1
|
Xue GZ, Ma HZ, Wuren TN. The role of neutrophils in chronic cough. Hum Cell 2024; 37:1316-1324. [PMID: 38913146 DOI: 10.1007/s13577-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.
Collapse
Affiliation(s)
- Guan-Zhen Xue
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Hai-Zhen Ma
- Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Ta-Na Wuren
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China.
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China.
| |
Collapse
|
2
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
3
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Kwak DW, Park D, Kim JH. Leukotriene B 4 Receptor 2 Mediates the Production of G-CSF That Plays a Critical Role in Steroid-Resistant Neutrophilic Airway Inflammation. Biomedicines 2022; 10:biomedicines10112979. [PMID: 36428547 PMCID: PMC9687517 DOI: 10.3390/biomedicines10112979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been suggested to be closely associated with neutrophilic asthma pathogenesis. However, little is known about the factors regulating the production of G-CSF in neutrophilic asthma. We previously reported that a leukotriene B4 receptor 2, BLT2, played an important role in neutrophilic airway inflammation. Therefore, in the current study, we investigated whether BLT2 plays a role in the production of G-CSF in lipopolysaccharide/ovalbumin (LPS/OVA)-induced steroid-resistant neutrophilic asthma. The data showed that BLT2 critically mediated G-CSF production, contributing to the progression of neutrophilic airway inflammation. We also observed that 12-lipoxygenase (12-LO), which catalyzes the synthesis of the BLT2 ligand 12(S)-HETE, was also necessary for G-CSF production. Together, these results suggest that the 12-LO-BLT2-linked signaling network is critical for the production of G-CSF, contributing to the development of neutrophilic airway inflammation. Our findings can provide a potential new target for the therapy of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Dong-Wook Kwak
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Donghwan Park
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Hong Kim
- Department of Life Sciences, College of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-2-3290-3452
| |
Collapse
|
5
|
Early-life infection of the airways with Streptococcus pneumoniae exacerbates HDM-induced asthma in a murine model. Cell Immunol 2022; 376:104536. [DOI: 10.1016/j.cellimm.2022.104536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023]
|
6
|
Abstract
PURPOSE OF REVIEW Persistent unresolved inflammation results in a number of pathologic respiratory diseases including asthma, cystic fibrosis, acute respiratory distress syndrome (ARDS) and coronavirus disease 2019 (COVID-19)-associated ARDS. Inflammation resolution is an active series of biologic processes orchestrated by a family of bioactive specialized pro-resolving mediators (SPMs) derived from essential omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). In this review, we highlight recent findings on dysregulated inflammation resolution in common respiratory diseases and recent literature on SPM generation with PUFA dietary supplementation with relevance to diseases of respiratory inflammation. RECENT FINDINGS Human studies and preclinical models of diseases of lung inflammation have revealed disequilibrium in the levels of pro-inflammatory versus pro-resolving mediators. Recent studies identified actions for SPMs on regulating prophlogistic host responses and stimulating inflammation resolution pathways in inflammatory respiratory diseases. SUMMARY Dietary marine oils are enriched in PUFAs and contain parent omega-3 and omega-6 fatty acids and precursors for conversion to SPMs. Nutritional supplementation with fish oils can boost SPM levels and offer a therapeutic approach targeting inflammation resolution pathways for diseases of lung inflammation.
Collapse
Affiliation(s)
- R. Elaine Cagnina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melody G. Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Daubeuf F, Schall N, Petit-Demoulière N, Frossard N, Muller S. An Autophagy Modulator Peptide Prevents Lung Function Decrease and Corrects Established Inflammation in Murine Models of Airway Allergy. Cells 2021; 10:cells10092468. [PMID: 34572117 PMCID: PMC8472429 DOI: 10.3390/cells10092468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
The involvement of autophagy and its dysfunction in asthma is still poorly documented. By using a murine model of chronic house dust mite (HDM)-induced airway inflammation, we tested the expression of several autophagy markers in the lung and spleen of asthma-like animals. Compared to control mice, in HDM-sensitized and challenged mice, the expression of sequestosome-1/p62, a multifunctional adaptor protein that plays an important role in the autophagy machinery, was raised in the splenocytes. In contrast, its expression was decreased in the neutrophils recovered from the bronchoalveolar fluid, indicating that autophagy was independently regulated in these two compartments. In a strategy of drug repositioning, we treated allergen-sensitized mice with the therapeutic peptide P140 known to target chaperone-mediated autophagy. A single intravenous administration of P140 in these mice resulted in a significant reduction in airway resistance and elastance, and a reduction in the number of neutrophils and eosinophils present in the bronchoalveolar fluid. It corrected the autophagic alteration without showing any suppressive effect in the production of IgG1 and IgE. Collectively, these findings show that autophagy processes are altered in allergic airway inflammation. This cellular pathway may represent a potential therapeutic target for treating selected patients with asthma.
Collapse
Affiliation(s)
- François Daubeuf
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
- CNRS UMS3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute (IMS), 67400 Illkirch, France
| | - Nicolas Schall
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
| | - Nathalie Petit-Demoulière
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
| | - Nelly Frossard
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|