1
|
Kim J, Ng RH, Liang J, Johnson D, Shin YS, Chatziioannou AF, Phelps ME, Wei W, Levine RD, Heath JR. Kinetic Trajectories of Glucose Uptake in Single Cancer Cells Reveal a Drug-Induced Cell-State Change Within Hours of Drug Treatment. J Phys Chem B 2024; 128:7978-7986. [PMID: 39115241 DOI: 10.1021/acs.jpcb.4c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of drug resistance is a nearly universal phenomenon in patients with glioblastoma multiforme (GBM) brain tumors. Upon treatment, GBM cancer cells may initially undergo a drug-induced cell-state change to a drug-tolerant, slow-cycling state. The kinetics of that process are not well understood, in part due to the heterogeneity of GBM tumors and tumor models, which can confound the interpretation of kinetic data. Here, we resolve drug-adaptation kinetics in a patient-derived in vitro GBM tumor model characterized by the epithelial growth factor receptor (EGFR) variant(v)III oncogene treated with an EGFR inhibitor. We use radiolabeled 18F-fluorodeoxyglucose (FDG) to monitor the glucose uptake trajectories of single GBM cancer cells over a 12 h period of drug treatment. Autocorrelation analysis of the single-cell glucose uptake trajectories reveals evidence of a drug-induced cell-state change from a high- to low-glycolytic phenotype after 5-7 h of drug treatment. Information theoretic analysis of a bulk transcriptome kinetic series of the GBM tumor model delineated the underlying molecular mechanisms driving the cellular state change, including a shift from a stem-like mesenchymal state to a more differentiated, slow-cycling astrocyte-like state. Our results demonstrate that complex drug-induced cancer cell-state changes of cancer cells can be captured via measurements of single cell metabolic trajectories and reveal the extremely facile nature of drug adaptation.
Collapse
Affiliation(s)
- Jungwoo Kim
- Innovation Center for R&D Regulation and Management, Korea Institute of Science & Technology Evaluation and Planning, Eumseong-gun, Chungcheongbuk-do 27740, Korea
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - JingXin Liang
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dazy Johnson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Young Shik Shin
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Research & Technology Center North America, Robert Bosch LLC, Sunnyvale, California 94085, United States
| | - Arion F Chatziioannou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095, United States
| | - Michael E Phelps
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095, United States
| | - Wei Wei
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90024, United States
| | - Raphael D Levine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90024, United States
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - James R Heath
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Lin Y, Wei D, He X, Huo L, Wang J, Zhang X, Wu Y, Zhang R, Gao Y, Kang T. RAB22A sorts epithelial growth factor receptor (EGFR) from early endosomes to recycling endosomes for microvesicles release. J Extracell Vesicles 2024; 13:e12494. [PMID: 39051763 PMCID: PMC11270584 DOI: 10.1002/jev2.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Microvesicles (MVs) containing proteins, nucleic acid or organelles are shed from the plasma membrane. Although the mechanisms of MV budding are well elucidated, the connection between endosomal trafficking and MV formation remains poorly understood. In this report, RAB22A is revealed to be crucial for EGFR-containing MVs formation by the RAB GTPase family screening. RAB22A recruits TBC1D2B, a GTPase-activating protein (GAP) of RAB7A, to inactivate RAB7A, thus preventing EGFR from being transported to late endosomes and lysosomes. RAB22A also engages SH3BP5L, a guanine-nucleotide exchange factor (GEF) of RAB11A, to activate RAB11A on early endosomes. Consequently, EGFR is recycled to the cell surface and packaged into MVs. Furthermore, EGFR can phosphorylate RAB22A at Tyr136, which in turn promotes EGFR-containing MVs formation. Our findings illustrate that RAB22A acts as a sorter on early endosomes to sort EGFR to recycling endosomes for MV shedding by both activating RAB11A and inactivating RAB7A.
Collapse
Affiliation(s)
- Yujie Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xiaobo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Jingxuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
3
|
Natsume M, Niwa M, Ichikawa S, Okamoto T, Tsutsui H, Usukura D, Murata T, Abe R, Shimonaka M, Nishida T, Shiina I, Obata Y. Brefeldin A and M-COPA block the export of RTKs from the endoplasmic reticulum via simultaneous inactivation of ARF1, ARF4, and ARF5. J Biol Chem 2024; 300:107327. [PMID: 38679330 PMCID: PMC11127164 DOI: 10.1016/j.jbc.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.
Collapse
Affiliation(s)
- Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Mariko Niwa
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Sho Ichikawa
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takuma Okamoto
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Hisazumi Tsutsui
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Daiki Usukura
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Murata
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba, Japan
| | - Motoyuki Shimonaka
- Faculty of Science, Department of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, Tokyo, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Isamu Shiina
- Faculty of Science, Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Miao J, Dong J, Miao Y, Bai Y, Qu Z, Jassim BA, Huang B, Nguyen Q, Ma Y, Murray AA, Li J, Low PS, Zhang ZY. Discovery of a selective TC-PTP degrader for cancer immunotherapy. Chem Sci 2023; 14:12606-12614. [PMID: 38020389 PMCID: PMC10646932 DOI: 10.1039/d3sc04541b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
T-cell protein tyrosine phosphatase (TC-PTP), encoded by PTPN2, has emerged as a promising target for cancer immunotherapy. TC-PTP deletion in B16 melanoma cells promotes tumor cell antigen presentation, while loss of TC-PTP in T-cells enhances T-cell receptor (TCR) signaling and stimulates cell proliferation and activation. Therefore, there is keen interest in developing TC-PTP inhibitors as novel immunotherapeutic agents. Through rational design and systematic screening, we discovered the first highly potent and selective TC-PTP PROTAC degrader, TP1L, which induces degradation of TC-PTP in multiple cell lines with low nanomolar DC50s and >110-fold selectivity over the closely related PTP1B. TP1L elevates the phosphorylation level of TC-PTP substrates including pSTAT1 and pJAK1, while pJAK2, the substrate of PTP1B, is unaffected by the TC-PTP degrader. TP1L also intensifies interferon gamma (IFN-γ) signaling and increases MHC-I expression. In Jurkat cells, TP1L activates TCR signaling through increased phosphorylation of LCK. Furthermore, in a CAR-T cell and KB tumor cell co-culture model, TP1L enhances CAR-T cell mediated tumor killing efficacy through activation of the CAR-T cells. Thus, we surmise that TP1L not only provides a unique opportunity for in-depth interrogation of TC-PTP biology but also serves as an excellent starting point for the development of novel immunotherapeutic agents targeting TC-PTP.
Collapse
Affiliation(s)
- Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Zihan Qu
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Brenson A Jassim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Bo Huang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Quyen Nguyen
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Yuan Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Allison A Murray
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jinyue Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Philip S Low
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Institute for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Institute for Drug Discovery, Purdue University West Lafayette IN 47907 USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Institute for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Institute for Drug Discovery, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
5
|
Obata Y, Kurokawa K, Tojima T, Natsume M, Shiina I, Takahashi T, Abe R, Nakano A, Nishida T. Golgi retention and oncogenic KIT signaling via PLCγ2-PKD2-PI4KIIIβ activation in gastrointestinal stromal tumor cells. Cell Rep 2023; 42:113035. [PMID: 37616163 DOI: 10.1016/j.celrep.2023.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIβ (PKD2-PI4KIIIβ) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.
Collapse
Affiliation(s)
- Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
6
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
7
|
Siepe DH, Picton LK, Garcia KC. Receptor Elimination by E3 Ubiquitin Ligase Recruitment (REULR): A Targeted Protein Degradation Toolbox. ACS Synth Biol 2023; 12:1081-1093. [PMID: 37011906 PMCID: PMC10127277 DOI: 10.1021/acssynbio.2c00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 04/05/2023]
Abstract
In recent years, targeted protein degradation (TPD) of plasma membrane proteins by hijacking the ubiquitin proteasome system (UPS) or the lysosomal pathway has emerged as a novel therapeutic avenue in drug development to address and inhibit canonically difficult targets. While TPD strategies have been successful in targeting cell surface receptors, these approaches are limited by the availability of suitable binders to generate heterobifunctional molecules. Here, we present the development of a nanobody (VHH)-based degradation toolbox termed REULR (Receptor Elimination by E3 Ubiquitin Ligase Recruitment). We generated human and mouse cross-reactive nanobodies against five transmembrane PA-TM-RING-type E3 ubiquitin ligases (RNF128, RNF130, RNF167, RNF43, and ZNRF3), covering a broad range and selectivity of tissue expression, with which we characterized the expression in human and mouse cell lines and immune cells (PBMCs). We demonstrate that heterobifunctional REULR molecules can enforce transmembrane E3 ligase interactions with a variety of disease-relevant target receptors (EGFR, EPOR, and PD-1) by induced proximity, resulting in effective membrane clearance of the target receptor at varying levels. In addition, we designed E3 ligase self-degrading molecules, "fratricide" REULRs (RNF128, RNF130, RENF167, RNF43, and ZNRF3), that allow downregulation of one or several E3 ligases from the cell surface and consequently modulate receptor signaling strength. REULR molecules represent a VHH-based modular and versatile "mix and match" targeting strategy for the facile modulation of cell surface proteins by induced proximity to transmembrane PA-TM-RING E3 ligases.
Collapse
Affiliation(s)
- Dirk H. Siepe
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Lora K. Picton
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - K. Christopher Garcia
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
8
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
9
|
Taha Tolba EAEH, Ahmed Amer HZ. In silico Analysis of Tyrosine Kinases Receptor in Papillary and Medullary Thyroid Cancer Using Sequence-alignment-based Methods. BIOTECHNOLOGY(FAISALABAD) 2023; 22:18-27. [DOI: 10.3923/biotech.2023.18.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Elsbernd A, Boulouadnine B, Ahmed A, Farooqi M, Sandritter T, Shakhnovich V, Blanding D, Demoulin JB, Thompson J. Novel Oncogenic PDGFRB Variant in Severe Infantile Myofibromatosis With Response to Imatinib Using Therapeutic Drug Monitoring. JCO Precis Oncol 2022; 6:e2200250. [DOI: 10.1200/po.22.00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Abbey Elsbernd
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | | | - Atif Ahmed
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA
| | - Midhat Farooqi
- Department of Pathology & Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, MO
- Department of Pathology, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Tracy Sandritter
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Valentina Shakhnovich
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Hospitals and Clinics, Kansas City, MO
- Division of Gastroenterology, Hepatology & Nutrition, Children's Mercy Hospitals and Clinics, Kansas City, MO
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Darius Blanding
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | | | - Joel Thompson
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO
- Division of Pediatric Hematology/Oncology/BMT, Children's Mercy Hospitals and Clinics, Kansas City, MO
| |
Collapse
|
11
|
Demircan MB, Mgbecheta PC, Kresinsky A, Schnoeder TM, Schröder K, Heidel FH, Böhmer FD. Combined Activity of the Redox-Modulating Compound Setanaxib (GKT137831) with Cytotoxic Agents in the Killing of Acute Myeloid Leukemia Cells. Antioxidants (Basel) 2022; 11:antiox11030513. [PMID: 35326163 PMCID: PMC8944474 DOI: 10.3390/antiox11030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.
Collapse
Affiliation(s)
- Muhammed Burak Demircan
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Peter C. Mgbecheta
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
| | - Anne Kresinsky
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
| | - Tina M. Schnoeder
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Innere Medizin C, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Florian H. Heidel
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
- Innere Medizin C, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Frank D. Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Correspondence:
| |
Collapse
|
12
|
Dionne U, Gingras AC. Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome. Front Mol Biosci 2022; 9:852911. [PMID: 35309513 PMCID: PMC8930824 DOI: 10.3389/fmolb.2022.852911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, proximity-dependent biotinylation approaches, including BioID, APEX, and their derivatives, have been widely used to define the compositions of organelles and other structures in cultured cells and model organisms. The associations between specific proteins and given compartments are regulated by several post-translational modifications (PTMs); however, these effects have not been systematically investigated using proximity proteomics. Here, we discuss the progress made in this field and how proximity-dependent biotinylation strategies could elucidate the contributions of PTMs, such as phosphorylation, to the compartmentalization of proteins.
Collapse
Affiliation(s)
- Ugo Dionne
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Anne-Claude Gingras,
| |
Collapse
|
13
|
FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells. Sci Rep 2021; 11:22678. [PMID: 34811450 PMCID: PMC8608843 DOI: 10.1038/s41598-021-02221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) in hematopoietic cells binds to its ligand at the plasma membrane (PM), then transduces growth signals. FLT3 gene alterations that lead the kinase to assume its permanently active form, such as internal tandem duplication (ITD) and D835Y substitution, are found in 30–40% of acute myelogenous leukemia (AML) patients. Thus, drugs for molecular targeting of FLT3 mutants have been developed for the treatment of AML. Several groups have reported that compared with wild-type FLT3 (FLT3-wt), FLT3 mutants are retained in organelles, resulting in low levels of PM localization of the receptor. However, the precise subcellular localization of mutant FLT3 remains unclear, and the relationship between oncogenic signaling and the mislocalization is not completely understood. In this study, we show that in cell lines established from leukemia patients, endogenous FLT3-ITD but not FLT3-wt clearly accumulates in the perinuclear region. Our co-immunofluorescence assays demonstrate that Golgi markers are co-localized with the perinuclear region, indicating that FLT3-ITD mainly localizes to the Golgi region in AML cells. FLT3-ITD biosynthetically traffics to the Golgi apparatus and remains there in a manner dependent on its tyrosine kinase activity. Tyrosine kinase inhibitors, such as quizartinib (AC220) and midostaurin (PKC412), markedly decrease FLT3-ITD retention and increase PM levels of the mutant. FLT3-ITD activates downstream in the endoplasmic reticulum (ER) and the Golgi apparatus during its biosynthetic trafficking. Results of our trafficking inhibitor treatment assays show that FLT3-ITD in the ER activates STAT5, whereas that in the Golgi can cause the activation of AKT and ERK. We provide evidence that FLT3-ITD signals from the early secretory compartments before reaching the PM in AML cells.
Collapse
|
14
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Schmidt-Arras D, Rose-John S. Endosomes as Signaling Platforms for IL-6 Family Cytokine Receptors. Front Cell Dev Biol 2021; 9:688314. [PMID: 34141712 PMCID: PMC8204807 DOI: 10.3389/fcell.2021.688314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is the name-giving cytokine of a family of eleven members, including IL-6, CNTF, LIF, and IL-27. IL-6 was first recognized as a B-cell stimulating factor but we now know that the cytokine plays a pivotal role in the orchestration of inflammatory processes as well as in inflammation associated cancer. Moreover, IL-6 is involved in metabolic regulation and it has been shown to be involved in major neural activities such as neuroprotection, which can help to repair and to reduce brain damage. Receptor complexes of all members formed at the plasma membrane contain one or two molecules of the signaling receptor subunit GP130 and the mechanisms of signal transduction are well understood. IL-6 type cytokines can also signal from endomembranes, in particular the endosome, and situations have been reported in which endocytosis of receptor complexes are a prerequisite of intracellular signaling. Moreover, pathogenic GP130 variants were shown to interfere with spatial activation of downstream signals. We here summarize the molecular mechanisms underlying spatial regulation of IL-6 family cytokine signaling and discuss its relevance for pathogenic processes.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
16
|
ELTD1-An Emerging Silent Actor in Cancer Drama Play. Int J Mol Sci 2021; 22:ijms22105151. [PMID: 34068040 PMCID: PMC8152501 DOI: 10.3390/ijms22105151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor, latrophilin, and seven transmembrane domain–containing protein 1 (ELTD1), is a member of the G–protein coupled receptors (GPCRs) superfamily. Although discovered in 2001, ELTD1 has been investigated only by a few research groups, and important data about its role in normal and tumor cells is still missing. Even though its functions and structure are not yet fully understood, recent studies show that ELTD1 has a role in both physiological and pathological angiogenesis, and it appears to be a very important biomarker and a molecular target in cancer diseases. Upregulation of ELTD1 in malignant cells has been reported, and correlated with poor cancer prognosis. This review article aims to compile the existing data and to discuss the current knowledge on ELTD1 structure and signaling, and its role in physiological and neoplastic conditions.
Collapse
|
17
|
Novel Approaches to Target Mutant FLT3 Leukaemia. Cancers (Basel) 2020; 12:cancers12102806. [PMID: 33003568 PMCID: PMC7600363 DOI: 10.3390/cancers12102806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a haematologic disease in which oncogenic mutations in the receptor tyrosine kinase FLT3 frequently lead to leukaemic development. Potent treatment of AML patients is still hampered by inefficient targeting of leukemic stem cells expressing constitutive active FLT3 mutants. This review summarizes the current knowledge about the regulation of FLT3 activity at cellular level and discusses therapeutical options to affect the tumor cells and the microenvironment to impair the haematological aberrations. Abstract Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient’s poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.
Collapse
|