1
|
Pandey R, Tiziani S. Advances in Chiral Metabolomic Profiling and Biomarker Discovery. Methods Mol Biol 2025; 2855:85-101. [PMID: 39354302 DOI: 10.1007/978-1-0716-4116-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Chiral metabolomics entails the enantioselective measurement of the metabolome present in a biological system. Over recent years, it has garnered significant interest for its potential in discovering disease biomarkers and aiding clinical diagnostics. D-Amino acids and D-hydroxy acids, traditionally overlooked as unnatural, are now emerging as novel signaling molecules and potential biomarkers for a range of metabolic disorders, brain diseases, kidney disease, diabetes, and cancer. Despite their significance, simultaneous measurements of multiple classes of chiral metabolites in a biological system remain challenging. Hence, limited information is available regarding the metabolic pathways responsible for synthesizing D-amino/hydroxy acid and their associated pathophysiological mechanisms in various diseases. Capitalizing on recent advancements in sensitive analytical techniques, researchers have developed various targeted chiral metabolomic methods for the analysis of chiral biomarkers. Here, we highlight the pivotal role of chiral metabolic profiling studies in disease diagnosis, prognosis, and therapeutic interventions. Furthermore, we describe cutting-edge chromatographic and mass spectrometry methods that enable enantioselective analysis of chiral metabolites. These advanced techniques are instrumental in unraveling the complexities of disease biomarkers, contributing to the ongoing efforts in disease biomarker discovery.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Dell Medical School; LIVESTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Rampino A, Garofalo M, Nuzzo T, Favia M, Saltarelli S, Masellis R, Asselti MG, Pennacchio TC, Bruzzese D, Errico F, Vidali M, Bertolino A, Usiello A. Variations of blood D-serine and D-aspartate homeostasis track psychosis stages. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:115. [PMID: 39702391 DOI: 10.1038/s41537-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage. To probe this issue, we used High-Performance Liquid Chromatography (HPLC) to measure serum levels of D- and L-AAs that stimulate NMDARs across four groups of individuals diagnosed with (a) At-Risk Mental State (ARMS) for psychosis, (b) First Episode of Psychosis (FEP), (c) full-blown SCZ and (d) Healthy Donors (HD). We examined how diagnosis, demographic features, and antipsychotic treatment influence the variation of AA levels throughout psychosis progression. Finally, we explored the potential association between AA blood concentrations and clinical and cognitive measures related to psychosis. Our findings identified inter-group differences in serum AA composition, highlighting that the upregulation of D-serine/total serine and D-aspartate/total aspartate ratios represent a peculiar blood biochemical signature of early stages of psychosis progression, while increased L-glutamate, L-aspartate and glycine associate with chronic SCZ diagnosis. The present findings provide direct evidence for early dysregulation of D-AA metabolism and have potential implications for the identification of biomarkers for the early detection and staging of psychosis.
Collapse
Grants
- PE0000006 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- P2022ZEMZF Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PE0000006 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 2017M42834 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- #F/200044/01-03/X45 Ministero dello Sviluppo Economico (Ministry of Economic Development)
- #F/200044/01-03/X45 Ministero dello Sviluppo Economico (Ministry of Economic Development)
- 2015 NARSAD Young Investigator Grant, no. 23968 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- 2013 NARSAD Independent Investigator Grant, no. 20353 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- 2013 NARSAD Independent Investigator Grant, no. 20353 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
Collapse
Affiliation(s)
- Antonio Rampino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy.
- U.O.C. Psichiatria Universitaria, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.
| | - Martina Garofalo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Tommaso Nuzzo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Favia
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Silvia Saltarelli
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Rita Masellis
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Martina Grazia Asselti
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Teresa Claudia Pennacchio
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Dario Bruzzese
- Medical Statistics, Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Matteo Vidali
- Clinical Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Bertolino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
Lella C, Nestor L, De Bundel D, Vander Heyden Y, Van Eeckhaut A. Targeted Chiral Metabolomics of D-Amino Acids: Their Emerging Role as Potential Biomarkers in Neurological Diseases with a Focus on Their Liquid Chromatography-Mass Spectrometry Analysis upon Chiral Derivatization. Int J Mol Sci 2024; 25:12410. [PMID: 39596475 PMCID: PMC11595108 DOI: 10.3390/ijms252212410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
In neuroscience research, chiral metabolomics is an emerging field, in which D-amino acids play an important role as potential biomarkers for neurological diseases. The targeted chiral analysis of the brain metabolome, employing liquid chromatography (LC) coupled to mass spectrometry (MS), is a pivotal approach for the identification of biomarkers for neurological diseases. This review provides an overview of D-amino acids in neurological diseases and of the state-of-the-art strategies for the enantioselective analysis of chiral amino acids (AAs) in biological samples to investigate their putative role as biomarkers for neurological diseases. Fluctuations in D-amino acids (D-AAs) levels can be related to the pathology of neurological diseases, for example, through their role in the modulation of N-methyl-D-aspartate receptors and neurotransmission. Because of the trace presence of these biomolecules in mammals and the complex nature of biological matrices, highly sensitive and selective analytical methods are essential. Derivatization strategies with chiral reagents are highlighted as critical tools for enhancing detection capabilities. The latest advances in chiral derivatization reactions, coupled to LC-MS/MS analysis, have improved the enantioselective quantification of these AAs and allow the separation of several chiral metabolites in a single analytical run. The enhanced performances of these methods can provide an accurate correlation between specific D-AA profiles and disease states, allowing for a better understanding of neurological diseases and drug effects on the brain.
Collapse
Affiliation(s)
- Cinzia Lella
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Liam Nestor
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Yvan Vander Heyden
- Research Group Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| |
Collapse
|
4
|
Dhurandhar Y, Tomar S, Namdeo KP, Bodakhe SH. Excitatory amino acids as therapeutic agents: Reversing neurodegenerative trajectory by tackling excitotoxicity. Neurol Sci 2024:10.1007/s10072-024-07880-3. [PMID: 39542999 DOI: 10.1007/s10072-024-07880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases pose significant challenges to healthcare systems globally due to their complex etiology and relentless progression, often rendering conventional treatments ineffective. Recent advances have spotlighted excitatory amino acids, particularly D-amino acids, once considered as products of metabolism of the microbiota or deriving from food intake. This review explores the role of D-amino acids in mitigating excitotoxicity-a process characterized by excessive calcium influx through aberrant N-methyl-D-aspartate receptor (NMDAR) activation, which is implicated in the pathogenesis of diseases like Alzheimer's disease. By providing alternative pathways for neuronal signaling and protecting against excitotoxic damage, D-amino acids offer a novel approach to reversing neurodegenerative trajectories. Future research should focus on elucidating the detailed mechanisms of action of these compounds, evaluating their therapeutic potential through rigorous preclinical and clinical trials, and developing effective delivery systems to optimize their neuroprotective effects. This emerging field holds promise for developing innovative treatment strategies that could significantly improve outcomes for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur Chhattisgarh, 495009, India
| | - Shubham Tomar
- National Coordination Centre, Pharmacovigilance Programme of India, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector 23, Rajnagar, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur Chhattisgarh, 495009, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur Chhattisgarh, 495009, India
| |
Collapse
|
5
|
Roychaudhuri R, West T, Bhattacharya S, Saavedra HG, Lee H, Albacarys L, Gadalla MM, Amzel M, Yang P, Snyder SH. Mammalian D-Cysteine controls insulin secretion in the pancreas. Mol Metab 2024; 90:102043. [PMID: 39368613 PMCID: PMC11536007 DOI: 10.1016/j.molmet.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND D-amino acids are being recognized as important molecules in mammals with function. This is a first identification of endogenous D-cysteine in mammalian pancreas. METHODS Using a novel stereospecific bioluminescent assay, chiral chromatography, enzyme kinetics and a transgenic mouse model we identify endogenous D-cysteine. We elucidate its function in two mice models of type 1 diabetes (STZ and NOD), and in tests of Glucose Stimulated Insulin Secretion in isolated mouse and human islets and INS-1 832/13 cell line. RESULTS AND DISCUSSION D-cysteine is synthesized by serine racemase (SR) and SR-/- mice produce 6-10 fold higher levels of insulin in the pancreas and plasma including higher glycogen and ketone bodies in the liver. The excess insulin is stored as amyloid in secretory vesicles and exosomes. In glucose stimulated insulin secretion in mouse and human islets, equimolar amount of D-cysteine showed higher inhibition of insulin secretion compared to D-serine, another closely related stereoisomer synthesized by SR. In mouse models of diabetes (Streptozotocin (STZ) and Non Obese Diabetes (NOD) and human pancreas, the diabetic state showed increased expression of D-cysteine compared to D-serine followed by increased expression of SR. SR-/- mice show decreased cAMP in the pancreas, lower DNA methyltransferase enzymatic and promoter activities followed by reduced phosphorylation of CREB (S133), resulting in decreased methylation of the Ins1 promoter. D-cysteine is efficiently metabolized by D-amino acid oxidase and transported by ASCT2 and Asc1. Dietary supplementation with methyl donors restored the high insulin levels and low DNMT enzymatic activity in SR-/- mice. CONCLUSIONS Our data show that endogenous D-cysteine in the mammalian pancreas is a regulator of insulin secretion.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Timothy West
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Soumyaroop Bhattacharya
- Department of Neonatology, University of Rochester Medical Center, Rochester, New York, NY 14642, USA
| | - Harry G Saavedra
- Centro de Investigacion en Bioingenieria, Universidad de Ingenieria y Tecnologia (UTEC), 15063 Lima, Peru
| | - Hangnoh Lee
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lauren Albacarys
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Moataz M Gadalla
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mario Amzel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Getsy PM, Coffee GA, Bates JN, Parran T, Hoffer L, Baby SM, MacFarlane PM, Knauss ZT, Damron DS, Hsieh YH, Bubier JA, Mueller D, Lewis SJ. The cell-permeant antioxidant D-thiol ester D-cysteine ethyl ester overcomes physical dependence to morphine in male Sprague Dawley rats. Front Pharmacol 2024; 15:1444574. [PMID: 39253377 PMCID: PMC11381264 DOI: 10.3389/fphar.2024.1444574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The ability of morphine to decrease cysteine transport into neurons by inhibition of excitatory amino acid transporter 3 (EAA3) may be a key molecular mechanism underlying the acquisition of physical and psychological dependence to morphine. This study examined whether co-administration of the cell-penetrant antioxidant D-thiol ester, D-cysteine ethyl ester (D-CYSee), with morphine, would diminish the development of physical dependence to morphine in male Sprague Dawley rats. Systemic administration of the opioid receptor antagonist, naloxone (NLX), elicited pronounced withdrawal signs (e.g., wet-dog shakes, jumps, rears, circling) in rats that received a subcutaneous depot of morphine (150 mg/kg, SC) for 36 h and continuous intravenous infusion of vehicle (20 μL/h, IV). The NLX-precipitated withdrawal signs were reduced in rats that received an infusion of D-CYSee, but not D-cysteine, (both at 20.8 μmol/kg/h, IV) for the full 36 h. NLX elicited pronounced withdrawal signs in rats treated for 48 h with morphine (150 mg/kg, SC), plus continuous infusion of vehicle (20 μL/h, IV) that began at the 36 h timepoint of morphine treatment. The NLX-precipitated withdrawal signs were reduced in rats that received a 12 h infusion of D-CYSee, but not D-cysteine, (both at 20.8 μmol/kg/h, IV) that began at the 36 h timepoint of morphine treatment. These findings suggest that D-CYSee may attenuate the development of physical dependence to morphine and reverse established dependence to the opioid in male Sprague Dawley rats. Alternatively, D-CYSee may simply suppress the processes responsible for NLX-precipitated withdrawal. Nonetheless, D-CYSee and analogues may be novel therapeutics for the treatment of opioid use disorders.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Theodore Parran
- Center for Medical Education, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lee Hoffer
- Department of Anthropology, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Derek S. Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Hasler G, Inta D. Emerging Perspectives on Neuroprotection. PSYCHOTHERAPY AND PSYCHOSOMATICS 2024; 93:285-291. [PMID: 39154647 DOI: 10.1159/000540032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
Neuroprotection aims to safeguard neurons from damage caused by various factors like stress, potentially leading to the rescue, recovery, or regeneration of the nervous system and its functions [J Clin Neurosci. 2002;9(1):4-8]. Conversely, neuroplasticity refers to the brain's ability to adapt and change throughout life, involving structural and functional alterations in cells and synaptic transmission [Neural Plast. 2014;2014:541870]. Neuroprotection is a broad and multidisciplinary field encompassing various approaches and strategies aimed at preserving and promoting neuronal health. It is a critical area of research in neuroscience and neurology, with the potential to lead to new therapies for a wide range of neurological disorders and conditions. Neuroprotection can take various forms and may involve pharmacological agents, lifestyle modifications, or behavioral interventions. Accordingly, also the perspective and the meaning of neuroprotection differs due to different angles of interpretation. The primary interpretation is from the pharmacological point of view since the most consistent data come from this field. In addition, we will discuss also alternative, yet less considered, perspectives on neuroprotection, focusing on specific neuroprotective targets, interactions with surrounding microglia, different levels of neuroprotective effects, the reversive/adaptative dimension, and its use as anticipatory/prophylactic intervention.
Collapse
Affiliation(s)
- Gregor Hasler
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Fribourg, Villars-sur-Glâne, Switzerland
- Freiburg Mental Health Network, Villars-sur-Glâne, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
| | - Dragos Inta
- Translational Psychiatry, Department of Community Health, University of Fribourg, Fribourg, Switzerland
- Food Research and Innovation Center (FRIC), University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Monselise EBI, Vyazmensky M, Scherf T, Batushansky A, Fishov I. D-Glutamate production by stressed Escherichia coli gives a clue for the hypothetical induction mechanism of the ALS disease. Sci Rep 2024; 14:18247. [PMID: 39107374 PMCID: PMC11303787 DOI: 10.1038/s41598-024-68645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress. Using NMR and LC-MS techniques, we found for the first time that D-glutamate accumulated in the stressed bacteria but not in control cells. These results together with the existing knowledge, allow us to suggest a new insight into the pathway of ALS development: D-glutamate, produced by the stressed microbiome, induces neurobiochemical miscommunication setting on C1q of the complement system. Proving this insight may have great importance in preventive medicine of such MND modern-age diseases as ALS, Alzheimer, and Parkinson.
Collapse
Affiliation(s)
- Edna Ben-Izhak Monselise
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| | - Maria Vyazmensky
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel
| | - Tali Scherf
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Albert Batushansky
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Campus, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Itzhak Fishov
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| |
Collapse
|
9
|
Garofalo M, De Simone G, Motta Z, Nuzzo T, De Grandis E, Bruno C, Boeri S, Riccio MP, Pastore L, Bravaccio C, Iasevoli F, Salvatore F, Pollegioni L, Errico F, de Bartolomeis A, Usiello A. Decreased free D-aspartate levels in the blood serum of patients with schizophrenia. Front Psychiatry 2024; 15:1408175. [PMID: 39050919 PMCID: PMC11266155 DOI: 10.3389/fpsyt.2024.1408175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Schizophrenia (SCZ) and autism spectrum disorder (ASD) are neurodevelopmental diseases characterized by different psychopathological manifestations and divergent clinical trajectories. Various alterations at glutamatergic synapses have been reported in both disorders, including abnormal NMDA and metabotropic receptor signaling. Methods We conducted a bicentric study to assess the blood serum levels of NMDA receptors-related glutamatergic amino acids and their precursors, including L-glutamate, L-glutamine, D-aspartate, L-aspartate, L-asparagine, D-serine, L-serine and glycine, in ASD, SCZ patients and their respective control subjects. Specifically, the SCZ patients were subdivided into treatment-resistant and non-treatment-resistant SCZ patients, based on their responsivity to conventional antipsychotics. Results D-serine and D-aspartate serum reductions were found in SCZ patients compared to controls. Conversely, no significant differences between cases and controls were found in amino acid concentrations in the two ASD cohorts analyzed. Discussion This result further encourages future research to evaluate the predictive role of selected D-amino acids as peripheral markers for SCZ pathophysiology and diagnosis.
Collapse
Affiliation(s)
- Martina Garofalo
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Zoraide Motta
- ”The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Tommaso Nuzzo
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Elisa De Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
- Center of Translational and Experimental Myology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Boeri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
| | - Maria Pia Riccio
- Department of Maternal and Child Health, Unità Operativa semplice di Dipartimento (UOSD) of Child and Adolescent Psychiatry, Azienda Ospedaliera Universitaria (AOU) Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Carmela Bravaccio
- Department of Medical and Translational Sciences, Child Neuropsychiatry, Federico II University, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Francesco Salvatore
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e loro Modelli Animali (Federico II, Naples; Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), Naples, Italy
| | - Loredano Pollegioni
- ”The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
10
|
Raiteri L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine-Glutamate Crosstalk. Biomedicines 2024; 12:1518. [PMID: 39062091 PMCID: PMC11275102 DOI: 10.3390/biomedicines12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine-Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on "glycinergic" targets.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
11
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
12
|
Mishra N, Gutheil WG. Stereoselective Amine-omics Using Heavy Atom Isotope Labeled l- and d-Marfey's Reagents. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1217-1226. [PMID: 38683793 PMCID: PMC11160435 DOI: 10.1021/jasms.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Biological amines and amino acids play essential roles in many biochemical processes. The chemical complexity of biological samples is challenging, and the selective identification and quantification of amines and amino acid stereoisomers would be very useful for amine-focused "amino-omics" studies. Many amines and amino acids are chiral, and their stereoisomers cannot be resolved on achiral media without chiral derivatization. In prior studies, we demonstrated the use of Marfey's reagent─a chiral derivatization reagent for amines and phenolic OH groups─for the LC-MS/MS resolution and quantification of amines and amino acid stereoisomers. In this study, a heavy atom isotope labeled Marfey's reagent approach for the stereoselective detection and quantification of amines and amino acids was developed. Heavy (13C2) l-Marfey's (Hl-Mar) and heavy (2H3) d-Marfey's (Hd-Mar) were synthesized from 13C2-l-Ala and 2H3-d-Ala, respectively. Both light and heavy Marfey's reagents were used to derivatize standard amine mixtures, which were analyzed by LC-QToF-HRMS. Aligned peak lists were comparatively analyzed by light vs heavy Mar mass differences to identify mono-, di-, and tri-Marfey's adducts and then by the retention time difference between l- and d-Mar derivatives to identify stereoisomers. This approach was then applied to identify achiral and chiral amine and amino acid components in a methicillin-resistant Staphylococcus aureus (MRSA) extract. This approach shows high analytical selectivity and reproducibility.
Collapse
Affiliation(s)
- Nitish
R. Mishra
- Division of Pharmacology
and Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, Kansas City, Missouri 64108, United States
| | - William G. Gutheil
- Division of Pharmacology
and Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, Kansas City, Missouri 64108, United States
| |
Collapse
|
13
|
Liang J, Wang Y, Liu B, Dong X, Cai W, Zhang N, Zhang H. Deciphering the intricate linkage between the gut microbiota and Alzheimer's disease: Elucidating mechanistic pathways promising therapeutic strategies. CNS Neurosci Ther 2024; 30:e14704. [PMID: 38584341 PMCID: PMC10999574 DOI: 10.1111/cns.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The gut microbiome is composed of various microorganisms such as bacteria, fungi, and protozoa, and constitutes an important part of the human gut. Its composition is closely related to human health and disease. Alzheimer's disease (AD) is a neurodegenerative disease whose underlying mechanism has not been fully elucidated. Recent research has shown that there are significant differences in the gut microbiota between AD patients and healthy individuals. Changes in the composition of gut microbiota may lead to the development of harmful factors associated with AD. In addition, the gut microbiota may play a role in the development and progression of AD through the gut-brain axis. However, the exact nature of this relationship has not been fully understood. AIMS This review will elucidate the types and functions of gut microbiota and their relationship with AD and explore in depth the potential mechanisms of gut microbiota in the occurrence of AD and the prospects for treatment strategies. METHODS Reviewed literature from PubMed and Web of Science using key terminologies related to AD and the gut microbiome. RESULTS Research indicates that the gut microbiota can directly or indirectly influence the occurrence and progression of AD through metabolites, endotoxins, and the vagus nerve. DISCUSSION This review discusses the future challenges and research directions regarding the gut microbiota in AD. CONCLUSION While many unresolved issues remain regarding the gut microbiota and AD, the feasibility and immense potential of treating AD by modulating the gut microbiota are evident.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Xiaohong Dong
- Jiamusi CollegeHeilongjiang University of Traditional Chinese MedicineJiamusiHeilongjiang ProvinceChina
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Hong Zhang
- Heilongjiang Jiamusi Central HospitalJiamusiHeilongjiang ProvinceChina
| |
Collapse
|
14
|
Imarisio A, Yahyavi I, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Gasparri C, Monti MC, Rondanelli M, Pacchetti C, Errico F, Valente EM, Usiello A. Blood D-serine levels correlate with aging and dopaminergic treatment in Parkinson's disease. Neurobiol Dis 2024; 192:106413. [PMID: 38253208 DOI: 10.1016/j.nbd.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
We recently described increased D- and L-serine concentrations in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, the post-mortem caudate-putamen of human Parkinson's disease (PD) brains and the cerebrospinal fluid (CSF) of de novo living PD patients. However, data regarding blood D- and L-serine levels in PD are scarce. Here, we investigated whether the serum profile of D- and L-serine, as well as the other glutamate N-methyl-D-aspartate ionotropic receptor (NMDAR)-related amino acids, (i) differs between PD patients and healthy controls (HC) and (ii) correlates with clinical-demographic features and levodopa equivalent daily dose (LEDD) in PD. Eighty-three consecutive PD patients and forty-one HC were enrolled. PD cohort underwent an extensive clinical characterization. Serum levels of D- and L-serine, L-glutamate, L-glutamine, L-aspartate, L-asparagine and glycine were determined using High Performance Liquid Chromatography. In age- and sex-adjusted analyses, no differences emerged in the serum levels of D-serine, L-serine and other NMDAR-related amino acids between PD and HC. However, we found that D-serine and D-/Total serine ratio positively correlated with age in PD but not in HC, and also with PD age at onset. Moreover, we found that higher LEDD correlated with lower levels of D-serine and the other excitatory amino acids. Following these results, the addition of LEDD as covariate in the analyses disclosed a selective significant increase of D-serine in PD compared to HC (Δ ≈ 38%). Overall, these findings suggest that serum D-serine and D-/Total serine may represent a valuable biochemical signature of PD.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, 27100 Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
15
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Pannexin1 Function Contributes to the Development of Epileptogenesis in Autosomal Dominant Sleep-related Hypermotor Epilepsy Model Rats. Int J Mol Sci 2024; 25:1619. [PMID: 38338895 PMCID: PMC10855882 DOI: 10.3390/ijms25031619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
To explore the processes of epileptogenesis/ictogenesis, this study determined the age-dependent development of the functional abnormalities in astroglial transmission associated with pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor epilepsy (ADSHE) named 'S286L-TG'. Pannexin1 expression in the plasma membrane of primary cultured cortical astrocytes and the orbitofrontal cortex (OFC), which is an ADSHE focus region, were determined using capillary immunoblotting. Astroglial D-serine releases induced by artificial high-frequency oscillation (HFO)-evoked stimulation, the removal of extracellular Ca2+, and the P2X7 receptor agonist (BzATP) were determined using ultra-high performance liquid chromatography (UHPLC). The expressions of pannexin1 in the plasma membrane fraction of the OFC in S286L-TG at four weeks old were almost equivalent when compared to the wild type. The pannexin1 expression in the OFC of the wild type non-statistically decreased age-dependently, whereas that in S286L-TG significantly increased age-dependently, resulting in relatively increasing pannexin1 expression from the 7- (at the onset of interictal discharge) and 10-week-old (after the ADSHE seizure onset) S286L-TG compared to the wild type. However, no functional abnormalities of astroglial pannexin1 expression or D-serine release through the pannexin1-hemichannels from the cultured astrocytes of S286L-TG could be detected. Acutely HFO-evoked stimulation, such as physiological ripple burst (200 Hz) and epileptogenic fast ripple burst (500 Hz), frequency-dependently increased both pannexin1 expression in the astroglial plasma membrane and astroglial D-serine release. Neither the selective inhibitors of pannexin1-hemichannel (10PANX) nor connexin43-hemichannel (Gap19) affected astroglial D-serine release during the resting stage, whereas HFO-evoked D-serine release was suppressed by both inhibitors. The inhibitory effect of 10PANX on the ripple burst-evoked D-serine release was more predominant than that of Gap19, whereas fast ripple burst-evoked D-serine release was predominantly suppressed by Gap19 rather than 10PANX. Astroglial D-serine release induced by acute exposure to BzATP was suppressed by 10PANX but not by Gap19. These results suggest that physiological ripple burst during the sleep spindle plays important roles in the organization of some components of cognition in healthy individuals, but conversely, it contributes to the initial development of epileptogenesis/ictogenesis in individuals who have ADSHE vulnerability via activation of the astroglial excitatory transmission associated with pannexin1-hemichannels.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|