1
|
Zhang C, Guo Y, Liu Y, Liu K, Hu W, Wang H. Sperm miR-142-3p Reprogramming Mediates Paternal Pre-Pregnancy Caffeine Exposure-Induced Non-Alcoholic Steatohepatitis in Male Offspring Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405592. [PMID: 39291441 PMCID: PMC11558112 DOI: 10.1002/advs.202405592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Indexed: 09/19/2024]
Abstract
Numerous studies have suggested a strong association between paternal adverse environmental exposure and increased disease susceptibility in offspring. However, the impact of paternal pre-pregnant caffeine exposure (PPCE) on offspring health remains unexplored. This study elucidates the sperm reprogramming mechanism and potential intervention targets for PPCE-induced non-alcoholic steatohepatitis (NASH) in offspring. Here, male rats are administrated caffeine (15-60 mg kg-1/d) by gavage for 8 weeks and then mated with females to produce offspring. This study finds that NASH with transgenerational inheritance occurred in PPCE adult offspring. Mechanistically, a reduction of miR-142-3p is implicated in the occurrence of NASH, characterized by hepatic lipid metabolism dysfunction and chronic inflammation through an increase in ACSL4. Conversely, overexpression of miR-142-3p mitigated these manifestations. The origin of reduced miR-142-3p levels is traced to hypermethylation in the miR-142-3p promoter region of parental sperm, induced by elevated corticosterone levels rather than by caffeine per se. Similar outcomes are confirmed in offspring conceived via in vitro fertilization using miR-142-3pKO sperm. Overall, this study provides the first evidence of transgenerational inheritance of NASH in PPCE offspring and identifies miR-142-3p as a potential therapeutic target for NASH induced by paternal environmental adversities.
Collapse
Affiliation(s)
- Cong Zhang
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Yu Guo
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yi Liu
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Kexin Liu
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430072China
| | - Hui Wang
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
2
|
Basel A, Bhadsavle SS, Scaturro KZ, Parkey GK, Gaytan MN, Patel JJ, Thomas KN, Golding MC. Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model. Aging Dis 2024:AD.2024.0722. [PMID: 39122451 DOI: 10.14336/ad.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Although detrimental changes in mitochondrial morphology and function are widely described symptoms of fetal alcohol exposure, no studies have followed these mitochondrial deficits into adult life or determined if they predispose individuals with fetal alcohol spectrum disorders (FASDs) to accelerated biological aging. Here, we used a multiplex preclinical mouse model to compare markers of cellular senescence and age-related outcomes induced by maternal, paternal, and dual-parental alcohol exposures. We find that even in middle life (postnatal day 300), the adult offspring of alcohol-exposed parents exhibited significant increases in markers of stress-induced premature cellular senescence in the brain and liver, including an upregulation of cell cycle inhibitory proteins and increased senescence-associated β-galactosidase activity. Strikingly, in the male offspring, we observe an interaction between maternal and paternal alcohol use, with histological indicators of accelerated age-related liver disease in the dual-parental offspring exceeding those induced by either maternal or paternal alcohol use alone. Our studies indicate that chronic parental alcohol use causes enduring mitochondrial dysfunction in offspring, resulting in a reduced NAD+/NAHD ratio and altered expression of the NAD+-dependent deacetylases SIRT1 and SIRT3. These observations suggest that some aspects of FASDs may be linked to accelerated aging due to programmed changes in the regulation of mitochondrial function and cellular bioenergetics.
Collapse
|
3
|
Roach AN, Bhadsavle SS, Higgins SL, Derrico DD, Basel A, Thomas KN, Golding MC. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction. Andrology 2024; 12:1012-1023. [PMID: 38044754 PMCID: PMC11144833 DOI: 10.1111/andr.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Chronic preconception paternal alcohol use adversely modifies the sperm epigenome, inducing fetoplacental and craniofacial growth defects in the offspring of exposed males. A crucial outstanding question in the field of paternal epigenetic inheritance concerns the resilience of the male germline and its capacity to recover and correct sperm-inherited epigenetic errors after stressor withdrawal. OBJECTIVES We set out to determine if measures of the sperm-inherited epigenetic program revert to match the control treatment 1 month after withdrawing the daily alcohol treatments. MATERIALS AND METHODS Using a voluntary access model, we exposed C57BL/6J males to 6% or 10% alcohol for 10 weeks, withdrew the alcohol treatments for 4 weeks, and used RNA sequencing to examine gene expression patterns in the caput section of the epididymis. We then compared the abundance of sperm small RNA species between treatments. RESULTS In the caput section of the epididymis, chronic alcohol exposure induced changes in the transcriptional control of genetic pathways related to the mitochondrial function, oxidative phosphorylation, and the generalized stress response (EIF2 signaling). Subsequent analysis identified region-specific, alcohol-induced changes in mitochondrial DNA copy number across the epididymis, which correlated with increases in the mitochondrial DNA content of alcohol-exposed sperm. Notably, in the corpus section of the epididymis, increases in mitochondrial DNA copy number persisted 1 month after alcohol cessation. Analysis of sperm noncoding RNAs between control and alcohol-exposed males 1 month after alcohol withdrawal revealed a ∼100-fold increase in mir-196a, a microRNA induced as part of the nuclear factor erythroid 2-related factor 2 (Nrf2)-driven cellular antioxidant response. DISCUSSION AND CONCLUSION Our data reveal that alcohol-induced epididymal mitochondrial dysfunction and differences in sperm noncoding RNA content persist after alcohol withdrawal. Further, differences in mir-196a and sperm mitochondrial DNA copy number may serve as viable biomarkers of adverse alterations in the sperm-inherited epigenetic program.
Collapse
Affiliation(s)
- Alexis N. Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Sanat S. Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Samantha L. Higgins
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Destani D. Derrico
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Kara N. Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
4
|
Golding MC. Teratogenesis and the epigenetic programming of congenital defects: Why paternal exposures matter. Birth Defects Res 2023; 115:1825-1834. [PMID: 37424262 PMCID: PMC10774456 DOI: 10.1002/bdr2.2215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Until recently, clinicians and researchers did not realize paternal exposures could impact child developmental outcomes. Indeed, although there is growing recognition that sperm carry a large amount of non-genomic information and that paternal stressors influence the health of the next generation, toxicologists are only now beginning to explore the role paternal exposures have in dysgenesis and the incidence of congenital malformations. In this commentary, I will briefly summarize the few studies describing congenital malformations resulting from preconception paternal stressors, argue for the theoretical expansion of teratogenic perspectives into the male preconception period, and discuss some of the challenges in this newly emerging branch of toxicology. I argue that we must consider gametes the same as any other malleable precursor cell type and recognize that environmentally-induced epigenetic changes acquired during the formation of the sperm and oocyte hold equal teratogenic potential as exposures during early development. Here, I propose the term epiteratogen to reference agents acting outside of pregnancy that, through epigenetic mechanisms, induce congenital malformations. Understanding the interactions between the environment, the essential epigenetic processes intrinsic to spermatogenesis, and their cumulative influences on embryo patterning is essential to addressing a significant blind spot in the field of developmental toxicology.
Collapse
Affiliation(s)
- Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
5
|
Liang T, Kota J, Williams KE, Saxena R, Gawrieh S, Zhong X, Zimmers TA, Chalasani N. Dynamic Alterations to Hepatic MicroRNA-29a in Response to Long-Term High-Fat Diet and EtOH Feeding. Int J Mol Sci 2023; 24:14564. [PMID: 37834011 PMCID: PMC10572557 DOI: 10.3390/ijms241914564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA-29a (miR-29a) is a well characterized fibro-inflammatory molecule and its aberrant expression is linked to a variety of pathological liver conditions. The long-term effects of a high-fat diet (HFD) in combination with different levels of EtOH consumption on miR-29a expression and liver pathobiology are unknown. Mice at 8 weeks of age were divided into five groups (calorie-matched diet plus water (CMD) as a control group, HFD plus water (HFD) as a liver disease group, HFD plus 2% EtOH (HFD + 2% E), HFD + 10% E, and HFD + 20% E as intervention groups) and fed for 4, 13, 26, or 39 weeks. At each time point, analyses were performed for liver weight/body weight (BW) ratio, AST/ALT ratio, as well as liver histology assessments, which included inflammation, estimated fat deposition, lipid area, and fibrosis. Hepatic miR-29a was measured and correlations with phenotypic traits were determined. Four-week feeding produced no differences between the groups on all collected phenotypic traits or miR-29a expression, while significant effects were observed after 13 weeks, with EtOH concentration-specific induction of miR-29a. A turning point for most of the collected traits was apparent at 26 weeks, and miR-29a was significantly down-regulated with increasing liver injury. Overall, miR-29a up-regulation was associated with a lower liver/BW ratio, fat deposition, inflammation, and fibrosis, suggesting a protective role of miR-29a against liver disease progression. A HFD plus increasing concentrations of EtOH produces progressive adverse effects on the liver, with no evidence of beneficial effects of low-dose EtOH consumption. Moreover, miR-29a up-regulation is associated with less severe liver injury.
Collapse
Affiliation(s)
- Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| | - Janaiah Kota
- Ultragenyx Pharmaceuticals, Novato, CA 94949, USA;
| | - Kent E. Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.Z.); (T.A.Z.)
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.Z.); (T.A.Z.)
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| |
Collapse
|
6
|
Sanz-Martos AB, Fuentes-Verdugo E, Merino B, Morales L, Pérez V, Capellán R, Pellón R, Miguéns M, Del Olmo N. Schedule-induced alcohol intake during adolescence sex dependently impairs hippocampal synaptic plasticity and spatial memory. Behav Brain Res 2023; 452:114576. [PMID: 37423317 DOI: 10.1016/j.bbr.2023.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
In a previous study, we demonstrated that intermittent ethanol administration in male adolescent animals impaired hippocampus-dependent spatial memory, particularly under conditions of excessive ethanol administration. In this current study, we subjected adolescent male and female Wistar rats an alcohol schedule-induced drinking (SID) procedure to obtain an elevated rate of alcohol self-administration and assessed their hippocampus-dependent spatial memory. We also studied hippocampal synaptic transmission and plasticity, as well as the expression levels of several genes involved in these mechanisms. Both male and female rats exhibited similar drinking patterns throughout the sessions of the SID protocol reaching similar blood alcohol levels in all the groups. However, only male rats that consumed alcohol showed spatial memory deficits which correlated with inhibition of hippocampal synaptic plasticity as long-term potentiation. In contrast, alcohol did not modify hippocampal gene expression of AMPA and NMDA glutamate receptor subunits, although there are differences in the expression levels of several genes relevant to synaptic plasticity mechanisms underlying learning and memory processes, related to alcohol consumption as Ephb2, sex differences as Pi3k or the interaction of both factors such as Pten. In conclusion, elevated alcohol intake during adolescence seems to have a negative impact on spatial memory and hippocampal synaptic plasticity in a sex dependent manner, even both sexes exhibit similar blood alcohol concentrations and drinking patterns.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Esmeralda Fuentes-Verdugo
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Beatriz Merino
- Department of Pharmaceutical and Nutritional Sciences, School of Pharmacy, San Pablo-CEU University, Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Lidia Morales
- Department of Pharmaceutical and Nutritional Sciences, School of Pharmacy, San Pablo-CEU University, Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Vicente Pérez
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Ricardo Pellón
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Miguel Miguéns
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Shi Q, Qi K. Developmental origins of health and disease: Impact of paternal nutrition and lifestyle. Pediatr Investig 2023; 7:111-131. [PMID: 37324600 PMCID: PMC10262906 DOI: 10.1002/ped4.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/29/2023] [Indexed: 09/20/2023] Open
Abstract
Most epidemiological and experimental studies have focused on maternal influences on offspring's health. The impact of maternal undernutrition, overnutrition, hypoxia, and stress is linked to adverse offspring outcomes across a range of systems including cardiometabolic, respiratory, endocrine, and reproduction among others. During the past decade, it has become evident that paternal environmental factors are also linked to the development of diseases in offspring. In this article, we aim to outline the current understanding of the impact of male health and environmental exposure on offspring development, health, and disease and explore the mechanisms underlying the paternal programming of offspring health. The available evidence suggests that poor paternal pre-conceptional nutrition and lifestyle, and advanced age can increase the risk of negative outcomes in offspring, via both direct (genetic/epigenetic) and indirect (maternal uterine environment) effects. Beginning at preconception, and during utero and the early life after birth, cells acquire an epigenetic memory of the early exposure which can be influential across the entire lifespan and program a child's health. Potentially not only mothers but also fathers should be advised that maintaining a healthy diet and lifestyle is important to improve offspring health as well as the parental health status. However, the evidence is mostly based on animal studies, and well-designed human studies are urgently needed to verify findings from animal data.
Collapse
Affiliation(s)
- Qiaoyu Shi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
8
|
Wu Z, Tian E, Chen Y, Dong Z, Peng Q. Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiol Res 2023; 268:127291. [PMID: 36542917 DOI: 10.1016/j.micres.2022.127291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A new field of microbial research is the relationship between microorganisms and multicellular hosts. It is known that gut microbes can cause various endocrine system diseases, such as diabetes and thyroid disease. Changes in the composition or structure and the metabolites of gut microbes may cause gastrointestinal disorders, including ulcers or intestinal perforation and other inflammatory and autoimmune diseases. In recent years, reports on the interactions between intestinal microorganisms and endocrine system diseases have been increasingly documented. In the meantime, the treatment based on gut microbiome has also been paid much attention. For example, fecal microbiota transplantation is found to have a therapeutic effect on many diseases. As such, understanding the gut microbiota-endocrine system interactions is of great significance for the theranostic of endocrine system diseases. Herein, we summarize the relations of gut microbiome with endocrine system diseases, and discuss the potentials of regulating gut microbiome in treating those diseases. In addition, the concerns and possible solutions regarding the gut microbiome-based therapy are discussed.
Collapse
Affiliation(s)
- Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Erkang Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Roach AN, Zimmel KN, Thomas KN, Basel A, Bhadsavle SS, Golding MC. Preconception paternal alcohol exposure decreases IVF embryo survival and pregnancy success rates in a mouse model. Mol Hum Reprod 2023; 29:gaad002. [PMID: 36637195 PMCID: PMC9907225 DOI: 10.1093/molehr/gaad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.
Collapse
Affiliation(s)
- Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Paternal Nicotine/Ethanol/Caffeine Mixed Exposure Induces Offspring Rat Dysplasia and Its Potential "GC-IGF1" Programming Mechanism. Int J Mol Sci 2022; 23:ijms232315081. [PMID: 36499404 PMCID: PMC9737622 DOI: 10.3390/ijms232315081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical and animal studies suggest that paternal exposure to adverse environments (bad living habits and chronic stress, etc.) has profound impacts on offspring development; however, the mechanism of paternal disease has not been clarified. In this study, a meta-analysis was first performed to suggest that paternal exposure to nicotine, ethanol, or caffeine is a high-risk factor for adverse pregnancy outcomes. Next, we created a rat model of paternal nicotine/ethanol/caffeine mixed exposure (PME), whereby male Wistar rats were exposed to nicotine (0.1 mg/kg/d), ethanol (0.5 g/kg/d), and caffeine (7.5 mg/kg/d) for 8 weeks continuously, then mated with normal female rats to obtain a fetus (n = 12 for control group, n = 10 for PME group). Then, we analyzed the changes in paternal hypothalamic-pituitary-adrenal (HPA) axis activity, testicular function, pregnancy outcomes, fetal serum metabolic indicators, and multiple organ functions to explore the mechanism from the perspective of chronic stress. Our results demonstrated that PME led to enhanced paternal HPA axis activity, decreased sperm quality, and adverse pregnancy outcomes (stillbirth and absorption, decreased fetal weight and body length, and intrauterine growth retardation), abnormal fetal serum metabolic indicators (corticosterone, glucolipid metabolism, and sex hormones), and fetal multi-organ dysfunction (including hippocampus, adrenal, liver, ossification, and gonads). Furthermore, correlation analysis showed that the increased paternal corticosterone level was closely related to decreased sperm quality, adverse pregnancy outcomes, and abnormal offspring multi-organ function development. Among them, the decreased activity of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis may be the main mechanism of offspring development and multi-organ dysfunction caused by PME. This study explored the impact of common paternal lifestyle in daily life on offspring development, and proposed the GC-IGF1 programming mechanisms of paternal chronic stress-induced offspring dysplasia, which provides a novel insight for exploring the important role of paternal chronic stress in offspring development and guiding a healthy lifestyle for men.
Collapse
|
11
|
Bhadsavle SS, Golding MC. Paternal epigenetic influences on placental health and their impacts on offspring development and disease. Front Genet 2022; 13:1068408. [PMID: 36468017 PMCID: PMC9716072 DOI: 10.3389/fgene.2022.1068408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 07/25/2023] Open
Abstract
Our efforts to understand the developmental origins of birth defects and disease have primarily focused on maternal exposures and intrauterine stressors. Recently, research into non-genomic mechanisms of inheritance has led to the recognition that epigenetic factors carried in sperm also significantly impact the health of future generations. However, although researchers have described a range of potential epigenetic signals transmitted through sperm, we have yet to obtain a mechanistic understanding of how these paternally-inherited factors influence offspring development and modify life-long health. In this endeavor, the emerging influence of the paternal epigenetic program on placental development, patterning, and function may help explain how a diverse range of male exposures induce comparable intergenerational effects on offspring health. During pregnancy, the placenta serves as the dynamic interface between mother and fetus, regulating nutrient, oxygen, and waste exchange and coordinating fetal growth and maturation. Studies examining intrauterine maternal stressors routinely describe alterations in placental growth, histological organization, and glycogen content, which correlate with well-described influences on infant health and adult onset of disease. Significantly, the emergence of similar phenotypes in models examining preconception male exposures indicates that paternal stressors transmit an epigenetic memory to their offspring that also negatively impacts placental function. Like maternal models, paternally programmed placental dysfunction exerts life-long consequences on offspring health, particularly metabolic function. Here, focusing primarily on rodent models, we review the literature and discuss the influences of preconception male health and exposure history on placental growth and patterning. We emphasize the emergence of common placental phenotypes shared between models examining preconception male and intrauterine stressors but note that the direction of change frequently differs between maternal and paternal exposures. We posit that alterations in placental growth, histological organization, and glycogen content broadly serve as reliable markers of altered paternal developmental programming, predicting the emergence of structural and metabolic defects in the offspring. Finally, we suggest the existence of an unrecognized developmental axis between the male germline and the extraembryonic lineages that may have evolved to enhance fetal adaptation.
Collapse
Affiliation(s)
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Thomas KN, Zimmel KN, Basel A, Roach AN, Mehta NA, Thomas KR, Dotson LJ, Bedi YS, Golding MC. Paternal alcohol exposures program intergenerational hormetic effects on offspring fetoplacental growth. Front Cell Dev Biol 2022; 10:930375. [PMID: 36036017 PMCID: PMC9405020 DOI: 10.3389/fcell.2022.930375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hormesis refers to graded adaptive responses to harmful environmental stimuli where low-level toxicant exposures stimulate tissue growth and responsiveness while, in contrast, higher-level exposures induce toxicity. Although the intergenerational inheritance of programmed hormetic growth responses is described in plants and insects, researchers have yet to observe this phenomenon in mammals. Using a physiologically relevant mouse model, we demonstrate that chronic preconception paternal alcohol exposures program nonlinear, dose-dependent changes in offspring fetoplacental growth. Our studies identify an inverse j-shaped curve with a threshold of 2.4 g/Kg per day; below this threshold, paternal ethanol exposures induce programmed increases in placental growth, while doses exceeding this point yield comparative decreases in placental growth. In male offspring, higher paternal exposures induce dose-dependent increases in the placental labyrinth layer but do not impact fetal growth. In contrast, the placental hypertrophy induced by low-level paternal ethanol exposures associate with increased offspring crown-rump length, particularly in male offspring. Finally, alterations in placental physiology correlate with disruptions in both mitochondrial-encoded and imprinted gene expression. Understanding the influence of ethanol on the paternally-inherited epigenetic program and downstream hormetic responses in offspring growth may help explain the enormous variation observed in fetal alcohol spectrum disorder (FASD) phenotypes and incidence.
Collapse
|
13
|
Bedi YS, Wang H, Thomas KN, Basel A, Prunier J, Robert C, Golding MC. Alcohol induced increases in sperm Histone H3 lysine 4 trimethylation correlate with increased placental CTCF occupancy and altered developmental programming. Sci Rep 2022; 12:8839. [PMID: 35614060 PMCID: PMC9130987 DOI: 10.1038/s41598-022-12188-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Using a mouse model, studies by our group reveal that paternal preconception alcohol intake affects offspring fetal-placental growth, with long-lasting consequences on adult metabolism. Here, we tested the hypothesis that chronic preconception male alcohol exposure impacts histone enrichment in sperm and that these changes are associated with altered developmental programming in the placenta. Using chromatin immunoprecipitation, we find alcohol-induced increases in sperm histone H3 lysine 4 trimethylation (H3K4me3) that map to promoters and presumptive enhancer regions enriched in genes driving neurogenesis and craniofacial development. Given the colocalization of H3K4me3 with the chromatin binding factor CTCF across both sperm and embryos, we next examined CTCF localization in the placenta. We find global changes in CTCF binding within placentae derived from the male offspring of alcohol-exposed sires. Furthermore, altered CTCF localization correlates with dysregulated gene expression across multiple gene clusters; however, these transcriptional changes only occur in male offspring. Finally, we identified a correlation between genomic regions exhibiting alcohol-induced increases in sperm H3K4me3 and increased CTCF binding in male placentae. Collectively, our analysis demonstrates that the chromatin landscape of sperm is sensitive to chronic alcohol exposure and that a subset of these affected regions exhibits increased placental CTCF enrichment.
Collapse
Affiliation(s)
- Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Haiqing Wang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Julien Prunier
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
15
|
Li G, Dong Z, Yue S, Wan D, Yin Y. Paternal Zn-deficiency abolishes metabolic effects in offspring induced by diet type. ANIMAL NUTRITION 2022; 8:310-320. [PMID: 35024468 PMCID: PMC8718729 DOI: 10.1016/j.aninu.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Accumulating evidence implicates that offspring are susceptible to paternal alterations in numerous fetal disorders, such as growth and metabolic defects. However, less study has been conducted to define the relationship between paternal zinc deficiency (ZnD) and energy metabolism of offspring. In the present study, we used a paternal ZnD exposure (Zn at 0.3 μg/g) model to test energy metabolism of male and female offspring with the intervention of diet type (high-fat diet and low-fat diet). Our results demonstrated that paternal ZnD decreased body weight (BW) gain per week (P < 0.01) and ME intake per week (P < 0.05) at 11 weeks in male offspring with high-fat diet intervention but not in female offspring. Further, anabolism and catabolism of hepatic energy products also exhibited alterations. ZnD attenuated liver glucose but increased lipids content accompanied with elevated adiponectin and reduction in leptin level in serum, which exhibited lipid metabolic disturbance and smaller ratio of liver weight to BW in male but not female offspring. The qRT-PCR and liver energy metabolites analysis revealed that paternal ZnD mainly induced reduction in glucose tolerance and lowered glucose uptaking ability in male offspring and thereby alleviated glycolysis and the tricarboxylic acid cycle (TCA) cycle, which displayed a male gender-dependency. Therefore, we propose that paternal ZnD abolishes metabolic effects in male offspring induced by diet type intervention. Our findings reveal a novel link between paternal Zn-D and offspring energy metabolism.
Collapse
Affiliation(s)
- Guanya Li
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhenglin Dong
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shusheng Yue
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
- Corresponding author.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
16
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
17
|
Programmed suppression of oxidative phosphorylation and mitochondrial function by gestational alcohol exposure correlate with widespread increases in H3K9me2 that do not suppress transcription. Epigenetics Chromatin 2021; 14:27. [PMID: 34130715 PMCID: PMC8207718 DOI: 10.1186/s13072-021-00403-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background A critical question emerging in the field of developmental toxicology is whether alterations in chromatin structure induced by toxicant exposure control patterns of gene expression or, instead, are structural changes that are part of a nuclear stress response. Previously, we used a mouse model to conduct a three-way comparison between control offspring, alcohol-exposed but phenotypically normal animals, and alcohol-exposed offspring exhibiting craniofacial and central nervous system structural defects. In the cerebral cortex of animals exhibiting alcohol-induced dysgenesis, we identified a dramatic increase in the enrichment of dimethylated histone H3, lysine 9 (H3K9me2) within the regulatory regions of key developmental factors driving histogenesis in the brain. However, whether this change in chromatin structure is causally involved in the development of structural defects remains unknown. Results Deep-sequencing analysis of the cortex transcriptome reveals that the emergence of alcohol-induced structural defects correlates with disruptions in the genetic pathways controlling oxidative phosphorylation and mitochondrial function. The majority of the affected pathways are downstream targets of the mammalian target of rapamycin complex 2 (mTORC2), indicating that this stress-responsive complex plays a role in propagating the epigenetic memory of alcohol exposure through gestation. Importantly, transcriptional disruptions of the pathways regulating oxidative homeostasis correlate with the emergence of increased H3K9me2 across genic, repetitive, and non-transcribed regions of the genome. However, although associated with gene silencing, none of the candidate genes displaying increased H3K9me2 become transcriptionally repressed, nor do they exhibit increased markers of canonical heterochromatin. Similar to studies in C. elegans, disruptions in oxidative homeostasis induce the chromatin looping factor SATB2, but in mammals, this protein does not appear to drive increased H3K9me2 or altered patterns of gene expression. Conclusions Our studies demonstrate that changes in H3K9me2 associate with alcohol-induced congenital defects, but that this epigenetic change does not correlate with transcriptional suppression. We speculate that the mobilization of SATB2 and increased enrichment of H3K9me2 may be components of a nuclear stress response that preserve chromatin integrity and interactions under prolonged oxidative stress. Further, we postulate that while this response may stabilize chromatin structure, it compromises the nuclear plasticity required for normal differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00403-w.
Collapse
|
18
|
Mierzejewski P, Zakrzewska A, Kuczyńska J, Wyszogrodzka E, Dominiak M. Intergenerational implications of alcohol intake: metabolic disorders in alcohol-naïve rat offspring. PeerJ 2020; 8:e9886. [PMID: 32974100 PMCID: PMC7489241 DOI: 10.7717/peerj.9886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol drinking may be associated with an increased risk of various metabolic diseases. Rat lines selectively bred for alcohol preference and alcohol avoidance constitute an interesting model to study inherited factors related to alcohol drinking and metabolic disorders. The aim of the present study was to compare the levels of selected laboratory biomarkers of metabolic disorders in blood samples from naïve offspring of Warsaw alcohol high-preferring (WHP), Warsaw alcohol low-preferring (WLP), and wild Wistar rats. Blood samples were collected from 3-month old (300–350 g) alcohol-naïve, male offspring of WHP (n = 8) and WLP rats (n = 8), as well as alcohol-naïve, male, wild Wistar rats. Markers of metabolic, hepatic, and pancreatic disorders were analysed (levels of homocysteine, glucose, total cholesterol, triglycerides and γ-glutamyl transferase (GGT), aspartate (AST), alanine aminotransferase (ALT), and amylase serum activities). Alcohol-naïve offspring of WHP, WLP, and wild Wistar rats differed significantly in the levels of triglycerides, total cholesterol, homocysteine, as well as in the activity of GGT, ALT, AST, and amylase enzymes. Most markers in the alcohol-naïve offspring of WHP rats were altered even thought they were never exposed to alcohol pre- or postnatally. This may suggest that parental alcohol abuse can have a detrimental influence on offspring vulnerability to metabolic disorders.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Alicja Zakrzewska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Julita Kuczyńska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
19
|
Mustapha TA, Chang RC, Garcia-Rhodes D, Pendleton D, Johnson NM, Golding MC. Gestational exposure to particulate air pollution exacerbates the growth phenotypes induced by preconception paternal alcohol use: a multiplex model of exposure. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa011. [PMID: 33214907 PMCID: PMC7660119 DOI: 10.1093/eep/dvaa011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 06/09/2020] [Indexed: 05/11/2023]
Abstract
It is now clear that parental histories of drug use, toxicant exposure, and social stress all have a significant influence on the health and development of the next generation. However, the ability of epigenetic parental life memories to interact with subsequent gestational exposures and cumulatively modify the developmental trajectory of the offspring remains an unexplored perspective in toxicology. Studies from our laboratory have identified male-specific postnatal growth restriction in a mouse model of chronic, preconception paternal alcohol exposure. The goal of the current study was to determine if paternal alcohol use, before conception, could modify the susceptibility of the offspring to a completely separate exposure encountered by the mother during pregnancy. In independent experiments, we previously identified altered developmental programming and increased markers of severe asthma induced by gestational exposure to particulate air pollution. In this study, male mice were exposed to either the control or alcohol preconception treatments, then mated to naive females, which we subsequently exposed to an ultrafine mixture of particulate matter via inhalation. Individually, neither preconception paternal drinking nor gestational exposures to particulate air pollution impacted the postnatal growth of female offspring. However, when both exposures were combined, females displayed a 30% reduction in weight gain. Unexpectedly, this exposure paradigm resulted in a dramatic postnatal increase in litter loss due to maternal cannibalism, which prevented additional measures of offspring health. These preliminary studies provide evidence of a complex interplay between preconception life history and intrauterine environmental factors in the control of postnatal growth.
Collapse
Affiliation(s)
- Toriq A Mustapha
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Richard C Chang
- Department of Veterinary Physiology & Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University 588 Raymond Stotzer Pw, 4466 TAMU, College Station Texas, 77843, USA
| | - Dennis Garcia-Rhodes
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Drew Pendleton
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Natalie M Johnson
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University 588 Raymond Stotzer Pw, 4466 TAMU, College Station Texas, 77843, USA
- Correspondence address. Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA. Tel: +1-979-862-1332; Fax: +1-979-845-6544, E-mail:
| |
Collapse
|