1
|
Plaza-Florido A, Santos-Lozano A, López-Ortiz S, Gálvez BG, Arenas J, Martín MA, Valenzuela PL, Pinós T, Lucia A, Fiuza-Luces C. Aerobic capacity and muscle proteome: Insights from a mouse model. Exp Physiol 2025; 110:293-306. [PMID: 39572863 DOI: 10.1113/ep092308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
We explored the association between aerobic capacity (AC) and the skeletal muscle proteome of McArdle (n = 10) and wild-type (n = 8) mice, as models of intrinsically 'low' and 'normal' AC, respectively. AC was determined as total distance achieved in treadmill running until exhaustion. The quadriceps muscle proteome was studied using liquid chromatography with tandem mass spectrometry, with the Search Tool for the Retrieval of Interacting Genes/Proteins database used to generate protein-protein interaction (PPI) networks and enrichment analyses. AC was significantly associated (P-values ranging from 0.0002 to 0.049) with 73 (McArdle) and 61 (wild-type) proteins (r-values from -0.90 to 0.94). These proteins were connected in PPI networks that enriched biological processes involved in skeletal muscle structure/function in both groups (false discovery rate <0.05). In McArdle mice, the proteins associated with AC were involved in skeletal muscle fibre differentiation/development, lipid oxidation, mitochondrial function and calcium homeostasis, whereas in wild-type animals AC-associated proteins were related to cytoskeleton structure (intermediate filaments), cell cycle regulation and endocytic trafficking. Two proteins (WEE2, THYG) were associated with AC (negatively and positively, respectively) in both groups. Only 14 of the 132 proteins (∼11%) associated with AC in McArdle or wild-type mice were also associated with those previously reported to be modified by aerobic training in these mice, providing preliminary evidence for a large divergence in the muscle proteome signature linked to aerobic training or AC, irrespective of AC (intrinsically low or normal) levels. Our findings might help to gain insight into the molecular mechanisms underlying AC at the muscle tissue level.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, USA
| | | | | | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Joaquín Arenas
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Unit 701, Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Unit 701, Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Pedro L Valenzuela
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Systems Biology, Universidad de Alcalá, Madrid, Spain
| | - Tomàs Pinós
- Unit 701, Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Centre of Energy, Environment and Technical Research (CIEMAT), Madrid, Spain
| |
Collapse
|
2
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025:112466. [PMID: 39848431 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush University, Chicago, United States.
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| |
Collapse
|
3
|
Santos-Lozano A, Boraita A, Valenzuela PL, Santalla A, Villarreal-Salazar M, Bustos A, Alejo LB, Barranco-Gil D, Millán-Parlanti D, López-Ortiz S, Peñín-Grandes SA, Orellana JOSN, Fiuza-Luces C, GáLVEZ BG, García-FERNáNDEZ MÁ, Pinós T, Lucia A. Exercise Intolerance in McArdle Disease: A Role for Cardiac Impairment? A Preliminary Study in Humans and Mice. Med Sci Sports Exerc 2024; 56:2241-2255. [PMID: 39160758 DOI: 10.1249/mss.0000000000003529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Whether cardiac impairment can be fully discarded in McArdle disease-the paradigm of "exercise intolerance," caused by inherited deficiency of the skeletal muscle-specific glycogen phosphorylase isoform ("myophosphorylase")-remains to be determined. METHODS Eight patients with McArdle disease and seven age/sex-matched controls performed a 15-min moderate, constant-load cycle-ergometer exercise bout followed by a maximal ramp test. Electrocardiographic and two-dimensional transthoracic (for cardiac dimension's assessment) and speckle tracking (for left ventricular global longitudinal strain (GLS) assessments) echocardiographic evaluations were performed at baseline. Electrocardiographic and GLS assessments were also performed during constant-load exercise and immediately upon maximal exertion. Four human heart biopsies were obtained in individuals without McArdle disease, and in-depth histological/molecular analyses were performed in McArdle and wild-type mouse hearts. RESULTS Exercise intolerance was confirmed in patients ("second wind" during constant-load exercise, -55% peak power output vs controls). As opposed to controls, patients showed a decrease in GLS during constant-load exercise, especially upon second wind occurrence, but with no other between-group difference in cardiac structure/function. Human cardiac biopsies showed that all three glycogen phosphorylase-myophosphorylase, but also liver and especially brain-isoforms are expressed in the normal adult heart, thereby theoretically compensating for eventual myophosphorylase deficiency. No overall histological (including glycogen depots), cytoskeleton, metabolic, or mitochondrial (morphology/network/distribution) differences were found between McArdle and wild-type mouse hearts, except for lower levels of pyruvate kinase M2 and translocase of outer-membrane 20-kDa subunit in the former. CONCLUSIONS This study provides preliminary evidence that cardiac structure and function seem to be preserved in patients with McArdle disease. However, the role for an impaired cardiac contractility associated with the second wind phenomenon should be further explored.
Collapse
Affiliation(s)
| | | | | | | | | | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| | | | | | | | | | | | - JOSé Naranjo Orellana
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, SPAIN
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, SPAIN
| | | | | | | | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| |
Collapse
|
4
|
Mishra K, Kakhlon O. Mitochondrial Dysfunction in Glycogen Storage Disorders (GSDs). Biomolecules 2024; 14:1096. [PMID: 39334863 PMCID: PMC11430448 DOI: 10.3390/biom14091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Glycogen storage disorders (GSDs) are a group of inherited metabolic disorders characterized by defects in enzymes involved in glycogen metabolism. Deficiencies in enzymes responsible for glycogen breakdown and synthesis can impair mitochondrial function. For instance, in GSD type II (Pompe disease), acid alpha-glucosidase deficiency leads to lysosomal glycogen accumulation, which secondarily impacts mitochondrial function through dysfunctional mitophagy, which disrupts mitochondrial quality control, generating oxidative stress. In GSD type III (Cori disease), the lack of the debranching enzyme causes glycogen accumulation and affects mitochondrial dynamics and biogenesis by disrupting the integrity of muscle fibers. Malfunctional glycogen metabolism can disrupt various cascades, thus causing mitochondrial and cell metabolic dysfunction through various mechanisms. These dysfunctions include altered mitochondrial morphology, impaired oxidative phosphorylation, increased production of reactive oxygen species (ROS), and defective mitophagy. The oxidative burden typical of GSDs compromises mitochondrial integrity and exacerbates the metabolic derangements observed in GSDs. The intertwining of mitochondrial dysfunction and GSDs underscores the complexity of these disorders and has significant clinical implications. GSD patients often present with multisystem manifestations, including hepatomegaly, hypoglycemia, and muscle weakness, which can be exacerbated by mitochondrial impairment. Moreover, mitochondrial dysfunction may contribute to the progression of GSD-related complications, such as cardiomyopathy and neurocognitive deficits. Targeting mitochondrial dysfunction thus represents a promising therapeutic avenue in GSDs. Potential strategies include antioxidants to mitigate oxidative stress, compounds that enhance mitochondrial biogenesis, and gene therapy to correct the underlying mitochondrial enzyme deficiencies. Mitochondrial dysfunction plays a critical role in the pathophysiology of GSDs. Recognizing and addressing this aspect can lead to more comprehensive and effective treatments, improving the quality of life of GSD patients. This review aims to elaborate on the intricate relationship between mitochondrial dysfunction and various types of GSDs. The review presents challenges and treatment options for several GSDs.
Collapse
Affiliation(s)
- Kumudesh Mishra
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel
| | - Or Kakhlon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Stefanik E, Dubińska-Magiera M, Lewandowski D, Daczewska M, Migocka-Patrzałek M. Metabolic aspects of glycogenolysis with special attention to McArdle disease. Mol Genet Metab 2024; 142:108532. [PMID: 39018613 DOI: 10.1016/j.ymgme.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The physiological function of muscle glycogen is to meet the energy demands of muscle contraction. The breakdown of glycogen occurs through two distinct pathways, primarily cytosolic and partially lysosomal. To obtain the necessary energy for their function, skeletal muscles utilise also fatty acids in the β-oxidation. Ketogenesis is an alternative metabolic pathway for fatty acids, which provides an energy source during fasting and starvation. Diseases arising from impaired glycogenolysis lead to muscle weakness and dysfunction. Here, we focused on the lack of muscle glycogen phosphorylase (PYGM), a rate-limiting enzyme for glycogenolysis in skeletal muscles, which leads to McArdle disease. Metabolic myopathies represent a group of genetic disorders characterised by the limited ability of skeletal muscles to generate energy. Here, we discuss the metabolic aspects of glycogenosis with a focus on McArdle disease, offering insights into its pathophysiology. Glycogen accumulation may influence the muscle metabolic dynamics in different ways. We emphasize that a proper treatment approach for such diseases requires addressing three important and interrelated aspects, which include: symptom relief therapy, elimination of the cause of the disease (lack of a functional enzyme) and effective and early diagnosis.
Collapse
Affiliation(s)
- Ewa Stefanik
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| |
Collapse
|
6
|
Valenzuela PL, Santalla A, Alejo LB, Merlo A, Bustos A, Castellote-Bellés L, Ferrer-Costa R, Maffiuletti NA, Barranco-Gil D, Pinós T, Lucia A. Dose-response effect of pre-exercise carbohydrates under muscle glycogen unavailability: Insights from McArdle disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:398-408. [PMID: 38030066 PMCID: PMC11116998 DOI: 10.1016/j.jshs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND This study aimed to determine the effect of different carbohydrate (CHO) doses on exercise capacity in patients with McArdle disease-the paradigm of "exercise intolerance", characterized by complete muscle glycogen unavailability-and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell (in vitro) level. METHODS Patients with McArdle disease (n = 8) and healthy controls (n = 9) underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo. In a randomized, double-blinded, cross-over design, patients repeated the tests after consuming either 75 g or 150 g of CHO (glucose:fructose = 2:1). Cardiorespiratory, biochemical, perceptual, and electromyographic (EMG) variables were assessed. Additionally, glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations (0.35, 1.00, 4.50, and 10.00 g/L). RESULTS Compared with controls, patients showed the "classical" second-wind phenomenon (after prior disproportionate tachycardia, myalgia, and excess electromyographic activity during submaximal exercise, all p < 0.05) and an impaired endurance exercise capacity (-51% ventilatory threshold and -55% peak power output, both p < 0.001). Regardless of the CHO dose (p < 0.05 for both doses compared with the placebo), CHO intake increased blood glucose and lactate levels, decreased fat oxidation rates, and attenuated the second wind in the patients. However, only the higher dose increased ventilatory threshold (+27%, p = 0.010) and peak power output (+18%, p = 0.007). In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes, whereas a dose-response effect was observed in McArdle myotubes. CONCLUSION CHO intake exerts beneficial effects on exercise capacity in McArdle disease, a condition associated with total muscle glycogen unavailability. Some of these benefits are dose dependent.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Department of Systems Biology, University of Alcalá, Madrid 28871, Spain.
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla 41013, Spain; EVOPRED Research Group, Universidad Europea de Canarias, Tenerife 38300, Spain
| | - Lidia B Alejo
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Andrea Merlo
- Gait & Motion Analysis Laboratory, Sol et Salus Hospital, Torre Pedrera di Rimini (RN) 47922, Italy
| | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Laura Castellote-Bellés
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | - Roser Ferrer-Costa
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | | | - David Barranco-Gil
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Tomás Pinós
- Biomedical Research Networking Center on Rare Disorders (CIBERER), Barcelona 08035, Spain; Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.
| | - Alejandro Lucia
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| |
Collapse
|
7
|
Valenzuela PL, Santalla A, Alejo LB, Bustos A, Ozcoidi LM, Castellote-Bellés L, Ferrer-Costa R, Villarreal-Salazar M, Morán M, Barranco-Gil D, Pinós T, Lucia A. Acute ketone supplementation in the absence of muscle glycogen utilization: Insights from McArdle disease. Clin Nutr 2024; 43:692-700. [PMID: 38320460 DOI: 10.1016/j.clnu.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Ketone supplementation is gaining popularity. Yet, its effects on exercise performance when muscle glycogen cannot be used remain to be determined. McArdle disease can provide insight into this question, as these patients are unable to obtain energy from muscle glycogen, presenting a severely impaired physical capacity. We therefore aimed to assess the effects of acute ketone supplementation in the absence of muscle glycogen utilization (McArdle disease). METHODS In a randomized cross-over design, patients with an inherited block in muscle glycogen breakdown (i.e., McArdle disease, n = 8) and healthy controls (n = 7) underwent a submaximal (constant-load) test that was followed by a maximal ramp test, after the ingestion of a placebo or an exogenous ketone ester supplement (30 g of D-beta hydroxybutyrate/D 1,3 butanediol monoester). Patients were also assessed after carbohydrate (75 g) ingestion, which is currently considered best clinical practice in McArdle disease. RESULTS Ketone supplementation induced ketosis in all participants (blood [ketones] = 3.7 ± 0.9 mM) and modified some gas-exchange responses (notably increasing respiratory exchange ratio, especially in patients). Patients showed an impaired exercise capacity (-65 % peak power output (PPO) compared to controls, p < 0.001) and ketone supplementation resulted in a further impairment (-11.6 % vs. placebo, p = 0.001), with no effects in controls (p = 0.268). In patients, carbohydrate supplementation resulted in a higher PPO compared to ketones (+21.5 %, p = 0.001) and a similar response was observed vs. placebo (+12.6 %, p = 0.057). CONCLUSIONS In individuals who cannot utilize muscle glycogen but have a preserved ability to oxidize blood-borne glucose and fat (McArdle disease), acute ketone supplementation impairs exercise capacity, whereas carbohydrate ingestion exerts the opposite, beneficial effect.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of Hospital '12 de Octubre' ('imas12'), Madrid, Spain; Department of Systems Biology, University of Alcalá, Madrid, Spain.
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain; EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | - Lidia B Alejo
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of Hospital '12 de Octubre' ('imas12'), Madrid, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Laureano M Ozcoidi
- Hospital Reina Sofía de Tudela, Servicio Navarro de Salud, Navarra, Spain
| | - Laura Castellote-Bellés
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Roser Ferrer-Costa
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - María Morán
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain; Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|