1
|
Soto PL, Young ME, Nguyen S, Federoff M, Goodson M, Morrison CD, Batdorf HM, Burke SJ, Collier JJ. Early adolescent second-generation antipsychotic exposure produces long-term, post-treatment increases in body weight and metabolism-associated gene expression. Pharmacol Biochem Behav 2024; 247:173951. [PMID: 39722423 DOI: 10.1016/j.pbb.2024.173951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The use of second-generation antipsychotic (SGA) medications in pediatric patients raises concerns about potential long-term adverse outcomes. The current study evaluated the long-term effects of treatment with risperidone or olanzapine on body weight, caloric intake, serum insulin, blood glucose, and metabolism-associated gene expression in C57Bl/6J female mice. Compared to mice treated with vehicle, female mice treated with risperidone or olanzapine gained weight at higher rates during treatment and maintained higher body weights for months following treatment cessation. High-fat diet feeding did not produce a robust difference in weight gain in previously treated vs. control groups. Finally, female mice previously treated with olanzapine also exhibited increased expression of genes associated with inflammation and lipogenesis. These findings suggest that pediatric use of SGA medications that induce excess weight gain during treatment may exert persistent effects on body weight and gene expression and such outcomes may form an important aspect of assessing risk-to-benefit ratios in prescribing decisions.
Collapse
Affiliation(s)
- Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America.
| | - Michael E Young
- Kansas State University, Manhattan, KS 66506, United States of America
| | - Serena Nguyen
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Megan Federoff
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Mia Goodson
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | | | - Heidi M Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| |
Collapse
|
2
|
Brooks SJ, Dahl K, Dudley-Jones R, Schiöth HB. A neuroinflammatory compulsivity model of anorexia nervosa (NICAN). Neurosci Biobehav Rev 2024; 159:105580. [PMID: 38417395 DOI: 10.1016/j.neubiorev.2024.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Affiliation(s)
- S J Brooks
- Department of Surgical Sciences, Uppsala University, Sweden; School of Psychology, Liverpool John Moores University, UK; Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa.
| | - K Dahl
- Department of Surgical Sciences, Uppsala University, Sweden
| | - R Dudley-Jones
- School of Psychology, Liverpool John Moores University, UK
| | - H B Schiöth
- Department of Surgical Sciences, Uppsala University, Sweden
| |
Collapse
|
3
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
4
|
Linden MA, Burke SJ, Pirzadah HA, Huang TY, Batdorf HM, Mohammed WK, Jones KA, Ghosh S, Campagna SR, Collier JJ, Noland RC. Pharmacological inhibition of lipolysis prevents adverse metabolic outcomes during glucocorticoid administration. Mol Metab 2023; 74:101751. [PMID: 37295745 PMCID: PMC10300254 DOI: 10.1016/j.molmet.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE Glucocorticoids are one of the most commonly prescribed classes of anti-inflammatory drugs; however, chronic treatment promotes iatrogenic (drug-induced) diabetes. As part of their physiological role, glucocorticoids stimulate lipolysis to spare glucose. We hypothesized that persistent stimulation of lipolysis during glucocorticoid therapy plays a causative role in the development of iatrogenic diabetes. METHODS Male C57BL/6J mice were given 100 μg/mL corticosterone (Cort) in the drinking water for two weeks and were fed either normal chow (TekLad 8640) or the same diet supplemented with an adipose triglyceride lipase inhibitor (Atglistatin - 2 g/kg diet) to inhibit the first step of lipolysis. RESULTS Herein, we report for the first time that glucocorticoid administration promotes a unique state of substrate excess and energetic overload in skeletal muscle that primarily results from the rampant mobilization of endogenous fuels. Inhibiting lipolysis protected mice from Cort-induced gains in fat mass, excess ectopic lipid accrual, hyperinsulinemia, and hyperglycemia. The role lipolysis plays in Cort-mediated pathology appears to differ between tissues. Within skeletal muscle, Cort-induced lipolysis facilitated diversion of glucose-derived carbons toward the pentose phosphate and hexosamine biosynthesis pathways but contributed to <3% of the Cort-induced genomic adaptations. In contrast, Cort stimulation of lipolysis accounted for ∼35% of the genomic changes in the liver but had minimal impact on hepatic metabolites reported. CONCLUSIONS These data support the idea that activation of lipolysis plays a causal role in the progression toward iatrogenic diabetes during glucocorticoid therapy with differential impact on skeletal muscle and liver.
Collapse
Affiliation(s)
- Melissa A Linden
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Exercise and Health Sciences, University of Massachusetts-Boston, Boston, MA, 02125, USA.
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Humza A Pirzadah
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Tai-Yu Huang
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Walid K Mohammed
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Katarina A Jones
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37916, USA.
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37916, USA.
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
5
|
Wei Y, Wang K, Zhang Y, Duan Y, Tian Y, Yin H, Fu X, Ma Z, Zhou J, Yu M, Ni Q, Tang W. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation. Front Pharmacol 2023; 14:1138762. [PMID: 37007020 PMCID: PMC10063881 DOI: 10.3389/fphar.2023.1138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: It has been proven that hydrogen has obvious anti-inflammatory effects in animal experiments and clinical practice. However, the early dynamic process of the inflammatory response caused by lipopolysaccharide (LPS) and the anti-inflammatory effect of hydrogen has not been definitively reported. Methods: Inflammation in male C57/BL6J mice or RAW264.7 cells was induced with LPS, for which hydrogen was immediately administered until samples were taken. Pathological changes in lung tissue were assessed using hematoxylin and eosin (HE) staining. Levels of inflammatory factors in serum were determined using liquid protein chip. The mRNA levels of chemotactic factors in lung tissues, leukocytes, and peritoneal macrophages were measured by qRT-PCR. The expression levels of IL-1α and HIF-1α were measured by immunocytochemistry. Results: Hydrogen alleviated LPS-induced inflammatory infiltration in the lung tissues of mice. Among the 23 inflammatory factors screened, LPS-induced upregulation of IL-1α etc. was significantly inhibited by hydrogen within 1 hour. The mRNA expression of MCP-1, MIP-1α, G-CSF, and RANTES was inhibited obviously by hydrogen at 0.5 and 1 h in mouse peritoneal macrophages. In addition, hydrogen significantly blocked LPS or H2O2-induced upregulation of HIF-1α, and IL-1α in 0.5 h in RAW264.7 cells. Discussion: The results suggested that hydrogen is potentially inhibitive against inflammation by inhibiting HIF-1α and IL-1α release at early occurrence. The target of the inhibitive LPS-induced-inflammatory action of hydrogen is chemokines in macrophages in the peritoneal cavity. This study provides direct experimental evidence for quickly controlling inflammation with the translational application of a hydrogen-assisted protocol.
Collapse
Affiliation(s)
- Youzhen Wei
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- Research Center for Translational Medicine, Jinan People’s Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Kun Wang
- Office of Academic Research, Taishan Vocational College of Nursing, Taian, Shandong, China
| | - Yafang Zhang
- Department of Neonatology and NICU, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yi Duan
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Tian
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Yin
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Qingbin Ni
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Regenerative Medicine, East Hospital, Tongji University, Shanghai, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| |
Collapse
|
6
|
Martin TM, Burke SJ, Batdorf HM, Burk DH, Ghosh S, Dupuy SD, Karlstad MD, Collier JJ. ICAM-1 Abundance Is Increased in Pancreatic Islets of Hyperglycemic Female NOD Mice and Is Rapidly Upregulated by NF-κB in Pancreatic β-Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:569-581. [PMID: 35851539 PMCID: PMC9845432 DOI: 10.4049/jimmunol.2200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes (T1D) is classified as an autoimmune disease where pancreatic β-cells are specifically targeted by cells of the immune system. The molecular mechanisms underlying this process are not completely understood. Herein, we identified that the Icam1 gene and ICAM-1 protein were selectively elevated in female NOD mice relative to male mice, fitting with the sexual dimorphism of diabetes onset in this key mouse model of T1D. In addition, ICAM-1 abundance was greater in hyperglycemic female NOD mice than in age-matched normoglycemic female NOD mice. Moreover, we discovered that the Icam1 gene was rapidly upregulated in response to IL-1β in mouse, rat, and human islets and in 832/13 rat insulinoma cells. This early temporal genetic regulation requires key components of the NF-κB pathway and was associated with rapid recruitment of the p65 transcriptional subunit of NF-κB to corresponding κB elements within the Icam1 gene promoter. In addition, RNA polymerase II recruitment to the Icam1 gene promoter in response to IL-1β was consistent with p65 occupancy at κB elements, histone chemical modifications, and increased mRNA abundance. Thus, we conclude that β-cells undergo rapid genetic reprogramming by IL-1β to enhance expression of the Icam1 gene and that elevations in ICAM-1 are associated with hyperglycemia in NOD mice. These findings are highly relevant to, and highlight the importance of, pancreatic β-cell communication with the immune system. Collectively, these observations reveal a portion of the complex molecular events associated with onset and progression of T1D.
Collapse
Affiliation(s)
- Thomas M. Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - David H. Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke NUS Medical School, Singapore
| | - Samuel D. Dupuy
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D. Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| |
Collapse
|
7
|
Meng Q, Chepurny OG, Leech CA, Pruekprasert N, Molnar ME, Collier JJ, Cooney RN, Holz GG. The alpha-7 nicotinic acetylcholine receptor agonist GTS-21 engages the glucagon-like peptide-1 incretin hormone axis to lower levels of blood glucose in db/db mice. Diabetes Obes Metab 2022; 24:1255-1266. [PMID: 35293666 PMCID: PMC9177741 DOI: 10.1111/dom.14693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
AIM To establish if alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a blood glucose-lowering action in db/db mice, and to test if this action requires coordinate α7nAChR and GLP-1 receptor (GLP-1R) stimulation by GTS-21 and endogenous GLP-1, respectively. MATERIALS AND METHODS Blood glucose levels were measured during an oral glucose tolerance test (OGTT) using db/db mice administered intraperitoneal GTS-21. Plasma GLP-1, peptide tyrosine tyrosine 1-36 (PYY1-36), glucose-dependent insulinotropic peptide (GIP), glucagon, and insulin levels were measured by ELISA. A GLP-1R-mediated action of GTS-21 that is secondary to α7nAChR stimulation was evaluated using α7nAChR and GLP-1R knockout (KO) mice, or by co-administration of GTS-21 with the dipeptidyl peptidase-4 inhibitor, sitagliptin, or the GLP-1R antagonist, exendin (9-39). Insulin sensitivity was assessed in an insulin tolerance test. RESULTS Single or multiple dose GTS-21 (0.5-8.0 mg/kg) acted in a dose-dependent manner to lower levels of blood glucose in the OGTT using 10-14 week-old male and female db/db mice. This action of GTS-21 was reproduced by the α7nAChR agonist, PNU-282987, was enhanced by sitagliptin, was counteracted by exendin (9-39), and was absent in α7nAChR and GLP-1R KO mice. Plasma GLP-1, PYY1-36, GIP, glucagon, and insulin levels increased in response to GTS-21, but insulin sensitivity, body weight, and food intake were unchanged. CONCLUSIONS α7nAChR agonists improve oral glucose tolerance in db/db mice. This action is contingent to coordinate α7nAChR and GLP-1R stimulation. Thus α7nAChR agonists administered in combination with sitagliptin might serve as a new treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Oleg G. Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Colin A. Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Napat Pruekprasert
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Megan E. Molnar
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Robert N. Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Co-corresponding Authors: Robert N. Cooney, M.D., Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Suite 8141, Syracuse, NY 13210 USA, Tel. +1 315-464-5549, Fax +1 315-464-6250, , George G. Holz, Ph.D., Department of Medicine, SUNY Upstate Medical University, 505 Irving Avenue, IHP4310, Syracuse, NY 13210 USA, Tel. +1 315-464-9841,
| | - George G. Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Co-corresponding Authors: Robert N. Cooney, M.D., Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Suite 8141, Syracuse, NY 13210 USA, Tel. +1 315-464-5549, Fax +1 315-464-6250, , George G. Holz, Ph.D., Department of Medicine, SUNY Upstate Medical University, 505 Irving Avenue, IHP4310, Syracuse, NY 13210 USA, Tel. +1 315-464-9841,
| |
Collapse
|
8
|
Böni-Schnetzler M, Méreau H, Rachid L, Wiedemann SJ, Schulze F, Trimigliozzi K, Meier DT, Donath MY. IL-1beta promotes the age-associated decline of beta cell function. iScience 2021; 24:103250. [PMID: 34746709 PMCID: PMC8554531 DOI: 10.1016/j.isci.2021.103250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
Aging is the prime risk factor for the development of type 2 diabetes. We investigated the role of the interleukin-1 (IL-1) system on insulin secretion in aged mice. During aging, expression of the protective IL-1 receptor antagonist decreased in islets, whereas IL-1beta gene expression increased specifically in the CD45 + islet immune cell fraction. One-year-old mice with a whole-body knockout of IL-1beta had higher insulin secretion in vivo and in isolated islets, along with enhanced proliferation marker Ki67 and elevated size and number of islets. Myeloid cell-specific IL-1beta knockout preserved glucose-stimulated insulin secretion during aging, whereas it declined in control mice. Isolated islets from aged myeloIL-1beta ko mice secreted more insulin along with increased expression of Ins2, Kir6.2, and of the cell-cycle gene E2f1. IL-1beta treatment of isolated islets reduced E2f1, Ins2, and Kir6.2 expression in beta cells. We conclude that IL-1beta contributes the age-associated decline of beta cell function. Islets from aged mice have increased IL-1beta and decreased IL-1Ra expression Islet immune cells are the source of increased IL-1beta expression during aging Myeloid-cell-specific IL-1beta knockout preserves insulin secretion in aged mice IL-1beta targets genes regulating insulin secretion and proliferation during aging
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Hélène Méreau
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Leila Rachid
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Sophia J Wiedemann
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Friederike Schulze
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Kelly Trimigliozzi
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Marc Y Donath
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|