling. The UPR is thus contributory to the commencement, maintenance, and exacerbation of a multitude of disease states, making it an attractive global target to tackle conditions sorely in need of novel therapeutic intervention. The accumulation of information of screening tools, readily available therapies, and potential pathways to drug development is the cornerstone of informed clinical research and clinical trial design. Here, we review the UPR's involvement in health and disease and, beyond providing an in-depth description of the molecules found to target the three UPR arms, we compile all the tools available to screen for and develop novel therapeutic agents that modulate the UPR with the scope of future disease intervention.
Collapse
Affiliation(s)
- Dimitrios Doultsinos
- 1 Inserm U1242, Chemistry, Oncogenesis, Stress & Signaling, University of Rennes 1, Rennes, France.,2 Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- 1 Inserm U1242, Chemistry, Oncogenesis, Stress & Signaling, University of Rennes 1, Rennes, France.,2 Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | | | | | | | - Eric Chevet
- 1 Inserm U1242, Chemistry, Oncogenesis, Stress & Signaling, University of Rennes 1, Rennes, France.,2 Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.,3 BMYscreen, Bergonié Cancer Institute, Bordeaux, France
| |
Collapse
|
43
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Sharma R, Quilty F, Gilmer JF, Long A, Byrne AM. Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependant mechanism. Oncotarget 2017; 8:967-978. [PMID: 27888615 PMCID: PMC5352210 DOI: 10.18632/oncotarget.13514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022] Open
Abstract
Bile acids are components of gastro-duodenal refluxate and regarded as causative agents in oesophageal disease but the precise mechanisms are unknown. Here we demonstrate that a specific subset of physiological bile acids affect the protein secretory pathway by inducing ER stress, activating the Unfolded Protein Response (UPR) and causing disassembly of the Golgi apparatus in oesophageal cells. Deoxycholic acid (DCA), Chemodeoxycholic acid (CDCA) and Lithocholic acid (LCA) activated the PERK arm of the UPR, via phosphorylation of eIF2α and up-regulation of ATF3, CHOP and BiP/GRP78. UPR activation by these bile acids is mechanistically linked with Golgi fragmentation, as modulating the UPR using a PERK inhibitor (GSK2606414) or salubrinal attenuated bile acid-induced effects on Golgi structure. Furthermore we demonstrate that DCA, CDCA and LA activate Src kinase and that inhibition of this kinase attenuated both bile acid-induced BiP/GRP78 expression and Golgi fragmentation. This study highlights a novel mechanism whereby environmental factors (bile acids) impact important cellular processes regulating cell homeostasis, including the UPR and Golgi structure, which may contribute to cancer progression in the oesophagus.
Collapse
Affiliation(s)
- Ruchika Sharma
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Science, St James's Hospital, D08W9RT, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Francis Quilty
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Science, St James's Hospital, D08W9RT, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - John F. Gilmer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Science, St James's Hospital, D08W9RT, Ireland
| | - Anne-Marie Byrne
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Science, St James's Hospital, D08W9RT, Ireland
| |
Collapse
|
45
|
Oakes SA. Endoplasmic reticulum proteostasis: a key checkpoint in cancer. Am J Physiol Cell Physiol 2016; 312:C93-C102. [PMID: 27856431 DOI: 10.1152/ajpcell.00266.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
The unfolded protein response (UPR) is an intracellular signaling network largely controlled by three endoplasmic reticulum (ER) transmembrane proteins, inositol-requiring enzyme 1α, PRK-like ER kinase, and activating transcription factor 6, that monitor the protein-folding status of the ER and initiate corrective measures to maintain ER homeostasis. Hypoxia, nutrient deprivation, proteasome dysfunction, sustained demands on the secretory pathway or somatic mutations in its client proteins, conditions often encountered by cancer cells, can lead to the accumulation of misfolded proteins in the ER and cause "ER stress." Under remediable levels of ER stress, the homeostatic UPR outputs activate transcriptional and translational changes that promote cellular adaptation. However, if the ER stress is irreversible despite these measures, a terminal UPR program supersedes that actively signals cell destruction. In addition to its prosurvival and prodeath outputs, the UPR is now recognized to play a major role in the differentiation and activation of specific immune cells, as well as proinflammatory cytokine production in many cell types. Given the numerous intrinsic and extrinsic factors that threaten the fidelity of the secretory pathway in cancer cells, it is not surprising that ER stress is documented in many solid and hematopoietic malignancies, but whether ongoing UPR signaling is beneficial or detrimental to tumor growth remains hotly debated. Here I review recent evidence that cancer cells are prone to loss of proteostasis within the ER, and hence may be susceptible to targeted interventions that either reduce homeostatic UPR outputs or alternatively trigger the terminal UPR.
Collapse
Affiliation(s)
- Scott A Oakes
- Department of Pathology, Diabetes Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
46
|
Wang Y, Lieberman R, Pan J, Zhang Q, Du M, Zhang P, Nevalainen M, Kohli M, Shenoy NK, Meng H, You M, Wang L. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol Cancer 2016; 15:70. [PMID: 27832783 PMCID: PMC5105253 DOI: 10.1186/s12943-016-0556-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Treatment options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically are centered on docetaxel-based chemotherapy. We previously reported that elevated miR-375 levels were significantly associated with poor overall survival of mCRPC patients. In this study, we evaluated if miR-375 induced chemo-resistance to docetaxel through regulating target genes associated with drug resistance. METHODS We first compared miR-375 expression level between prostate cancer tissues and normal prostate tissues using data from The Cancer Genome Atlas (TCGA). To examine the role of miR-375 in docetaxel resistance, we transfected miR-375 using a pre-miRNA lentiviral vector and examined the effects of exogenously overexpressed miR-375 on cell growth in two prostate cancer cell lines, DU145 and PC-3. To determine the effect of overexpressed miR-375 on tumor growth and chemo-resistance in vivo, we injected prostate cancer cells overexpressing miR-375 into nude mice subcutaneously and evaluated tumor growth rate during docetaxel treatment. Lastly, we utilized qRT-PCR and Western blot assay to examine two miR-375 target genes, SEC23A and YAP1, for their expression changes after miR-375 transfection. RESULTS By examining 495 tumor tissues and 52 normal tissues from TCGA data, we found that compared to normal prostate, miR-375 was significantly overexpressed in prostate cancer tissues (8.45-fold increase, p value = 1.98E-23). Docetaxel treatment induced higher expression of miR-375 with 5.83- and 3.02-fold increases in DU145 and PC-3 cells, respectively. Interestingly, miR-375 appeared to play a dual role in prostate cancer proliferation. While miR-375 overexpression caused cell growth inhibition and cell apoptosis, elevated miR-375 also significantly reduced cell sensitivity to docetaxel treatment in vitro, as evidenced by decreased apoptotic cells. In vivo xenograft mouse study showed that tumors with increased miR-375 expression were more tolerant to docetaxel treatment, demonstrated by greater tumor weight and less apoptotic cells in miR-375 transfected group when compared to empty vector control group. In addition, we examined expression levels of the two miR-375 target genes (SEC23A and YAP1) and observed significant reduction in the expression at both protein and mRNA levels in miR-375 transfected prostate cancer cell lines. TCGA dataset analysis further confirmed the negative correlations between miR-375 and the two target genes (r = -0.62 and -0.56 for SEC23A and YAP1, respectively; p < 0.0001). CONCLUSIONS miR-375 is involved in development of chemo-resistance to docetaxel through regulating SEC23A and YAP1 expression. Our results suggest that miR-375 or its target genes, SEC23A or YAP1, might serve as potential predictive biomarkers to docetaxel-based chemotherapy and/or therapeutic targets to overcome chemo-resistance in mCRPC stage.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province's Universities, Dalian Ocean University, Dalian, 116021, China.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Rachel Lieberman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jing Pan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qi Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meijun Du
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Peng Zhang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marja Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Niraj K Shenoy
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hui Meng
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ming You
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
47
|
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Reprint of: Signaling the Unfolded Protein Response in primary brain cancers. Brain Res 2016; 1648:542-552. [PMID: 27362469 DOI: 10.1016/j.brainres.2016.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Pierre-Jean Le Reste
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France; Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - Tony Avril
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Véronique Quillien
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Morandi
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France
| | - Eric Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
48
|
Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends Cancer 2016; 2:252-262. [PMID: 28741511 DOI: 10.1016/j.trecan.2016.03.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
Tumor cells are often exposed to intrinsic and external factors that alter protein homeostasis, thus producing endoplasmic reticulum (ER) stress. To cope with this, cells evoke an adaptive mechanism to restore ER proteostasis known as the unfolded protein response (UPR). The three main UPR signaling branches initiated by IRE1α, PERK, and ATF6 are crucial for tumor growth and aggressiveness as well as for microenvironment remodeling or resistance to treatment. We provide a comprehensive overview of the contribution of the UPR to cancer biology and the acquisition of malignant characteristics, thus highlighting novel aspects including inflammation, invasion and metastasis, genome instability, resistance to chemo/radiotherapy, and angiogenesis. The therapeutic potential of targeting ER stress signaling in cancer is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Tony Avril
- Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labellisée (ERL) 440-Oncogenesis, Stress, and Signaling, University of Rennes 1, 35000 Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labellisée (ERL) 440-Oncogenesis, Stress, and Signaling, University of Rennes 1, 35000 Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
49
|
Huang KC, Chen Z, Jiang Y, Akare S, Kolber-Simonds D, Condon K, Agoulnik S, Tendyke K, Shen Y, Wu KM, Mathieu S, Choi HW, Zhu X, Shimizu H, Kotake Y, Gerwick WH, Uenaka T, Woodall-Jappe M, Nomoto K. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61. Mol Cancer Ther 2016; 15:1208-16. [PMID: 27196783 DOI: 10.1158/1535-7163.mct-15-0648] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
Apratoxin A is a natural product with potent antiproliferative activity against many human cancer cell lines. However, we and other investigators observed that it has a narrow therapeutic window in vivo Previous mechanistic studies have suggested its involvement in the secretory pathway as well as the process of chaperone-mediated autophagy. Still the link between the biologic activities of apratoxin A and its in vivo toxicity has remained largely unknown. A better understanding of this relationship is critically important for any further development of apratoxin A as an anticancer drug. Here, we describe a detailed pathologic analysis that revealed a specific pancreas-targeting activity of apratoxin A, such that severe pancreatic atrophy was observed in apratoxin A-treated animals. Follow-up tissue distribution studies further uncovered a unique drug distribution profile for apratoxin A, showing high drug exposure in pancreas and salivary gland. It has been shown previously that apratoxin A inhibits the protein secretory pathway by preventing cotranslational translocation. However, the molecule targeted by apratoxin A in this pathway has not been well defined. By using a (3)H-labeled apratoxin A probe and specific Sec 61α/β antibodies, we identified that the Sec 61 complex is the molecular target of apratoxin A. We conclude that apratoxin A in vivo toxicity is likely caused by pancreas atrophy due to high apratoxin A exposure. Mol Cancer Ther; 15(6); 1208-16. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | | | | | | |
Collapse
|
50
|
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Signaling the Unfolded Protein Response in primary brain cancers. Brain Res 2016; 1642:59-69. [PMID: 27016056 DOI: 10.1016/j.brainres.2016.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target.
Collapse
Affiliation(s)
- Pierre-Jean Le Reste
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France; Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - Tony Avril
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Véronique Quillien
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Morandi
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France
| | - Eric Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|