1
|
Tang H, Kong Q, Zhang Z, Wu W, Yuan L, Liu X. Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. Purinergic Signal 2024:10.1007/s11302-024-10045-8. [PMID: 39215950 DOI: 10.1007/s11302-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.
Collapse
Affiliation(s)
- Hao Tang
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Shu LX, Cao LL, Guo X, Wang ZB, Wang SZ. Mechanism of efferocytosis in atherosclerosis. J Mol Med (Berl) 2024; 102:831-840. [PMID: 38727748 DOI: 10.1007/s00109-024-02439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.
Collapse
Affiliation(s)
- Li-Xia Shu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Liu-Li Cao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Xin Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Li Y, Zhou M, Li H, Dai C, Yin L, Liu C, Li Y, Zhang E, Dong X, Ji H, Hu Q. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways. Eur Heart J 2024; 45:268-283. [PMID: 38036416 DOI: 10.1093/eurheartj/ehad796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND AND AIMS Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cβ/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS Macrophage P2Y6R regulates phospholipase Cβ/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.
Collapse
Affiliation(s)
- Yehong Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Chunxiao Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Yuxin Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Enming Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Xinli Dong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Hui Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| |
Collapse
|
4
|
L Bello M, Mendes GEM, Silva ACR, Faria RX. Virtual screening indicates potential inhibitors of the P2X7 receptor. Comput Biol Med 2023; 164:107299. [PMID: 37552915 DOI: 10.1016/j.compbiomed.2023.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Anti-inflammatory agents can be synthetic or natural compounds and are often used to attenuate different levels of inflammation. Inflammatory diseases, due to the involvement of multiple systems, are becoming difficult to treat, involve long durations of therapy where applicable, have a high cost of management and have a deleterious impact on public health. The search for natural and synthetic compounds with anti-inflammatory activity is an important strategy in drug design. Bioactive synthetic drugs may be repurposed for other pharmacological applications, and natural product chemical structures offer unlimited opportunities for new drug discoveries due to the unparalleled availability of chemical diversity. Virtual screening of 2774 molecules on the mouse P2X7 protein showed that potential ligands are composed of five flavonoids (narirutin, diosmin, complanatuside, hesperidin, and oroxin B) and other drugs such as velpatasvir, itacitinib and lifitegrast. In vitro studies in mouse cells confirmed the inhibitory activity of the indicated ligands on the P2X7 receptor by applying virtual screening. The behavior of protein bonded to the ligands was verified by analysis of the molecular dynamic simulation trajectories for four of the most potent inhibitor compounds, indicating that the ligands velpatasvir, itacitinib, lithospermic acid and narirutin remained in the binding site indicated by molecular docking.
Collapse
Affiliation(s)
- Murilo L Bello
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Eduardo M Mendes
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Cláudia R Silva
- Laboratory for Environmental Health Assessment and Promotion, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Robson X Faria
- Laboratory for Environmental Health Assessment and Promotion, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Centipede Venom: A Potential Source of Ion Channel Modulators. Int J Mol Sci 2022; 23:ijms23137105. [PMID: 35806107 PMCID: PMC9266919 DOI: 10.3390/ijms23137105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.
Collapse
|
6
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Differential Contractile Reactivity to Nucleotides in Femoral Arteries of OLETF and LETO Rats. Biol Pharm Bull 2020; 43:1987-1992. [PMID: 33268721 DOI: 10.1248/bpb.b20-00653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular nucleotides play an important role in the regulation of vascular function, and an abnormal vascular function is an important participant in the development and progression of diabetic vascular complications. The purpose of this study was to determine whether contractile responses induced by extracellular nucleotides and a dinucleotide, uridine adenosine tetraphosphate (Up4A), in femoral arteries would be altered at the chronic stage of type 2 diabetes. We determined the changes in contractile reactivity induced by ATP, uridine triphosphate (UTP), uridine diphosphate (UDP), and Up4A in the femoral arteries of Otsuka Long-Evans Tokushima Fatty (OLETF) rats (aged male type 2 diabetic rats) and, Long-Evans Tokushima Otsuka (LETO) rats (controls for OLETF rats). ATP-induced contractions were greater in OLETF rats than in LETO rats. UTP-induced contractions were lower in OLETF rats than in LETO rats. UDP- and Up4A-induced contractions were similar between OLETF and LETO rats. The femoral artery contractile changes induced by the extracellular nucleotides and dinucleotide were similar when nitric oxide synthase was inhibited. These results suggest that the extent of femoral artery contractile reactivity to nucleotides/dinucleotides differs during long-term duration of type 2 diabetes.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
9
|
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res 2020; 117:1284-1294. [PMID: 32991685 DOI: 10.1093/cvr/cvaa275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside that plays a major role in the physiology and physiopathology of the coronary artery system, mainly by activating its A2A receptors (A2AR). Adenosine is released by myocardial, endothelial, and immune cells during hypoxia, ischaemia, or inflammation, each condition being present in coronary artery disease (CAD). While activation of A2AR improves coronary blood circulation and leads to anti-inflammatory effects, down-regulation of A2AR has many deleterious effects during CAD. A decrease in the level and/or activity of A2AR leads to: (i) lack of vasodilation, which decreases blood flow, leading to a decrease in myocardial oxygenation and tissue hypoxia; (ii) an increase in the immune response, favouring inflammation; and (iii) platelet aggregation, which therefore participates, in part, in the formation of a fibrin-platelet thrombus after the rupture or erosion of the plaque, leading to the occurrence of acute coronary syndrome. Inflammation contributes to the development of atherosclerosis, leading to myocardial ischaemia, which in turn leads to tissue hypoxia. Therefore, a vicious circle is created that maintains and aggravates CAD. In some cases, studying the adenosinergic profile can help assess the severity of CAD. In fact, inducible ischaemia in CAD patients, as assessed by exercise stress test or fractional flow reserve, is associated with the presence of a reserve of A2AR called spare receptors. The purpose of this review is to present emerging experimental evidence supporting the existence of this adaptive adenosinergic response to ischaemia or inflammation in CAD. We believe that we have achieved a breakthrough in the understanding and modelling of spare A2AR, based upon a new concept allowing for a new and non-invasive CAD management.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Department of Cardiology, North Hospital, Chemin des Bourrely, F-13015 Marseille, France
| | - Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Laboratory of Biochemistry, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| |
Collapse
|
10
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Bibic L, Herzig V, King GF, Stokes L. Development of High-Throughput Fluorescent-Based Screens to Accelerate Discovery of P2X Inhibitors from Animal Venoms. JOURNAL OF NATURAL PRODUCTS 2019; 82:2559-2567. [PMID: 31532206 PMCID: PMC7123434 DOI: 10.1021/acs.jnatprod.9b00410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Animal venoms can play an important role in drug discovery, as they are a rich source of evolutionarily tuned compounds that target a variety of ion channels and receptors. To date, there are six FDA-approved drugs derived from animal venoms, with recent work using high-throughput platforms providing a variety of new therapeutic candidates. However, high-throughput methods for screening animal venoms against purinoceptors, one of the oldest signaling receptor families, have not been reported. Here, we describe a variety of quantitative fluorescent-based high-throughput screening (HTS) cell-based assays for screening animal venoms against ligand-gated P2X receptors. A diverse selection of 180 venoms from arachnids, centipedes, hymenopterans, and cone snails were screened, analyzed, and validated, both analytically and pharmacologically. Using this approach, we performed screens against human P2X3, P2X4, and P2X7 using three different fluorescent-based dyes on stable cell lines and isolated the active venom components. Our HTS assays are performed in 96-well format and allow simultaneous screening of multiple venoms on multiple targets, improving testing characteristics while minimizing costs, specimen material, and testing time. Moreover, utilizing our assays and applying them to the other natural product libraries, rather than venoms, might yield other novel natural products that modulate P2X activity.
Collapse
Affiliation(s)
- Lucka Bibic
- School
of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Volker Herzig
- Institute
for Molecular Bioscience, University of
Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute
for Molecular Bioscience, University of
Queensland, St Lucia, QLD 4072, Australia
| | - Leanne Stokes
- School
of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- E-mail:
| |
Collapse
|
12
|
van Duijn J, van Elsas M, Benne N, Depuydt M, Wezel A, Smeets H, Bot I, Jiskoot W, Kuiper J, Slütter B. CD39 identifies a microenvironment-specific anti-inflammatory CD8 + T-cell population in atherosclerotic lesions. Atherosclerosis 2019; 285:71-78. [PMID: 31048101 DOI: 10.1016/j.atherosclerosis.2019.04.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS CD8+ T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8+ T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8+ T-cell activation. Here, we address how this environment affects the functionality of CD8+ T-cells. METHODS AND RESULTS We compared the cytokine production of CD8+ T-cells derived from spleens and enzymatically digested aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry. Aortic CD8+ T-cells produced decreased amounts of IFN-γ and TNF-α compared to their systemic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was not associated with classical exhaustion markers, but with increased expression of the ectonucleotidase CD39. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we show that TCR signaling is required to induce CD39 expression on CD8+ T-cells in atherosclerotic lesions. Importantly, analysis of human endarterectomy samples showed a strong microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched blood samples. CONCLUSIONS Our results suggest that the continuous TCR signaling in the atherosclerotic environment in the vessel wall induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of immune regulation by CD8+ T-cells in atherosclerosis.
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marit van Elsas
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marie Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | | | | | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
13
|
Kutryb-Zajac B, Bulinska A, Zabielska MA, Mierzejewska P, Slominska EM, Smolenski RT. Vascular extracellular adenosine metabolism in mice correlates with susceptibility to atherosclerosis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:653-662. [PMID: 30587087 DOI: 10.1080/15257770.2018.1489051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models are widely used in atherosclerosis research. The most useful, economic and valid is mouse genetic model of this pathology. Purinergic signaling is an important mechanism regulating processes involved in the vascular inflammation and atherosclerosis. The aim of this study was to measure vascular activities of nucleotide and adenosine-degrading ecto-enzymes in different strains of mice and to compare them to atherosclerotic susceptibility. The vascular extracellular nucleotide catabolism pathway was analyzed in 6-month-old male genetically unmodified mouse strains: FVB/NJ, DBA/2J, BALB/c, C57Bl/6J and mouse knock-outs on C57Bl/6J background for LDLR (LDLR-/-) and for ApoE and LDLR (ApoE-/-LDLR-/-). LDLR-/- mice were a model of moderate hypercholesterolemia, while ApoE-/-LDLR-/- mice, a model of severe hypercholesterolemia with advanced atherosclerosis. FVB/NJ, DBA/2J and BALB/c mice showed high rates of vascular extracellular AMP hydrolysis and low activity of adenosine deamination. In turn, all mice with the C57Bl/6J background expressed diminished activity of vascular AMP hydrolysis. Mice with genetically-induced hyperlipidemia and atherosclerosis on the C57Bl/6J background revealed increased ecto-adenosine deaminase activity. Mouse strains that were resistant to atherosclerosis (FVB/NJ, DBA/2J, BALB/c) exhibited a protective extracellular vascular ecto-enzyme pattern directed toward the production of anti-inflammatory and anti-atherosclerotic adenosine. In turn, mice with genetically induced hypercholesterolemia and atherosclerosis expressed disturbed activities of ecto-5'nucleotidase and ecto-adenosine deaminase related to decreased production and increased degradation of extracellular adenosine.
Collapse
Affiliation(s)
| | - Alicja Bulinska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | | | | | - Ewa M Slominska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Ryszard T Smolenski
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
14
|
Bagatini MD, dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The Impact of Purinergic System Enzymes on Noncommunicable, Neurological, and Degenerative Diseases. J Immunol Res 2018; 2018:4892473. [PMID: 30159340 PMCID: PMC6109496 DOI: 10.1155/2018/4892473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Evidences show that purinergic signaling is involved in processes associated with health and disease, including noncommunicable, neurological, and degenerative diseases. These diseases strike from children to elderly and are generally characterized by progressive deterioration of cells, eventually leading to tissue or organ degeneration. These pathological conditions can be associated with disturbance in the signaling mediated by nucleotides and nucleosides of adenine, in expression or activity of extracellular ectonucleotidases and in activation of P2X and P2Y receptors. Among the best known of these diseases are atherosclerosis, hypertension, cancer, epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The currently available treatments present limited effectiveness and are mostly palliative. This review aims to present the role of purinergic signaling highlighting the ectonucleotidases E-NTPDase, E-NPP, E-5'-nucleotidase, and adenosine deaminase in noncommunicable, neurological, and degenerative diseases associated with the cardiovascular and central nervous systems and cancer. In conclusion, changes in the activity of ectonucleotidases were verified in all reviewed diseases. Although the role of ectonucleotidases still remains to be further investigated, evidences reviewed here can contribute to a better understanding of the molecular mechanisms of highly complex diseases, which majorly impact on patients' quality of life.
Collapse
Affiliation(s)
- Margarete Dulce Bagatini
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Andréia Machado Cardoso
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Mânica
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Ruedell Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fabiano Barbosa Carvalho
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Hitzel J, Lee E, Zhang Y, Bibli SI, Li X, Zukunft S, Pflüger B, Hu J, Schürmann C, Vasconez AE, Oo JA, Kratzer A, Kumar S, Rezende F, Josipovic I, Thomas D, Giral H, Schreiber Y, Geisslinger G, Fork C, Yang X, Sigala F, Romanoski CE, Kroll J, Jo H, Landmesser U, Lusis AJ, Namgaladze D, Fleming I, Leisegang MS, Zhu J, Brandes RP. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat Commun 2018; 9:2292. [PMID: 29895827 PMCID: PMC5997752 DOI: 10.1038/s41467-018-04602-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a causal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipoproteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2-controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
Collapse
Affiliation(s)
- Juliane Hitzel
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Eunjee Lee
- Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York, 10029, NY, USA
- Sema4 Genomics (a Mount Sinai venture), Stamford, 06902, CT, USA
| | - Yi Zhang
- Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York, 10029, NY, USA
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Sofia Iris Bibli
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Xiaogang Li
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Sven Zukunft
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Beatrice Pflüger
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Jiong Hu
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Andrea Estefania Vasconez
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 12203, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Berlin), Berlin, 13316, Germany
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, USA
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Ivana Josipovic
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Faculty of Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Hector Giral
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 12203, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Berlin), Berlin, 13316, Germany
| | - Yannick Schreiber
- Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, 60596, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Faculty of Medicine, Goethe University, Frankfurt am Main, 60590, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, 60596, Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 90095, CA, USA
| | - Fragiska Sigala
- 1st Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, 11364, Greece
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, 85724, AZ, USA
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 12203, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Berlin), Berlin, 13316, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Aldons J Lusis
- Departments of Medicine, Microbiology and Human Genetics, University of California, Los Angeles, 90095, CA, USA
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, 60590, Germany
| | - Ingrid Fleming
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Jun Zhu
- Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York, 10029, NY, USA.
- Sema4 Genomics (a Mount Sinai venture), Stamford, 06902, CT, USA.
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany.
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany.
| |
Collapse
|
16
|
Rybakowska IM, Kutryb-Zając B, Milczarek R, Łukasz B, Slominska EM, Smolenski RT. Activities of purine converting enzymes in heart, liver and kidney mice LDLR-/- and Apo E-/. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:340-347. [PMID: 29781767 DOI: 10.1080/15257770.2018.1460482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Nucleotide metabolism plays a major role in a number of vital cellular processes such as energetics. This, in turn, is important in pathologies such as atherosclerosis. Three month old atherosclerotic mice with knock outs for LDLR and apolipoprotein E (ApoE) were used for the experiments. Activities of AMP-deaminase (AMPD), ecto5'-nucleotidase (e5NT), adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP) were measured in heart, liver and kidney cortex and medulla by analysing conversion of substrates into products using HPLC. The activity of ecto5'-nucleotidase differ in hearts of LDLR-/- and ApoE-/- mice with no differences in ADA and AMPD activity. We noticed highest activity of e5NT in kidney medulla of the models. This model of atherosclerosis characterize with an inhibition of enzyme responsible for production of protective adenosine in heart but not in other organs and different metabolism of nucleotides in kidney medulla.
Collapse
Affiliation(s)
- I M Rybakowska
- a Department of Biochemistry and Clinical Physiology , Medical University of Gdansk , Gdansk , Poland
| | - B Kutryb-Zając
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - R Milczarek
- c Department of Pharmaceutical Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - B Łukasz
- a Department of Biochemistry and Clinical Physiology , Medical University of Gdansk , Gdansk , Poland
| | - E M Slominska
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - R T Smolenski
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
17
|
The therapeutic potential of purinergic signalling. Biochem Pharmacol 2018; 151:157-165. [DOI: 10.1016/j.bcp.2017.07.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
18
|
Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci 2018; 19:ijms19041222. [PMID: 29669994 PMCID: PMC5979498 DOI: 10.3390/ijms19041222] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular nucleotides (e.g., ATP, ADP, UTP, UDP) released by inflammatory cells interact with specific purinergic P2 type receptors to modulate their recruitment and activation. The focus of this review is on stimuli and mechanisms of extracellular nucleotide release and its consequences during inflammation. Necrosis leads to non-specific release of nucleotides, whereas specific release mechanisms include vesicular exocytosis and channel-mediated release via connexin or pannexin hemichannels. These release mechanisms allow stimulated inflammatory cells such as macrophages, neutrophils, and endothelial cells to fine-tune autocrine/paracrine responses during acute and chronic inflammation. Key effector functions of inflammatory cells are therefore regulated by purinergic signaling in acute and chronic diseases, making extracellular nucleotide release a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Michel Dosch
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Joël Gerber
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Fadi Jebbawi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| |
Collapse
|
19
|
Kutryb-Zajac B, Mateuszuk L, Zukowska P, Jasztal A, Zabielska MA, Toczek M, Jablonska P, Zakrzewska A, Sitek B, Rogowski J, Lango R, Slominska EM, Chlopicki S, Smolenski RT. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2018; 112:590-605. [PMID: 28513806 DOI: 10.1093/cvr/cvw203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Aims Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Methods and results Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. Conclusions This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Romuald Lango
- Department of Cardiac Anaesthesiology, Chair of Anaesthesiology and Intensive Care, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
20
|
Molica F, Meens MJ, Dubrot J, Ehrlich A, Roth CL, Morel S, Pelli G, Vinet L, Braunersreuther V, Ratib O, Chanson M, Hugues S, Scemes E, Kwak BR. Pannexin1 links lymphatic function to lipid metabolism and atherosclerosis. Sci Rep 2017; 7:13706. [PMID: 29057961 PMCID: PMC5651868 DOI: 10.1038/s41598-017-14130-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
Extracellular ATP is a central signaling molecule in inflammatory responses. Pannexin1 (Panx1) channels release ATP in a controlled manner and have been implicated in various inflammatory pathologies, but their role in atherogenesis remains elusive. Using atherosclerosis-susceptible mouse models with ubiquitous deletion of Panx1 (Panx1−/−Apoe−/−) or with Cre recombinase-mediated deletion of Panx1 in endothelial cells and monocytes (Tie2-CreTgPanx1fl/flApoe−/−; Panx1delApoe−/−), we identified a novel role for Panx1 in the lymphatic vasculature. Atherosclerotic lesion development in response to high-cholesterol diet was enhanced in Panx1delApoe−/− mice, pointing to an atheroprotective role for Panx1 in endothelial and/or monocytic cells. Unexpectedly, atherogenesis was not changed in mice with ubiquitous Panx1 deletion, but Panx1−/−Apoe−/− mice displayed reduced body weight, serum cholesterol, triglycerides and free fatty acids, suggesting altered lipid metabolism in these Panx1-deficient mice. Mechanistically, Panx1−/−Apoe−/− mice showed impairment of lymphatic vessel function with decreased drainage of interstitial fluids and reduced dietary fat absorption. Thus, the detrimental effect of Panx1 deletion in endothelial and/or monocytic cells during atherogenesis is counterbalanced by an opposite effect resulting from impaired lymphatic function in ubiquitous Panx1-deficient mice. Collectively, our findings unveil a pivotal role of Panx1 in linking lymphatic function to lipid metabolism and atherosclerotic plaque development.
Collapse
Affiliation(s)
- Filippo Molica
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Merlijn J Meens
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Juan Dubrot
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Avigail Ehrlich
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Christel L Roth
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Sandrine Morel
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Graziano Pelli
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Laurent Vinet
- Geneva University Hospitals, Department of Radiology and Medical Informatics, Geneva, CH-1211, Switzerland.,University of Geneva and Lausanne, School of Pharmaceutical Sciences, Geneva, CH-1211, Switzerland
| | | | - Osman Ratib
- Geneva University Hospitals, Department of Radiology and Medical Informatics, Geneva, CH-1211, Switzerland
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, Department of Pediatrics and of Cell Physiology and Metabolism, Geneva, CH-1211, Switzerland
| | - Stephanie Hugues
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland
| | - Eliana Scemes
- Albert Einstein College of Medicine, Department of Neuroscience, New York, NY, 10461, USA
| | - Brenda R Kwak
- University of Geneva, Department of Pathology and Immunology, Geneva, CH-1211, Switzerland. .,University of Geneva, Department of Medical Specializations - Cardiology, Geneva, CH-1211, Switzerland.
| |
Collapse
|
21
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
22
|
De Giorgi M, Enjyoji K, Jiang G, Csizmadia E, Mitsuhashi S, Gumina RJ, Smolenski RT, Robson SC. Complete deletion of Cd39 is atheroprotective in apolipoprotein E-deficient mice. J Lipid Res 2017; 58:1292-1305. [PMID: 28487312 PMCID: PMC5496028 DOI: 10.1194/jlr.m072132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Cd39 scavenges extracellular ATP and ADP, ultimately generating adenosine, a nucleoside, which has anti-inflammatory effects in the vasculature. We have evaluated the role of Cd39 in the development of atherosclerosis in hyperlipidemic mice. ApoE KO (Cd39+/+/ApoE−/−) and Cd39/ApoE double KO (DKO) (Cd39−/−/ApoE−/−) mice were maintained on chow or Western diet for up to 20 weeks before evaluation of atherosclerotic lesions. We found that DKO mice exhibited significantly fewer atherosclerotic lesions than ApoE KO mice, irrespective of diet. Analyses of plaque composition revealed diminished foam cells in the fatty streaks and smaller necrotic cores in advanced lesions of DKO mice, when compared with those in ApoE KO mice. This atheroprotective phenotype was associated with impaired platelet reactivity to ADP in vitro and prolonged platelet survival, suggesting decreased platelet activation in vivo. Further studies with either genetic deletion or pharmacological inhibition of Cd39 in macrophages revealed increased cholesterol efflux mediated via ABCA1 to ApoA1. This phenomenon was associated with elevated plasma HDL levels in DKO mice. Our findings indicate that complete deletion of Cd39 paradoxically attenuates development of atherosclerosis in hyperlipidemic mice. We propose that this phenotype occurs, at least in part, from diminished platelet activation, increased plasma HDL levels, and enhanced cholesterol efflux and indicates the complexity of purinergic signaling in atherosclerosis.
Collapse
Affiliation(s)
- Marco De Giorgi
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Keiichi Enjyoji
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gordon Jiang
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Shuji Mitsuhashi
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Richard J Gumina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Simon C Robson
- Transplant Institute and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
23
|
Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017; 120:207-228. [PMID: 28057794 DOI: 10.1161/circresaha.116.309726] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- From the Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
24
|
Baldissera MD, Souza CF, Doleski PH, Leal DBR, Stefani LM, Boligon AA, Monteiro SG. Enzymes that hydrolyze adenine nucleotides in a model of hypercholesterolemia induced by Triton WR-1339: protective effects of β-caryophyllene. Mol Cell Biochem 2017; 434:127-134. [PMID: 28432556 DOI: 10.1007/s11010-017-3042-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
Purinergic system has been proven to play a critical role in the inflammatory process and to represent an important therapeutic target to improve the immune response during hypercholesterolemia. β-caryophyllene, a phytocannabinoid compound, has a powerful hypolipidemic and anti-inflammatory actions. However, the effects of β-caryophyllene on seric enzymes of purinergic system have not been evaluated. The purpose of this study was to investigate whether β-caryophyllene is able to ameliorate the seric activities of NTPDase and adenosine deaminase (ADA) in a model of hypercholesterolemia induced by Triton WR-1339. The activities of NTPDase and ADA were evaluated enzymatically, and the seric levels of β-caryophyllene were evaluated by high-performance liquid chromatography. We found that treatment with β-caryophyllene ameliorates the enzymatic activities of NTPDase and ADA in serum of hypercholesterolemic rats, in a concentration-dependent manner. These results indicated that β-caryophyllene treatment could improve the immune response during hypercholesterolemia through purinergic pathway.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| | - Carine F Souza
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro H Doleski
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Daniela B R Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Santa Maria, Santa Catarina, Brazil
| | - Aline A Boligon
- Laboratory of Phytochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
25
|
Hirata Y, Takahashi M, Kudoh Y, Kano K, Kawana H, Makide K, Shinoda Y, Yabuki Y, Fukunaga K, Aoki J, Noguchi T, Matsuzawa A. trans-Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J Biol Chem 2017; 292:8174-8185. [PMID: 28360100 DOI: 10.1074/jbc.m116.771519] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Food-borne trans-fatty acids (TFAs) are mainly produced as byproducts during food manufacture. Recent epidemiological studies have revealed that TFA consumption is a major risk factor for various disorders, including atherosclerosis. However, the underlying mechanisms in this disease etiology are largely unknown. Here we have shown that TFAs potentiate activation of apoptosis signal-regulating kinase 1 (ASK1) induced by extracellular ATP, a damage-associated molecular pattern leaked from injured cells. Major food-associated TFAs such as elaidic acid (EA), linoelaidic acid, and trans-vaccenic acid, but not their corresponding cis isomers, dramatically enhanced extracellular ATP-induced apoptosis, accompanied by elevated activation of the ASK1-p38 pathway in a macrophage-like cell line, RAW264.7. Moreover, knocking out the ASK1-encoding gene abolished EA-mediated enhancement of apoptosis. We have reported previously that extracellular ATP induces apoptosis through the ASK1-p38 pathway activated by reactive oxygen species generated downstream of the P2X purinoceptor 7 (P2X7). However, here we show that EA did not increase ATP-induced reactive oxygen species generation but, rather, augmented the effects of calcium/calmodulin-dependent kinase II-dependent ASK1 activation. These results demonstrate that TFAs promote extracellular ATP-induced apoptosis by targeting ASK1 and indicate novel TFA-associated pathways leading to inflammatory signal transduction and cell death that underlie the pathogenesis and progression of TFA-induced atherosclerosis. Our study thus provides insight into the pathogenic mechanisms of and proposes potential therapeutic targets for these TFA-related disorders.
Collapse
Affiliation(s)
| | | | | | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, 100-0004 Tokyo, Japan
| | | | | | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, 100-0004 Tokyo, Japan
| | | | | |
Collapse
|
26
|
Zukowska P, Kutryb-Zajac B, Jasztal A, Toczek M, Zabielska M, Borkowski T, Khalpey Z, Smolenski RT, Slominska EM. Deletion of CD73 in mice leads to aortic valve dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1464-1472. [PMID: 28192180 DOI: 10.1016/j.bbadis.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
Abstract
Aortic stenosis is known to involve inflammation and thrombosis. Changes in activity of extracellular enzyme - ecto-5'-nucleotidase (referred also as CD73) can alter inflammatory and thrombotic responses. This study aimed to evaluate the effect of CD73 deletion in mice on development of aortic valve dysfunction and to compare it to the effect of high-fat diet. Four groups of mice (normal-diet Wild Type (WT), high-fat diet WT, normal diet CD73-/-, high-fat diet CD73-/-) were maintained for 15weeks followed by echocardiographic analysis of aortic valve function, measurement of aortic surface activities of nucleotide catabolism enzymes as well as alkaline phosphatase activity, mineral composition and histology of aortic valve leaflets. CD73-/- knock out led to an increase in peak aortic flow (1.06±0.26m/s) compared to WT (0.79±0.26m/s) indicating obstruction. Highest values of peak aortic flow (1.26±0.31m/s) were observed in high-fat diet CD73-/- mice. Histological analysis showed morphological changes in CD73-/- including thickening and accumulation of dark deposits, proved to be melanin. Concentrations of Ca2+, Mg2+ and PO43- in valve leaflets were elevated in CD73-/- mice. Alkaline phosphatase (ALP) activity was enhanced after ATP treatment and reduced after adenosine treatment in aortas incubated in osteogenic medium. AMP hydrolysis in CD73-/- was below 10% of WT. Activity of ecto-adenosine deaminase (eADA), responsible for adenosine deamination, in the CD73-/- was 40% lower when compared to WT. Deletion of CD73 in mice leads to aortic valve dysfunction similar to that induced by high-fat diet suggesting important role of this surface protein in maintaining heart valve integrity.
Collapse
Affiliation(s)
- P Zukowska
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - B Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - A Jasztal
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - M Toczek
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - M Zabielska
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - T Borkowski
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - Z Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona, College of Medicine, Tuscon, United States
| | - R T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - E M Slominska
- Department of Biochemistry, Medical University of Gdansk, Poland.
| |
Collapse
|
27
|
Watanabe S, Matsumoto T, Ando M, Kobayashi S, Iguchi M, Taguchi K, Kobayashi T. A Comparative Study of Vasorelaxant Effects of ATP, ADP, and Adenosine on the Superior Mesenteric Artery of SHR. Biol Pharm Bull 2017; 39:1374-80. [PMID: 27476946 DOI: 10.1248/bpb.b16-00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated superior mesenteric arteries from spontaneously hypertensive rats (SHR) to determine the relaxation responses induced by ATP, ADP, and adenosine and the relationship between the relaxant effects of these compounds and nitric oxide (NO) or cyclooxygenase (COX)-derived prostanoids. In rat superior mesenteric artery, relaxation induced by ATP and ADP but not by adenosine was completely eliminated by endothelial denudation. In the superior mesenteric arteries isolated from SHR [vs. age-matched control Wistar Kyoto rats (WKY)], a) ATP- and ADP-induced relaxations were weaker, whereas adenosine-induced relaxation was similar in both groups, b) ATP- and ADP-induced relaxations were substantially and partly reduced by N(G)-nitro-L-arginine [a NO synthase (NOS) inhibitor], respectively, c) indomethacin, an inhibitor of COX, increased ATP- and ADP-induced relaxations, d) ADP-induced relaxation was weaker under combined inhibition by NOS and COX, and e) adenosine-induced relaxation was not altered by treatment with these inhibitors. These data indicate that levels of responsiveness to these nucleotides/adenosine vary in the superior mesenteric arteries from SHR and WKY and are differentially modulated by NO and COX-derived prostanoids.
Collapse
Affiliation(s)
- Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The number of deaths associated with cardiovascular disease remains high, despite great advances in treating the associated high levels of cholesterol. The main underlying pathology of cardiovascular disease is atherosclerosis, which is recognized as a chronic autoimmune-like inflammatory disease. Hence, there is a pressing need to shed light on the immune pathways associated with atherosclerosis. B cells have long been thought to have a general protective effect in atherosclerosis. However, findings in the last decade have challenged this paradigm, showing that it is crucial to differentiate between the various B-cell subsets when assessing their role/effect on atherosclerosis. RECENT FINDINGS It has become increasingly recognized lately that B cells can have significant effects on the immune system independent of antibody production. The understanding that B cells form a major source of cytokines and can directly influence T-cell responses via surface markers, have led to the identification of novel B-cell subsets. These subsets are important modulators of autoimmune disorders but have not yet been fully investigated in atherosclerosis. SUMMARY Here we review the current known roles of B-cell subsets and the putative effects of recently identified B cells on atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
29
|
Ferrari D, Bianchi N, Eltzschig HK, Gambari R. MicroRNAs Modulate the Purinergic Signaling Network. Trends Mol Med 2016; 22:905-918. [PMID: 27623176 DOI: 10.1016/j.molmed.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules capable of silencing mRNA targets. miRNA dysregulation has been linked to cancer development, cardiovascular and neurological diseases, lipid metabolism, and impaired immunity. Therefore, miRNAs are gaining interest as putative novel disease biomarkers and therapeutic targets. Recent studies have shown that purinergic surface receptors activated by extracellular nucleotides (ATP, ADP, UTP, UDP), and by nucleosides such as adenosine (ADO), are subject to miRNA regulation. This opens a new and previously unrecognized opportunity to modulate the purinergic network with the aim of avoiding abnormal activation of specific receptor subtypes. miRNA technology will hopefully contribute strategies to prevent purinergic-mediated tissue damage in conditions of neurodegeneration, atherosclerosis, transplantation, and even neoplasia.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Nicoletta Bianchi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Medical School at Houston, Houston, TX, USA
| | - Roberto Gambari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Dissmore T, Seye CI, Medeiros DM, Weisman GA, Bradford B, Mamedova L. The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells. Atherosclerosis 2016; 252:128-135. [PMID: 27522265 PMCID: PMC5060008 DOI: 10.1016/j.atherosclerosis.2016.07.927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS The internalization of aggregated low-density lipoproteins (agLDL) mediated by low-density lipoprotein receptor related protein (LRP1) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL by the LDL receptor (LDLR). This study aims to define novel mechanisms of agLDL uptake through modulation of the actin cytoskeleton, to identify molecular targets involved in foam cell formation in vascular smooth muscle cells (VSMCs). The critical observation that formed the basis for these studies is that under pathophysiological conditions, nucleotide release from blood-derived and vascular cells activates SMC P2Y2 receptors (P2Y2Rs) leading to rearrangement of the actin cytoskeleton and cell motility. Therefore, we tested the hypothesis that P2Y2R activation mediates agLDL uptake by VSMCs. METHODS Primary VSMCs were isolated from aortas of wild type (WT) C57BL/6 and.P2Y2R-/- mice to investigate whether P2Y2R activation modulates LRP1 expression. Cells were transiently transfected with cDNA encoding a hemagglutinin-tagged (HA-tagged) WT P2Y2R, or a mutant P2Y2R that unlike the WT P2Y2R does not bind the cytoskeletal actin-binding protein filamin-A (FLN-A). RESULTS P2Y2R activation significantly increased agLDL uptake, and LRP1 mRNA expression decreased in P2Y2R-/- VSMCs versus WT. SMCs, expressing P2Y2R defective in FLN-A binding, exhibit 3-fold lower LDLR expression levels than SMCs expressing WT P2Y2R, while cells transfected with WT P2Y2R show greater agLDL uptake in both WT and P2Y2R-/- VSMCs versus cells transfected with the mutant P2Y2R. CONCLUSIONS Together, these results show that both LRP1 and LDLR expression and agLDL uptake are regulated by P2Y2R in VSMCs, and that agLDL uptake due to P2Y2R activation is dependent upon cytoskeletal reorganization mediated by P2Y2R binding to FLN-A.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/metabolism
- Cell Movement
- Cells, Cultured
- Cytoskeleton/metabolism
- Dose-Response Relationship, Drug
- Endocytosis
- Filamins/metabolism
- Foam Cells/metabolism
- Humans
- Lipoproteins, LDL/blood
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Receptors, LDL/metabolism
- Receptors, Purinergic P2Y2/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/metabolism
- Uridine Triphosphate/chemistry
Collapse
Affiliation(s)
| | - Cheikh I Seye
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Denis M Medeiros
- School of Graduate Studies, University of Missouri, Kansas City, MO, United States
| | - Gary A Weisman
- Department of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Barry Bradford
- Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Laman Mamedova
- Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
31
|
Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:695-712. [PMID: 27146293 DOI: 10.1007/s00210-016-1252-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.
Collapse
|
32
|
Fromonot J, Deharo P, Bruzzese L, Cuisset T, Quilici J, Bonatti S, Fenouillet E, Mottola G, Ruf J, Guieu R. Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease. Can J Physiol Pharmacol 2015; 94:272-7. [PMID: 26762617 DOI: 10.1139/cjpp-2015-0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age ± SD: 66.3 ± 11.3; mean SYNTAX score: 19.9 ± 12.3) and 30 healthy subjects (mean age: 61 ± 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 ± 0.5 μmol/L vs 0.53 ± 0.14 μmol/L; p < 0.01), HCys (15 ± 7.6 μmol/L vs 6.8 ± 3 μmol/L, p < 0.0001), and uric acid (242.6 ± 97 vs 202 ± 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations.
Collapse
Affiliation(s)
- J Fromonot
- a UMR MD2, Aix Marseille University and IRBA (Institute of Research in Biology of the French Army), School of Medicine, Bvd P Dramard 13015 Marseille, France.,b Laboratory of Biochemistry, Timone University Hospital, Marseille, France
| | - P Deharo
- c Department of Cardiology, Timone University Hospital, Marseille, France
| | - L Bruzzese
- a UMR MD2, Aix Marseille University and IRBA (Institute of Research in Biology of the French Army), School of Medicine, Bvd P Dramard 13015 Marseille, France
| | - T Cuisset
- c Department of Cardiology, Timone University Hospital, Marseille, France
| | - J Quilici
- c Department of Cardiology, Timone University Hospital, Marseille, France
| | - S Bonatti
- d Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II Napoly", Italia
| | - E Fenouillet
- a UMR MD2, Aix Marseille University and IRBA (Institute of Research in Biology of the French Army), School of Medicine, Bvd P Dramard 13015 Marseille, France
| | - G Mottola
- a UMR MD2, Aix Marseille University and IRBA (Institute of Research in Biology of the French Army), School of Medicine, Bvd P Dramard 13015 Marseille, France.,b Laboratory of Biochemistry, Timone University Hospital, Marseille, France
| | - J Ruf
- a UMR MD2, Aix Marseille University and IRBA (Institute of Research in Biology of the French Army), School of Medicine, Bvd P Dramard 13015 Marseille, France
| | - R Guieu
- a UMR MD2, Aix Marseille University and IRBA (Institute of Research in Biology of the French Army), School of Medicine, Bvd P Dramard 13015 Marseille, France.,b Laboratory of Biochemistry, Timone University Hospital, Marseille, France
| |
Collapse
|
33
|
Gao Q, Yang B, Guo Y, Zheng F. Efficacy of Adenosine in Patients With Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A PRISMA-Compliant Meta-Analysis. Medicine (Baltimore) 2015; 94:e1279. [PMID: 26266362 PMCID: PMC4616690 DOI: 10.1097/md.0000000000001279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/27/2022] Open
Abstract
Whether adenosine offers cardioprotective effects when used as an adjunctive therapy for patients with acute myocardial infarction (AMI) undergoing primary percutaneous coronary intervention (PCI) remains controversial.To evaluate, via meta-analysis, the efficacy of adenosine in patients with AMI undergoing PCI.Randomized controlled trials (RCTs) published in Medline, Embase, and the Cochrane Central Register of Controlled Trials.RCTs of patients with AMI undergoing primary PCI, comparing adenosine treatment and placebo groups and reporting mortality, thrombolysis in myocardial infarction (TIMI) flow grade, myocardial blush grade (MBG), re-infarction, left-ventricular ejection fraction (LVEF), ST-segment elevation resolution (STR), recurrent angina, or heart failure (HF).Risk of bias was assessed by the Cochrane guidelines and publication bias by Egger's test. For studies reported in multiple publications, the most complete publication was used. Arms using different dosing schedules were merged. Mean differences (MDs) or risk ratios (RRs) were determined.Data were extracted from 15 RCTs involving 1736 patients. Compared with placebo, adenosine therapy was associated with fewer occurrences of heart failure (RR: 0.65, 95% confidence interval [CI]: 0.43-0.97, P[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0.03) and no-reflow (TIMI flow grade <3, RR: 0.62, 95% CI: 0.45-0.85, P[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0.003; MBG[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0-1, RR: 0.81; 95% CI: 0.67-0.98, P[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0.03), more occurrences of STR (RR: 1.19, 95% CI: 1.07-1.31, P[REPLACEMENT CHARACTER]<[REPLACEMENT CHARACTER]0.00001), but no overall improvement of LVEF (MD: 2.29, 95% CI: -0.09 to 4.67, P[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0.06). Adenosine improved LVEF in the intravenous subgroup and the regular-dose intracoronary (IC) subgroup (0.24-2.25[REPLACEMENT CHARACTER]mg) compared with placebo (MD: 2.68, 95% CI: 0.66-4.70, P[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0.009). Adenosine was associated with a poorer LVEF in the high-dose (4-6[REPLACEMENT CHARACTER]mg) IC subgroup (MD: -2.40; 95% CI: -4.72 to -0.09, P[REPLACEMENT CHARACTER]=[REPLACEMENT CHARACTER]0.04). There was no significant evidence that adenosine reduced rates of all-cause mortality, cardiovascular mortality or re-infarction after PCI.Adenosine dosage and administration routes, baseline profiles, and endpoints differed among included RCTs. Performance, publication, and reporting biases remain possible.Adenosine therapy appears to improve several outcomes in patients with AMI after PCI, but there is no evidence that adenosine can reduce mortality rates.
Collapse
Affiliation(s)
- Qijun Gao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China (QG, BY); Department of Cardiology, First People's Hospital of Tianmen, Tianmen, Hubei Province, P.R. China (QG); Department of Epidemiology, School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China (YG); and Medical Faculty, University of Cologne, Cologne, Germany (FZ)
| | | | | | | |
Collapse
|