1
|
Li X, Hu C, Luo S, Dai F, Li C, Zhou W, Wang J, Chen H, Wang Z, Long T, Jiang L, Tang C. Cav3.2 deletion attenuates nonalcoholic fatty liver disease in mice. Gene 2024; 929:148812. [PMID: 39116959 DOI: 10.1016/j.gene.2024.148812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the main cause of liver cirrhosis and hepatocellular carcinoma. Cav3.2 is a T-type calcium channel that is widely present in tissues throughout the body and plays a vital role in energy and metabolic balance. However, the effects of Cav3.2 on the NFALD remain unclear. Here, we investigated the role of Cav3.2 channel in the development and progression of NAFLD. After 16 weeks on a high-fat diets (HFD), Cav3.2 knockout (Cav3.2 KO) improved hepatic steatosis, liver injury and metabolic syndrome in an NAFLD mouse model. We provided evidence that Cav3.2 KO inhibited HFD-induced hepatic oxidative stress, inflammation and hepatocyte apoptosis. In addition, Cav3.2 KO also attenuated hepatic lipid accumulation, oxidative stress, inflammation and hepatocyte apoptosis in palmitic acid/oleic acid (PAOA)-treated primary hepatocytes. These results suggest that therapeutic approaches targeting Cav3.2 provide effective approaches for treating NAFLD.
Collapse
Affiliation(s)
- Xue Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Departmentof Anesthesiology, Anhui Provincial Cancer Hospital. Hefei, Anhui 230031, China
| | - Chengyun Hu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Departmentof Anesthesiology, Anhui Provincial Cancer Hospital. Hefei, Anhui 230031, China
| | - Shanshan Luo
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Departmentof Anesthesiology, Anhui Provincial Cancer Hospital. Hefei, Anhui 230031, China
| | - Feibiao Dai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Departmentof Anesthesiology, Anhui Provincial Cancer Hospital. Hefei, Anhui 230031, China
| | - Chuanyao Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wanjun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiawu Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Departmentof Anesthesiology, Anhui Provincial Cancer Hospital. Hefei, Anhui 230031, China
| | - Hao Chen
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhen Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tengfei Long
- Department of Radiotherapy, Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Lai Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Departmentof Anesthesiology, Anhui Provincial Cancer Hospital. Hefei, Anhui 230031, China.
| |
Collapse
|
2
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
4
|
Could Naringenin Participate as a Regulator of Obesity and Satiety? Molecules 2023; 28:molecules28031450. [PMID: 36771113 PMCID: PMC9921626 DOI: 10.3390/molecules28031450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Obesity is a serious health problem worldwide, since it is associated with multiple metabolic disorders and complications such as cardiovascular disease, type 2 diabetes, fatty liver disease and overall metabolic dysfunction. Dysregulation of the hunger-satiety pathway, which includes alterations of central and peripheral signaling, explains some forms of obesity by favoring hyperphagia and weight gain. The present work comprehensively summarizes the mechanisms by which naringenin (NAR), a predominant flavanone in citrus fruits, could modulate the main pathways associated with the development of obesity and some of its comorbidities, such as oxidative stress (OS), inflammation, insulin resistance (IR) and dyslipidemia, as well as the role of NAR in modulating the secretion of enterohormones of the satiety pathway and its possible antiobesogenic effect. The results of multiple in vitro and in vivo studies have shown that NAR has various potentially modulatory biological effects against obesity by countering IR, inflammation, OS, macrophage infiltration, dyslipidemia, hepatic steatosis, and adipose deposition. Likewise, NAR is capable of modulating peptides or peripheral hormones directly associated with the hunger-satiety pathway, such as ghrelin, cholecystokinin, insulin, adiponectin and leptin. The evidence supports the use of NAR as a promising alternative to prevent overweight and obesity.
Collapse
|
5
|
Barghouth M, Ye Y, Karagiannopoulos A, Ma Y, Cowan E, Wu R, Eliasson L, Renström E, Luan C, Zhang E. The T-type calcium channel Ca V3.2 regulates insulin secretion in the pancreatic β-cell. Cell Calcium 2022; 108:102669. [PMID: 36347081 DOI: 10.1016/j.ceca.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Voltage-gated Ca2+ (CaV) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic β-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type CaV channels in β-cells remains obscure. Here we have measured the global expression of T-type CaV3.2 channels in human islets and found that gene expression of CACNA1H, encoding CaV3.2, is negatively correlated with HbA1c in human donors, and positively correlated with islet insulin gene expression as well as secretion capacity in isolated human islets. Silencing or pharmacological blockade of CaV3.2 attenuates glucose-stimulated cytosolic Ca2+ signaling, membrane potential, and insulin release. Moreover, the endoplasmic reticulum (ER) Ca2+ store depletion is also impaired in CaV3.2-silenced β-cells. The linkage between T-type (CaV3.2) and L-type CaV channels is further identified by the finding that the intracellular Ca2+ signaling conducted by CaV3.2 is highly dependent on the activation of L-type CaV channels. In addition, CACNA1H expression is significantly associated with the islet predominant L-type CACNA1C (CaV1.2) and CACNA1D (CaV1.3) genes in human pancreatic islets. In conclusion, our data suggest the essential functions of the T-type CaV3.2 subunit as a mediator of β-cell Ca2+ signaling and membrane potential needed for insulin secretion, and in connection with L-type CaV channels.
Collapse
Affiliation(s)
- Mohammad Barghouth
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Yingying Ye
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden.
| | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Yunhan Ma
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Rui Wu
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden; NanoLund, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Erik Renström
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden.
| | - Enming Zhang
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden; NanoLund, Lund University, P.O. Box 118, Lund 22100, Sweden.
| |
Collapse
|