1
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Type 1 interferons (IFN-I) are of increasing interest across a wide range of autoimmune rheumatic diseases. Historically, research into their role in rheumatoid arthritis (RA) has been relatively neglected, but recent work continues to highlight a potential contribution to RA pathophysiology. RECENT FINDINGS We emphasise the importance of disease stage when examining IFN-I in RA and provide an overview on how IFN-I may have a direct role on a variety of relevant cellular functions. We explore how clinical trajectory may be influenced by increased IFN-I signalling, and also, the limitations of scores composed of interferon response genes. Relevant environmental triggers and inheritable RA genetic risk relating to IFN-I signalling are explored with emphasis on intriguing data potentially linking IFN-I exposure, epigenetic changes, and disease relevant processes. Whilst these data cumulatively illustrate a likely role for IFN-I in RA, they also highlight the knowledge gaps, particularly in populations at risk for RA, and suggest directions for future research to both better understand IFN-I biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Zhu C, Lee JY, Woo JZ, Xu L, Nguyenla X, Yamashiro LH, Ji F, Biering SB, Van Dis E, Gonzalez F, Fox D, Wehri E, Rustagi A, Pinsky BA, Schaletzky J, Blish CA, Chiu C, Harris E, Sadreyev RI, Stanley S, Kauppinen S, Rouskin S, Näär AM. An intranasal ASO therapeutic targeting SARS-CoV-2. Nat Commun 2022; 13:4503. [PMID: 35922434 PMCID: PMC9349213 DOI: 10.1038/s41467-022-32216-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5′ leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 “variants of concern” tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics. Despite approved vaccines and anti-virals to prevent and treat SARS-CoV-2 infection, there is a need for further development of efficient antiviral therapeutic strategy. Here, Zhu et al. develop locked nucleic acid antisense oligonucleotides (LNA ASOs) targeting the 5’ leader sequence of SARS-CoV-2 RNA to interfere with replication of wildtype virus and variants of concern. Daily intranasal administration in K18-hACE2 humanized mice suppresses viral infection in lung.
Collapse
Affiliation(s)
- Chi Zhu
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Justin Y Lee
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jia Z Woo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Lei Xu
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Xammy Nguyenla
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Livia H Yamashiro
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, USA
| | - Federico Gonzalez
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Douglas Fox
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eddie Wehri
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, CA, USA
| | - Arjun Rustagi
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, CA, USA
| | - Catherine A Blish
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Charles Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Anders M Näär
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Keating MF, Drew BG, Calkin AC. Antisense Oligonucleotide Technologies to Combat Obesity and Fatty Liver Disease. Front Physiol 2022; 13:839471. [PMID: 35295579 PMCID: PMC8918623 DOI: 10.3389/fphys.2022.839471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Synthetic oligonucleotide technologies are DNA or RNA based molecular compounds that are utilized to disrupt gene transcription or translation in target tissues or cells. Optimally, oligonucleotides are 10–30 base pairs in length, and mediate target gene suppression through directed sequence homology with messenger RNA (mRNA), leading to mRNA degradation. Examples of specific oligonucleotide technologies include antisense oligonucleotides (ASO), short hairpin RNAs (shRNA), and small interfering RNAs (siRNA). In vitro and in vivo studies that model obesity related disorders have demonstrated that oligonucleotide technologies can be implemented to improve the metabolism of cells and tissues, exemplified by improvements in fat utilization and hepatic insulin signaling, respectively. Oligonucleotide therapy has also been associated with reductions in lipid accumulation in both the liver and adipose tissue in models of diet-induced obesity. Recent advances in oligonucleotide technologies include the addition of chemical modifications such as N-acetylgalactosamine (GalNAc) conjugates that have been successful at achieving affinity for the liver, in turn improving specificity, and thus reducing off target effects. However, some challenges are still yet to be overcome relating to hepatic injury and off-target effects that have been reported with some compounds, including ASOs. In summary, oligonucleotide-based therapies are an effective tool to elucidate mechanistic insights into metabolic pathways and provide an attractive avenue for translational research into the clinic.
Collapse
Affiliation(s)
- Michael F Keating
- Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Molecular Metabolism and Ageing Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Disease, University of Melbourne, Parkville, VIC, Australia
| | - Brian G Drew
- Molecular Metabolism and Ageing Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Disease, University of Melbourne, Parkville, VIC, Australia.,Central Clinical School, Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Anna C Calkin
- Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Disease, University of Melbourne, Parkville, VIC, Australia.,Central Clinical School, Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Sci Rep 2022; 12:3666. [PMID: 35256633 PMCID: PMC8901764 DOI: 10.1038/s41598-022-07291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Total body fat and central fat distribution are heritable traits and well-established predictors of adverse metabolic outcomes. Lipolysis is the process responsible for the hydrolysis of triacylglycerols stored in adipocytes. To increase our understanding of the genetic regulation of body fat distribution and total body fat, we set out to determine if genetic variants associated with body mass index (BMI) or waist-hip-ratio adjusted for BMI (WHRadjBMI) in genome-wide association studies (GWAS) mediate their effect by influencing adipocyte lipolysis. We utilized data from the recent GWAS of spontaneous and isoprenaline-stimulated lipolysis in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort. GENiAL consists of 939 participants who have undergone abdominal subcutaneous adipose biopsy for the determination of spontaneous and isoprenaline-stimulated lipolysis in adipocytes. We report 11 BMI and 15 WHRadjBMI loci with SNPs displaying nominal association with lipolysis and allele-dependent gene expression in adipose tissue according to in silico analysis. Functional evaluation of candidate genes in these loci by small interfering RNAs (siRNA)-mediated knock-down in adipose-derived stem cells identified ZNF436 and NUP85 as intrinsic regulators of lipolysis consistent with the associations observed in the clinical cohorts. Furthermore, candidate genes in another BMI-locus (STX17) and two more WHRadjBMI loci (NID2, GGA3, GRB2) control lipolysis alone, or in conjunction with lipid storage, and may hereby be involved in genetic control of body fat. The findings expand our understanding of how genetic variants mediate their impact on the complex traits of fat storage and distribution.
Collapse
|
7
|
Hsieh J, Molusky MM, McCabe KM, Fotakis P, Xiao T, Tascau L, Zeana-Schliep L, DaSilva-Jardine P, Tall AR. TTC39B destabilizes retinoblastoma protein promoting hepatic lipogenesis in a sex-specific fashion. J Hepatol 2022; 76:383-393. [PMID: 34600974 PMCID: PMC8766887 DOI: 10.1016/j.jhep.2021.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Molecular mechanisms underlying the different susceptibility of men and women to non-alcoholic fatty liver disease (NAFLD) are poorly understood. The TTC39B locus encodes a scaffolding protein, associates with gynecological disorders and its deletion protects mice from diet-induced steatohepatitis. This study aimed to elucidate the molecular mechanisms linking TTC39B (T39) to the expression of lipogenic genes and to explore sex-specific effects. METHODS Co-expression in HEK293A cells validated the novel T39/pRb interaction predicted by a protein-protein interaction algorithm. T39 was knocked down using an antisense oligonucleotide (ASO) in mice with dietary NAFLD and a genetic deficiency of pRb or its downstream effector E2F1, as well as in primary human hepatocytes. RESULTS T39 interacts with pRb via its C-terminal TPR domain and promotes its proteasomal degradation. In female mice, T39 deficiency reduces the mRNA of lipogenic genes, especially Pnpla3, in a pRb- and E2F1-dependent manner. In contrast, in male mice, T39 deficiency results in a much smaller reduction in lipogenic gene expression that is independent of pRb/E2F1. T39 also interacts with VAPB via an N-terminal FFAT motif and stabilizes the interaction of VAPB with SCAP. Ovariectomy abolishes the effect of T39 knockdown on the hepatic pRb/E2F1/Pnpla3 axis. In both sexes T39 knockdown reduces SCAP independently of pRb. In primary human hepatocytes, T39 knockdown reduces expression of PNPLA3 and other lipogenic genes in women but not men. CONCLUSIONS We have uncovered a conserved sexual dimorphism in the regulation of hepatic lipogenic genes, with effects of T39 mediated through pRb/E2F1 in females and VAPB/SCAP in both sexes. T39 inhibition could be a novel strategy to downregulate PNPLA3 and treat NAFLD in women. LAY SUMMARY In females, the protein TTC39B degrades a tumor suppressor in the liver to promote the synthesis of new fat and the expression of a major genetic risk factor for non-alcoholic fatty liver disease. TTC39B is a potential therapeutic target for non-alcoholic fatty liver disease, especially in women.
Collapse
Affiliation(s)
- Joanne Hsieh
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA.
| | - Matthew M. Molusky
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Kristin M. McCabe
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Panagiotis Fotakis
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Liana Tascau
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Lars Zeana-Schliep
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | | | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
8
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Worley BL, Auen T, Arnold AC, Monia BP, Hempel N, Czyzyk TA. Antisense oligonucleotide-mediated knockdown of Mpzl3 attenuates the negative metabolic effects of diet-induced obesity in mice. Physiol Rep 2021; 9:e14853. [PMID: 33991450 PMCID: PMC8123547 DOI: 10.14814/phy2.14853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Previously, we demonstrated that global knockout (KO) of the gene encoding myelin protein zero‐like 3 (Mpzl3) results in reduced body weight and adiposity, increased energy expenditure, and reduced hepatic lipid synthesis in mice. These mice also exhibit cyclic and progressive alopecia which may contribute to the observed hypermetabolic phenotype. The goal of the current study was to determine if acute and peripherally restricted knockdown of Mpzl3 could ameliorate the negative metabolic effects of exposure to a high‐fat and sucrose, energy‐dense (HED) diet similar to what was observed in global Mpzl3 KO mice in the absence of a skin phenotype. Mpzl3 antisense oligonucleotide (ASO) administration dose‐dependently decreased fat mass and circulating lipids in HED‐fed C57BL/6N mice. These changes were accompanied by a decrease in respiratory exchange ratio, a reduction in energy expenditure and food intake, a decrease in expression of genes regulating de novo lipogenesis in white adipose tissue, and an upregulation of genes associated with steroid hormone biosynthesis in liver, thermogenesis in brown adipose tissue and fatty acid transport in skeletal muscle. These data demonstrate that resistance to the negative metabolic effects of HED is a direct effect of Mpzl3 knockdown, rather than compensatory changes that could be associated with deletion of Mpzl3 during development in global KO mice. Inhibiting MPZL3 could be a potential therapeutic approach for the treatment of obesity and associated dyslipidemia.
Collapse
Affiliation(s)
- Beth L Worley
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA.,Biomedical Sciences Program, Penn State University College of Medicine, Hershey, PA, USA
| | - Thomas Auen
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Amy C Arnold
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
10
|
Wang D, Sallam T. Where in the (lncRNA) World Is CARMN?: Safeguarding Against Vascular Dysfunction. Circ Res 2021; 128:1276-1278. [PMID: 33914599 DOI: 10.1161/circresaha.121.319150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dan Wang
- Division of Cardiology, Department of Medicine (D.W., T.S.), University of California, Los Angeles.,Molecular Biology Institute (D.W., T.S.), University of California, Los Angeles
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine (D.W., T.S.), University of California, Los Angeles.,Molecular Biology Institute (D.W., T.S.), University of California, Los Angeles
| |
Collapse
|
11
|
Signorelli M, Ebrahimpoor M, Veth O, Hettne K, Verwey N, García‐Rodríguez R, Tanganyika‐deWinter CL, Lopez Hernandez LB, Escobar Cedillo R, Gómez Díaz B, Magnusson OT, Mei H, Tsonaka R, Aartsma‐Rus A, Spitali P. Peripheral blood transcriptome profiling enables monitoring disease progression in dystrophic mice and patients. EMBO Mol Med 2021; 13:e13328. [PMID: 33751844 PMCID: PMC8033515 DOI: 10.15252/emmm.202013328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
DMD is a rare disorder characterized by progressive muscle degeneration and premature death. Therapy development is delayed by difficulties to monitor efficacy non-invasively in clinical trials. In this study, we used RNA-sequencing to describe the pathophysiological changes in skeletal muscle of 3 dystrophic mouse models. We show how dystrophic changes in muscle are reflected in blood by analyzing paired muscle and blood samples. Analysis of repeated blood measurements followed the dystrophic signature at five equally spaced time points over a period of seven months. Treatment with two antisense drugs harboring different levels of dystrophin recovery identified genes associated with safety and efficacy. Evaluation of the blood gene expression in a cohort of DMD patients enabled the comparison between preclinical models and patients, and the identification of genes associated with physical performance, treatment with corticosteroids and body measures. The presented results provide evidence that blood RNA-sequencing can serve as a tool to evaluate disease progression in dystrophic mice and patients, as well as to monitor response to (dystrophin-restoring) therapies in preclinical drug development and in clinical trials.
Collapse
Affiliation(s)
- Mirko Signorelli
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Mitra Ebrahimpoor
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Olga Veth
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Kristina Hettne
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Nisha Verwey
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Luz B Lopez Hernandez
- Departamento de Medicina GenómicaUniversidad Autónoma de GuadalajaraGuadalajaraMexico
- Centro Médico Nacional "20 de Noviembre", ISSSTECiudad de MéxicoMexico
| | | | - Benjamín Gómez Díaz
- Sociedad Mexicana de la Distrofia Muscular A.C INR‐LGIICiudad de MéxicoMexico
| | | | - Hailiang Mei
- Sequencing Analysis Support CoreLeiden University Medical CenterLeidenThe Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | | | - Pietro Spitali
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
12
|
Lutkewitte AJ, Singer JM, Shew TM, Martino MR, Hall AM, He M, Finck BN. Multiple antisense oligonucleotides targeted against monoacylglycerol acyltransferase 1 (Mogat1) improve glucose metabolism independently of Mogat1. Mol Metab 2021; 49:101204. [PMID: 33676028 PMCID: PMC8027266 DOI: 10.1016/j.molmet.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Monoacylglycerol acyltransferase (MGAT) enzymes catalyze the synthesis of diacylglycerol from monoacylglycerol. Previous work has suggested the importance of MGAT activity in the development of obesity-related hepatic insulin resistance. Indeed, antisense oligonucleotide (ASO)-mediated knockdown of Mogat1 mRNA, which encodes MGAT1, reduced hepatic MGAT activity and improved glucose tolerance and insulin resistance in high-fat diet (HFD)-fed mice. However, recent work has suggested that some ASOs may have off-target effects on body weight and metabolic parameters via activation of the interferon alpha/beta receptor 1 (IFNAR-1) pathway. METHODS Mice with whole-body Mogat1 knockout or a floxed allele for Mogat1 to allow for liver-specific Mogat1-knockout (by either a liver-specific transgenic or adeno-associated virus-driven Cre recombinase) were generated. These mice were placed on an HFD, and glucose metabolism and insulin sensitivity were assessed after 16 weeks on diet. In some experiments, mice were treated with control scramble or Mogat1 ASOs in the presence or absence of IFNAR-1 neutralizing antibody. RESULTS Genetic deletion of hepatic Mogat1, either acutely or chronically, did not improve hepatic steatosis, glucose tolerance, or insulin sensitivity in HFD-fed mice. Furthermore, constitutive Mogat1 knockout in all tissues actually exacerbated HFD-induced obesity, insulin sensitivity, and glucose intolerance on an HFD. Despite markedly reduced Mogat1 expression, liver MGAT activity was unaffected in all knockout mouse models. Mogat1 overexpression in hepatocytes increased liver MGAT activity and TAG content in low-fat-fed mice but did not cause insulin resistance. Multiple Mogat1 ASO sequences improved glucose tolerance in both wild-type and Mogat1 null mice, suggesting an off-target effect. Hepatic IFNAR-1 signaling was activated by multiple Mogat1 ASOs, but its blockade did not prevent the effects of either Mogat1 ASO on glucose homeostasis. CONCLUSION These results indicate that genetic loss of Mogat1 does not affect hepatic MGAT activity or metabolic homeostasis on HFD and show that multiple Mogat1 ASOs improve glucose metabolism through effects independent of targeting Mogat1 or activation of IFNAR-1 signaling.
Collapse
Affiliation(s)
- Andrew J Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jason M Singer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Angela M Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
13
|
Gessani S, Belardelli F. Type I Interferons as Joint Regulators of Tumor Growth and Obesity. Cancers (Basel) 2021; 13:cancers13020196. [PMID: 33430520 PMCID: PMC7827047 DOI: 10.3390/cancers13020196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The escalating global epidemic of overweight and obesity is a major public health and economic problem, as excess body weight represents a significant risk factor for several chronic diseases including cancer. Despite the strong scientific evidence for a link between obesity and cancer, the mechanisms involved in this interplay have not yet been fully understood. The aim of this review is to evaluate the role of type I interferons, a family of antiviral cytokines with key roles in the regulation of both obesity and cancer, highlighting how the dysregulation of the interferon system can differently affect these pathological conditions. Abstract Type I interferons (IFN-I) are antiviral cytokines endowed with multiple biological actions, including antitumor activity. Studies in mouse models and cancer patients support the concept that endogenous IFN-I play important roles in the control of tumor development and growth as well as in response to several chemotherapy/radiotherapy treatments. While IFN-I signatures in the tumor microenvironment are often considered as biomarkers for a good prognostic response to antitumor therapies, prolonged IFN-I signaling can lead to immune dysfunction, thereby promoting pathogen or tumor persistence, thus revealing the “Janus face” of these cytokines in cancer control, likely depending on timing, tissue microenvironment and cumulative levels of IFN-I signals. Likewise, IFN-I exhibit different and even opposite effects on obesity, a pathologic condition linked to cancer development and growth. As an example, evidence obtained in mouse models shows that localized expression of IFN-I in the adipose tissue results in inhibition of diet–induced obesity, while hyper-production of these cytokines by specialized cells such as plasmacytoid dendritic cells in the same tissue, can induce systemic inflammatory responses leading to obesity. Further studies in mouse models and humans should reveal the mechanisms by which IFN-I can regulate both tumor growth and obesity and to understand the role of factors such as genetic background, diet and microbioma in shaping the production and action of these cytokines under physiological and pathological conditions.
Collapse
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (S.G.); (F.B.)
| | - Filippo Belardelli
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
- Correspondence: (S.G.); (F.B.)
| |
Collapse
|