1
|
Laisné M, Rodgers B, Benlamara S, Wicinski J, Nicolas A, Djerroudi L, Gupta N, Ferry L, Kirsh O, Daher D, Philippe C, Okada Y, Charafe-Jauffret E, Cristofari G, Meseure D, Vincent-Salomon A, Ginestier C, Defossez PA. A novel bioinformatic approach reveals cooperation between Cancer/Testis genes in basal-like breast tumors. Oncogene 2024; 43:1369-1385. [PMID: 38467851 PMCID: PMC11065691 DOI: 10.1038/s41388-024-03002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.
Collapse
Affiliation(s)
- Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Sarah Benlamara
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - André Nicolas
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | - Lounes Djerroudi
- Department of Pathology, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Diana Daher
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | | - Didier Meseure
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | |
Collapse
|
2
|
Li L, Qin Y, Chen Y. The enzymes of serine synthesis pathway in cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119697. [PMID: 38382845 DOI: 10.1016/j.bbamcr.2024.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.
Collapse
Affiliation(s)
- Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Wani S, Humaira, Farooq I, Ali S, Rehman MU, Arafah A. Proteomic profiling and its applications in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
4
|
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab 2022; 34:355-377. [PMID: 35123658 PMCID: PMC8891094 DOI: 10.1016/j.cmet.2022.01.007] [Citation(s) in RCA: 723] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Metabolism of cancer cells is geared toward biomass production and proliferation. Since the metabolic resources within the local tissue are finite, this can lead to nutrient depletion and accumulation of metabolic waste. To maintain growth in these conditions, cancer cells employ a variety of metabolic adaptations, the nature of which is collectively determined by the physiology of their cell of origin, the identity of transforming lesions, and the tissue in which cancer cells reside. Furthermore, select metabolites not only serve as substrates for energy and biomass generation, but can also regulate gene and protein expression and influence the behavior of non-transformed cells in the tumor vicinity. As they grow and metastasize, tumors can also affect and be affected by the nutrient distribution within the body. In this hallmark update, recent advances are incorporated into a conceptual framework that may help guide further research efforts in exploring cancer cell metabolism.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
Identification of Novel Diagnostic Markers for Malignant Pleural Mesothelioma Using a Reverse Translational Approach Based on a Rare Synchronous Tumor. Diagnostics (Basel) 2022; 12:diagnostics12020316. [PMID: 35204409 PMCID: PMC8871196 DOI: 10.3390/diagnostics12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Although the routine use of immunohistochemistry has improved the accuracy of histopathologic diagnosis in clinical practice, new methods for discovering novel diagnostic markers are still needed. We sought new diagnostic markers for malignant pleural mesothelioma (MPM) using a reverse translational approach with limited archival tissues from a very rare case. Total RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues of a synchronous collision tumor consisting of MPM and pulmonary adenocarcinoma (PAC) was employed for gene expression profiling (GEP) analysis. Among the 54 genes selected by GEP analysis, we finally identified the following two candidate MPM marker genes: PHGDH and TRIM29. Immunohistochemical analysis of 48 MM and 20 PAC cases showed that both PHGDH and TRIM29 had sensitivity and specificity almost equivalent to those of calretinin (sensitivity 50% and 46% vs. 63%, and specificity 95% and 100% vs. 100%, respectively). Importantly, of the 23 epithelioid MMs, all 3 calretinin-negative cases were positive for TRIM29. These two markers may be diagnostically useful for immunohistochemical distinction between MPMs and PACs. This successful reverse translational approach based on FFPE samples from one very rare case encourages the further use of such samples for the development of novel diagnostic markers.
Collapse
|
6
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Functional Proteomic Profiling of Triple-Negative Breast Cancer. Cells 2021; 10:cells10102768. [PMID: 34685748 PMCID: PMC8535076 DOI: 10.3390/cells10102768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that comprises various disease entities, all of which share a set of common features: a lack of expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, respectively. Because of their receptor status, conventional chemotherapy remains the main therapeutic option for TNBC patients. We employed a reverse phase protein array approach (RPPA), complemented by immunohistochemistry, to quantitatively profile the activation state of 84 actionable key signaling intermediates and phosphoproteins in a set of 44 TNBC samples. We performed supervised and unsupervised approaches to proteomic data analysis to identify groups of samples sharing common characteristics that could be amenable to existing therapies. We found the heterogenous activation of multiple pathways, with PI3 K/AKT/mTOR signaling being the most common event. Some specific individualized therapeutic possibilities include the expression of oncogenic KIT in association with cytokeratin 15 and Erk1/2 positive tumors, both of which may have clinical value.
Collapse
|
8
|
McNamee MJ, Michod D, Niklison-Chirou MV. Can small molecular inhibitors that stop de novo serine synthesis be used in cancer treatment? Cell Death Discov 2021; 7:87. [PMID: 33931592 PMCID: PMC8087698 DOI: 10.1038/s41420-021-00474-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022] Open
Abstract
To sustain their malignancy, tumour cells acquire several metabolic adaptations such as increased oxygen, glucose, glutamine, and lipids uptake. Other metabolic processes are also enhanced as part of tumour metabolic reprogramming, for example, increased serine metabolism. Serine is a non-essential amino acid that supports several metabolic processes that are crucial for the growth and survival of proliferating cells, including protein, DNA, and glutathione synthesis. Indeed, increased activity of D-3-phosphoglycerate dehydrogenase (PHGDH), the enzyme rate-limiting de novo serine synthesis, has been extensively reported in several tumours. Therefore, selective inhibition of PHGDH may represent a new therapeutic strategy for over-expressing PHGDH tumours, owing to its downstream inhibition of essential biomass production such as one-carbon units and nucleotides. This perspective article will discuss the current status of research into small molecular inhibitors against PHGDH in colorectal cancer, breast cancer, and Ewing's sarcoma. We will summarise recent studies on the development of PHGDH-inhibitors, highlighting their clinical potential as new therapeutics. It also wants to shed a light on some of the key limitations of the use of PHGDH-inhibitors in cancer treatment which are worth taking into account.
Collapse
Affiliation(s)
- Megan Jessica McNamee
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - David Michod
- University College London, Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Maria Victoria Niklison-Chirou
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
9
|
Li M, Wu C, Yang Y, Zheng M, Yu S, Wang J, Chen L, Li H. 3-Phosphoglycerate dehydrogenase: a potential target for cancer treatment. Cell Oncol (Dordr) 2021; 44:541-556. [PMID: 33735398 DOI: 10.1007/s13402-021-00599-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Metabolic changes have been recognized as an important hallmark of cancer cells. Cancer cells can promote their own growth and proliferation through metabolic reprogramming. Particularly, serine metabolism has frequently been reported to be dysregulated in tumor cells. 3-Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the serine biosynthesis pathway and acts as a rate-limiting enzyme involved in metabolic reprogramming. PHGDH upregulation has been observed in many tumor types, and inhibition of PHGDH expression has been reported to inhibit the proliferation of PHGDH-overexpressing tumor cells, indicating that it may be utilized as a target for cancer treatment. Recently identified inhibitors targeting PHGDH have already shown effectiveness. A further in-depth analysis and concomitant development of PHGDH inhibitors will be of great value for the treatment of cancer. CONCLUSIONS In this review we describe in detail the role of PHGDH in various cancers and inhibitors that have recently been identified to highlight progression in cancer treatment. We also discuss the development of new drugs and treatment modalities based on PHGDH targets. Overexpression of PHGDH has been observed in melanoma, breast cancer, nasopharyngeal carcinoma, parathyroid adenoma, glioma, cervical cancer and others. PHGDH may serve as a molecular biomarker for the diagnosis, prognosis and treatment of these cancers. The design and development of novel PHGDH inhibitors may have broad implications for cancer treatment. Therapeutic strategies of PHGDH inhibitors in combination with traditional chemotherapeutic drugs may provide new perspectives for precision medicine and effective personalized treatment for cancer patients.
Collapse
Affiliation(s)
- Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Canrong Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yueying Yang
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Silin Yu
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, 150081, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, 150081, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
10
|
A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem 2021; 217:113379. [PMID: 33756126 DOI: 10.1016/j.ejmech.2021.113379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Emerging evidence suggests that cancer metabolism is closely associated to the serine biosynthesis pathway (SSP), in which glycolytic intermediate 3-phosphoglycerate is converted to serine through a three-step enzymatic transformation. As the rate-limiting enzyme in the first step of SSP, phosphoglycerate dehydrogenase (PHGDH) is overexpressed in various diseases, especially in cancer. Genetic knockdown or silencing of PHGDH exhibits obvious anti-tumor response both in vitro and in vivo, demonstrating that PHGDH is a promising drug target for cancer therapy. So far, several types of PHGDH inhibitors have been identified as a significant and newly emerging option for anticancer treatment. Herein, this comprehensive review summarizes the recent achievements of PHGDH, especially its critical role in cancer and the development of PHGDH inhibitors in drug discovery.
Collapse
|
11
|
Unravelling the Allosteric Targeting of PHGDH at the ACT-Binding Domain with a Photoactivatable Diazirine Probe and Mass Spectrometry Experiments. Molecules 2021; 26:molecules26020477. [PMID: 33477510 PMCID: PMC7835887 DOI: 10.3390/molecules26020477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The serine biosynthetic pathway is a key element contributing to tumor proliferation. In recent years, targeting of phosphoglycerate dehydrogenase (PHGDH), the first enzyme of this pathway, intensified and revealed to be a promising strategy to develop new anticancer drugs. Among attractive PHGDH inhibitors are the α-ketothioamides. In previous work, we have demonstrated their efficacy in the inhibition of PHGDH in vitro and in cellulo. However, the precise site of action of this series, which would help the rational design of new inhibitors, remained undefined. In the present study, the detailed mechanism-of-action of a representative α-ketothioamide inhibitor is reported using several complementary experimental techniques. Strikingly, our work led to the identification of an allosteric site on PHGDH that can be targeted for drug development. Using mass spectrometry experiments and an original α-ketothioamide diazirine-based photoaffinity probe, we identified the 523Q-533F sequence on the ACT regulatory domain of PHGDH as the binding site of α-ketothioamides. Mutagenesis experiments further documented the specificity of our compound at this allosteric site. Our results thus pave the way for the development of new anticancer drugs using a completely novel mechanism-of-action.
Collapse
|
12
|
Synthesis and biological evaluation of innovative thiourea derivatives as PHGDH inhibitors. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zhao X, Fu J, Tang W, Yu L, Xu W. Inhibition of Serine Metabolism Promotes Resistance to Cisplatin in Gastric Cancer. Onco Targets Ther 2020; 13:4833-4842. [PMID: 32581546 PMCID: PMC7269635 DOI: 10.2147/ott.s246430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Serine provides important precursors of protein, lipid, and nucleotide synthesis needed for tumor cell growth. Phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in the serine de novo synthesis pathway, is highly expressed in many tumor types (including gastric cancer) and negatively correlated with overall survival. Cisplatin is a chemotherapeutic drug commonly used in the treatment of gastric cancer. In this study, we mainly investigated the relationship between serine metabolism and resistance to cisplatin in gastric cancer cells, as well as the regulatory mechanism involved in this process. Materials and Methods We determined the effect of different concentrations of serine or a PHGDH inhibitor combined with cisplatin or oxaliplatin on the viability and apoptosis of SGC7901, BGC823, and MGC803 cells via the Cell Counting Kit-8 and Hoechst 33258 staining, respectively. Western blotting was utilized to detect the relative protein expression. Furthermore, we investigated DNA damage through the micrococcal nuclease sensitivity assay detected using agarose gels. Results We found that reduced concentrations of serine or inhibition of PHGDH hindered the toxicity and pro-apoptotic effects of cisplatin on gastric cancer cells. Moreover, the addition of serine could reverse the sensitivity of gastric cancer cells to cisplatin. Moreover, we found that DNA damage was reduced by treatment with PHGDH inhibitor NCT-503 or CBR-5884. Inhibition of serine metabolism induced a decrease in H3K4 tri-methylation, which was reversed by JIB-04 (inhibitor of H3K4 demethylase). The tolerance of gastric cancer cells to cisplatin was relieved by JIB-04. Through micrococcal nuclease experiments, we further found that inhibiting the activity of PHGDH strengthened chromatin tightness. Conclusion Inhibition of serine metabolism reduced H3K4 tri-methylation and increased the density of chromatin, which leads to decreased toxicity and pro-apoptotic effect of platinum chemotherapeutic drugs on gastric cancer cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310000, Zhejiang Province, People's Republic of China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China
| | - Wanfen Tang
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China
| | - Liangliang Yu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310000, Zhejiang Province, People's Republic of China
| | - Wenxia Xu
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, People's Republic of China
| |
Collapse
|
14
|
Zhao X, Fu J, Du J, Xu W. The Role of D-3-Phosphoglycerate Dehydrogenase in Cancer. Int J Biol Sci 2020; 16:1495-1506. [PMID: 32226297 PMCID: PMC7097917 DOI: 10.7150/ijbs.41051] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serine, a non-essential amino acid, can be imported from the extracellular environment by transporters and de novo synthesized from glycolytic 3-phosphoglycerate (3-PG) in the serine biosynthetic pathway (SSP). It has been reported that active serine synthesis might be needed for the synthesis of proteins, lipids, and nucleotides and the balance of folate metabolism and redox homeostasis, which are necessary for cancer cell proliferation. Human D-3-phosphoglycerate dehydrogenase (PHGDH), the first and only rate-limiting enzyme in the de novo serine biosynthetic pathway, catalyzes the oxidation of 3-PG derived from glycolysis to 3-phosphohydroxypyruvate (3-PHP). PHGDH is highly expressed in tumors as a result of amplification, transcription, or its degradation and stability alteration, which dysregulates the serine biosynthesis pathway via metabolic enzyme activity to nourish tumors. And some recent researches reported that PHGDH promoted some tumors growth via non-metabolic way by upregulating target cancer-promoting genes. In this article, we reviewed the type, structure, expression and inhibitors of PHGDH, as well as the role it plays in cancer and tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Jinlin Du
- Department of Colorectal Surgery, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
15
|
Fagny M, Platig J, Kuijjer ML, Lin X, Quackenbush J. Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function. Br J Cancer 2020; 122:569-577. [PMID: 31806877 PMCID: PMC7028992 DOI: 10.1038/s41416-019-0614-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASes) have identified many noncoding germline single-nucleotide polymorphisms (SNPs) that are associated with an increased risk of developing cancer. However, how these SNPs affect cancer risk is still largely unknown. METHODS We used a systems biology approach to analyse the regulatory role of cancer-risk SNPs in thirteen tissues. By using data from the Genotype-Tissue Expression (GTEx) project, we performed an expression quantitative trait locus (eQTL) analysis. We represented both significant cis- and trans-eQTLs as edges in tissue-specific eQTL bipartite networks. RESULTS Each tissue-specific eQTL network is organised into communities that group sets of SNPs and functionally related genes. When mapping cancer-risk SNPs to these networks, we find that in each tissue, these SNPs are significantly overrepresented in communities enriched for immune response processes, as well as tissue-specific functions. Moreover, cancer-risk SNPs are more likely to be 'cores' of their communities, influencing the expression of many genes within the same biological processes. Finally, cancer-risk SNPs preferentially target oncogenes and tumour-suppressor genes, suggesting that they may alter the expression of these key cancer genes. CONCLUSIONS This approach provides a new way of understanding genetic effects on cancer risk and provides a biological context for interpreting the results of GWAS cancer studies.
Collapse
Affiliation(s)
- Maud Fagny
- Genetique Quantitative et Evolution-Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Paris, France
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marieke Lydia Kuijjer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John Quackenbush
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene 2020; 39:2509-2522. [PMID: 31988456 DOI: 10.1038/s41388-020-1160-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
An increasing number of enzymes involved in serine biosynthesis have been identified and correlated with malignant evolution in various types of cancer. Here we showed that the overexpression of phosphoserine aminotransferase 1 (PSAT1) is widely found in lung cancer tissues compared with nontumor tissues and predicts a poorer prognosis in patients with lung adenocarcinoma. PSAT1 expression was examined in a tissue microarray by immunohistochemistry. The data show that the knockdown of PSAT1 dramatically inhibits the in vitro and in vivo metastatic potential of highly metastatic lung cancer cells; conversely, the enforced expression of exogenous PSAT1 predominantly enhances the metastatic potential of lung cancer cells. Importantly, manipulating PSAT1 expression regulates the in vivo tumor metastatic abilities in lung cancer cells. Adjusting the glucose and glutamine concentrations did not alter the PSAT1-driven cell invasion properties, indicating that this process might not rely on the activation of its enzymatic function. RNA microarray analysis of transcriptional profiling from PSAT1 alternation in CL1-5 and CL1-0 cells demonstrated that interferon regulatory factor 1 (IRF1) acts as a crucial regulator of PSAT1-induced gene expression upon metastatic progression. Decreasing the IRF1-IFIH1 axis compromised the PSAT1-prompted transcriptional reprogramming in cancer cells. Our results identify PSAT1 as a key regulator by a novel PSAT1/IRF1 axis in lung cancer progression, which may serve as a potential biomarker and therapeutic target for the treatment of lung cancer patients.
Collapse
|
17
|
Thorsen SF, Gromova I, Christensen IJ, Fredriksson S, Andersen CL, Nielsen HJ, Stenvang J, Moreira JM. Gel-Based Proteomics of Clinical Samples Identifies Potential Serological Biomarkers for Early Detection of Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20236082. [PMID: 31810358 PMCID: PMC6929140 DOI: 10.3390/ijms20236082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
The burden of colorectal cancer (CRC) is considerable-approximately 1.8 million people are diagnosed each year with CRC and of these about half will succumb to the disease. In the case of CRC, there is strong evidence that an early diagnosis leads to a better prognosis, with metastatic CRC having a 5-year survival that is only slightly greater than 10% compared with up to 90% for stage I CRC. Clearly, biomarkers for the early detection of CRC would have a major clinical impact. We implemented a coherent gel-based proteomics biomarker discovery platform for the identification of clinically useful biomarkers for the early detection of CRC. Potential protein biomarkers were identified by a 2D gel-based analysis of a cohort composed of 128 CRC and site-matched normal tissue biopsies. Potential biomarkers were prioritized and assays to quantitatively measure plasma expression of the candidate biomarkers were developed. Those biomarkers that fulfilled the preset criteria for technical validity were validated in a case-control set of plasma samples, including 70 patients with CRC, adenomas, or non-cancer diseases and healthy individuals in each group. We identified 63 consistently upregulated polypeptides (factor of four-fold or more) in our proteomics analysis. We selected 10 out of these 63 upregulated polypeptides, and established assays to measure the concentration of each one of the ten biomarkers in plasma samples. Biomarker levels were analyzed in plasma samples from healthy individuals, individuals with adenomas, CRC patients, and patients with non-cancer diseases and we identified one protein, tropomyosin 3 (Tpm3) that could discriminate CRC at a significant level (p = 0.0146). Our results suggest that at least one of the identified proteins, Tpm3, could be used as a biomarker in the early detection of CRC, and further studies should provide unequivocal evidence for the real-life clinical validity and usefulness of Tpm3.
Collapse
Affiliation(s)
- Stine F. Thorsen
- Institute of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Irina Gromova
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark;
| | - Ib J. Christensen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, 2650 Hvidovre, Denmark; (I.J.C.); (H.J.N.)
| | | | - Claus L. Andersen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Hans J. Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, 2650 Hvidovre, Denmark; (I.J.C.); (H.J.N.)
| | - Jan Stenvang
- Institute of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (J.S.); (J.M.A.M.)
| | - José M.A. Moreira
- Institute of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (J.S.); (J.M.A.M.)
| |
Collapse
|
18
|
Massive integrative gene set analysis enables functional characterization of breast cancer subtypes. J Biomed Inform 2019; 93:103157. [PMID: 30928514 DOI: 10.1016/j.jbi.2019.103157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/31/2023]
Abstract
The availability of large-scale repositories and integrated cancer genome efforts have created unprecedented opportunities to study and describe cancer biology. In this sense, the aim of translational researchers is the integration of multiple omics data to achieve a better identification of homogeneous subgroups of patients in order to develop adequate diagnostic and treatment strategies from the personalized medicine perspective. So far, existing integrative methods have grouped together omics data information, leaving out individual omics data phenotypic interpretation. Here, we present the Massive and Integrative Gene Set Analysis (MIGSA) R package. This tool can analyze several high throughput experiments in a comprehensive way through a functional analysis strategy, relating a phenotype to its biological function counterpart defined by means of gene sets. By simultaneously querying different multiple omics data from the same or different groups of patients, common and specific functional patterns for each studied phenotype can be obtained. The usefulness of MIGSA was demonstrated by applying the package to functionally characterize the intrinsic breast cancer PAM50 subtypes. For each subtype, specific functional transcriptomic profiles and gene sets enriched by transcriptomic and proteomic data were identified. To achieve this, transcriptomic and proteomic data from 28 datasets were analyzed using MIGSA. As a result, enriched gene sets and important genes were consistently found as related to a specific subtype across experiments or data types and thus can be used as molecular signature biomarkers.
Collapse
|
19
|
Ercan A, Çelebier M, Varan G, Öncül S, Nenni M, Kaplan O, Bilensoy E. Global omics strategies to investigate the effect of cyclodextrin nanoparticles on MCF-7 breast cancer cells. Eur J Pharm Sci 2018; 123:377-386. [PMID: 30076952 DOI: 10.1016/j.ejps.2018.07.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Cyclodextrins (CD) are natural macrocyclic oligosaccharides linked by α(1,4) glycosidic bonds. Hydrophobic cavity of CDs are able to incorporate small molecules, ions, macromolecules which makes them excellent delegates for forming nanoparticulate carriers upon chemical modification to render amphiphilicity to CDs. In this study, blank 6OCaproβCD nanoparticle was prepared and administered to MCF-7 breast cancer cells. The effects of these nanoparticles on the cells were investigated in depth through biochemical and proteomic tests following 48 h of incubation. Proteomics studies revealed that apoptosis-related protein levels of hnRNP and CBX1 were increased while HDGF was not affected supporting the idea that 6OCaproβCD nanoparticles prevent cell proliferation. Gene expression studies were generally in correlation with protein levels since gene expression was significantly stimulated while protein levels were lower compared to the control group suggesting that a post-transcriptional modification must have occurred. Furthermore, 6OCaproβCD was observed to not trigger multidrug resistance as proved with RT-PCR that effectuates another exquisite characteristic of 6OCaproβCD nanoparticle as carrier of chemotherapeutic drugs. Metabolomic pathways of CD effect on MCF7 cells were elucidated with HMDB as serine biosynthesis, transmembrane transport of small molecules, metabolism of steroid hormones, estrogen biosynthesis and phospholipid biosynthesis. In conclusion, 6OCaproβCD is a promising nanoparticulate carrier for chemotherapeutic drugs with intrinsic apoptotic effect to be employed in treatment of breast cancer and further studies should be conducted in order to comprehend the exact mechanism of action.
Collapse
Affiliation(s)
- Ayşe Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Mustafa Çelebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Selin Öncül
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Merve Nenni
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Ozan Kaplan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
20
|
Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, Guerrero Llobet S, Vis DJ, Annunziato S, van den Broek B, Barazas M, Kersbergen A, van de Ven M, Tarsounas M, Ogilvie DJ, van Vugt M, Wessels LFA, Bartkova J, Gromova I, Andújar-Sánchez M, Bartek J, Lopes M, van Attikum H, Borst P, Jonkers J, Rottenberg S. Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell 2018; 33:1078-1093.e12. [PMID: 29894693 DOI: 10.1016/j.ccell.2018.05.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 02/04/2023]
Abstract
Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, drug resistance is a clinical hurdle, and we poorly understand how cancer cells escape the deadly effects of PARPi without restoring the HR pathway. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors, we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism. We also found the presence of PARG-negative clones in a subset of human serous ovarian and triple-negative breast cancers. PARG depletion restores PAR formation and partially rescues PARP1 signaling. Importantly, PARG inactivation exposes vulnerabilities that can be exploited therapeutically.
Collapse
Affiliation(s)
- Ewa Gogola
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Alexandra A Duarte
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen 9723GZ, the Netherlands
| | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Bram van den Broek
- Division of Cell Biology and BioImaging Facility, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands
| | - Marco Barazas
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Ariena Kersbergen
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging (MCCA), Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands
| | - Madalena Tarsounas
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Donald J Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Marcel van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen 9723GZ, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Karolinska Institute, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm 171 77, Sweden
| | - Irina Gromova
- Danish Cancer Society Research Center, Copenhagen 2100, Denmark
| | - Miguel Andújar-Sánchez
- Pathology Department, Complejo Hospt. Univ. Insular Materno Infantil, Las Palmas, Gran Canaria, Spain
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Karolinska Institute, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm 171 77, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Cancer Genomics Netherlands, Oncode Institute, Amsterdam 1066CX, the Netherlands.
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
21
|
Wang Y, Wang M, Wei W, Han D, Chen X, Hu Q, Yu T, Liu N, You Y, Zhang J. Disruption of the EZH2/miRNA/β-catenin signaling suppresses aerobic glycolysis in glioma. Oncotarget 2018; 7:49450-49458. [PMID: 27385092 PMCID: PMC5226520 DOI: 10.18632/oncotarget.10370] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/12/2016] [Indexed: 12/20/2022] Open
Abstract
EZH2 is up-regulated in various cancer types, implicating its role in tumorigenesis. Our recent data have shown that repression of EZH2 inhibited glioma growth by inhibition β-catenin signaling. Here, we identified several miRNAs that were repressed by EZH2, which in turn regulate β-catenin expression by its 3′UTR, such as miR-1224-3p, miR-328 and miR-214. Further, EZH2 silenced miR-328 expression by binding to miR-328 promoter and promoting methylation of miR-328 promoter. Finally, miR-328 largely abrogated EZH2 effects on β-catenin expression and glucose metabolism in glioma cells. Taken together, we propose a model for a coordinated EZH2-β-catenin oncoprotein axis, and epigenetic link between histone modification and DNA methylation, mediated by EZH2-scilenced miRNAs.
Collapse
Affiliation(s)
- Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjin Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongfeng Han
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xincheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Andersen AP, Samsøe-Petersen J, Oernbo EK, Boedtkjer E, Moreira JMA, Kveiborg M, Pedersen SF. The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int J Cancer 2018; 142:2529-2542. [PMID: 29363134 DOI: 10.1002/ijc.31276] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/16/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023]
Abstract
High metabolic and proliferative rates in cancer cells lead to production of large amounts of H+ and CO2 , and as a result, net acid extruding transporters are essential for the function and survival of cancer cells. We assessed protein expression of the Na+ /H+ exchanger NHE1, the Na+ - HCO3- cotransporter NBCn1, and the lactate-H+ cotransporters MCT1 and -4 by immunohistochemical analysis of a large cohort of breast cancer samples. We found robust expression of these transporters in 20, 10, 4 and 11% of samples, respectively. NHE1 and NBCn1 expression both correlated positively with progesterone receptor status, NHE1 correlated negatively and NBCn1 positively with HER2 status, whereas MCT4 expression correlated with lymph node status. Stable shRNA-mediated knockdown (KD) of either NHE1 or NBCn1 in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line significantly reduced steady-state intracellular pH (pHi ) and capacity for pHi recovery after an acid load. Importantly, KD of any of the three transporters reduced in vivo primary tumor growth of MDA-MB-231 xenografts. However, whereas KD of NBCn1 or MCT4 increased tumor-free survival and decreased in vitro proliferation rate and colony growth in soft agar, KD of NHE1 did not have these effects. Moreover, only MCT4 KD reduced Akt kinase activity, PARP and CD147 expression and cell motility. This work reveals that different types of net acid extruding transporters, NHE1, NBCn1 and MCT4, are frequently expressed in patient mammary tumor tissue and demonstrates for the first time that they promote growth of TNBC human mammary tumors in vivo via distinct but overlapping mechanisms.
Collapse
Affiliation(s)
- Anne Poder Andersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Kjer Oernbo
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - José M A Moreira
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer. PLoS One 2017; 12:e0188827. [PMID: 29190807 PMCID: PMC5708675 DOI: 10.1371/journal.pone.0188827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Bladder cancer associated protein (Blcap) expression is commonly down-regulated in invasive bladder cancer, and may have prognostic value given that its expression is negatively correlated with patient survival. We have previously investigated the expression patterns and cellular localization of Blcap in bladder cancer, where we found that about 20% of the lesions examined displayed strong nuclear expression of Blcap, and that this phenotype was associated with overall poor disease outcome. Here we report on the analysis of possible functional associations between nuclear expression of Blcap and canonical signaling pathways. We performed serial immunohistochemistry (IHC) analysis of bladder tissue samples, with serial sections stained with phospho-specific antibodies recognizing key signaling intermediates, such as P-Stat3, P-Akt, and P-Erk1/2, among others, in an immunophenotyping approach we have established and reported previously. Using this approach, we found that nuclear localization of Blcap was associated with expression of P-Stat3. A parallel analysis, cytokine profiling of bladder tumor interstitial fluids of samples expressing (or not) Blcap, showed interleukin (IL)-6, IL-8, and monocyte chemotactic protein 1 (MCP-1) to be correlated with nuclear expression of Blcap, independently supporting a role for Stat3 signaling in localization of Blcap. Multiple indirect immunofluorescence analysis of tissue biopsies confirmed that Blcap co-localized with Stat3. Furthermore, we could also demonstrate, using an in situ proximity ligation assay that Blcap and Stat3 are in close physical proximity of each other in bladder tissue, and that Blcap physically interacts with Stat3 as determined by co-immunoprecipitation of these proteins. Our data indicates that Blcap is a novel Stat3 interaction partner and suggests a role for Blcap in the Stat3-mediated progression of precancerous lesions to invasive tumors of the bladder.
Collapse
|
24
|
Ura B, Monasta L, Arrigoni G, Franchin C, Radillo O, Peterlunger I, Ricci G, Scrimin F. A proteomic approach for the identification of biomarkers in endometrial cancer uterine aspirate. Oncotarget 2017; 8:109536-109545. [PMID: 29312627 PMCID: PMC5752540 DOI: 10.18632/oncotarget.22725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Endometrial cancer arises from the endometrium. It has a slow progression and a reported survival rate of 75%. The identification of soluble biomarkers in the uterine aspirate may be very useful for its early diagnosis. Uterine aspirates from 10 patients with endometrial cancer and 6 non-endometrial cancer controls were analyzed by two-dimensional gel electrophoresis coupled with mass spectrometry and western blotting for data verification. A total of 25 proteins with fold change in %V ≥2 or ≤0.5 in intensity were observed to change significantly (P<0.05). From the discovery phase, four proteins (costars family protein ABRACL, phosphoglycerate mutase 2, fibrinogen beta chain, annexin A3) were found to be present in the uterine aspirate of endometrial cancers and not in healthy aspirates. Western blotting verification data demonstrated that costars family protein ABRACL, phosphoglycerate mutase 2 were present only in endometrial cancer uterine aspirate while fibrinogen beta chain, annexin A3 were also present in healthy aspirates. To our knowledge, phosphoglycerate mutase 2 has not been previously associated with endometrial cancer. In this study we demonstrate that uterine aspirates are a promising biological fluid in which to identify endometrial cancer biomarkers. In our opinion proteins like costars family protein ABRACL and phosphoglycerate mutase 2 have a great potential to reach the clinical phase after a validation phase.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Oriano Radillo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Isabel Peterlunger
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
25
|
Ravez S, Spillier Q, Marteau R, Feron O, Frédérick R. Challenges and Opportunities in the Development of Serine Synthetic Pathway Inhibitors for Cancer Therapy. J Med Chem 2016; 60:1227-1237. [DOI: 10.1021/acs.jmedchem.6b01167] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Séverine Ravez
- Medicinal
Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Quentin Spillier
- Medicinal
Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels 1200, Belgium
- Pole
of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale
et Clinique (IREC), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Romain Marteau
- Medicinal
Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Olivier Feron
- Pole
of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale
et Clinique (IREC), Université Catholique de Louvain, Brussels 1200, Belgium
| | - Raphaël Frédérick
- Medicinal
Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
26
|
Zhu J, Ma J, Wang X, Ma T, Zhang S, Wang W, Zhou X, Shi J. High Expression of PHGDH Predicts Poor Prognosis in Non-Small Cell Lung Cancer. Transl Oncol 2016; 9:592-599. [PMID: 27916294 PMCID: PMC5143353 DOI: 10.1016/j.tranon.2016.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
Tumors have exceptionally high demands for energy and anabolism because of their rapid growth. The de novo serine synthesis pathway initiated by phosphoglycerate dehydrogenase (PHGDH) has been recognized as a hallmark of metabolic adaption in carcinogenesis. The oncogenic role and prognostic value of PHGDH have been investigated in multiple cancer types, including breast cancer, melanoma, cervical cancer, and colon cancer. Due to the importance of PHGDH in cancer, we attempted to determine the clinical significance of PHGDH in 319 patients with non–small cell lung cancer (NSCLC). We evaluated the mRNA and protein expression levels of PHGDH gene, using quantitative reverse transcriptase polymerase chain reaction and tissue array–based immunohistochemistry, respectively. Significantly increased PHGDH expression in mRNA and protein levels was identified in tumor tissues versus matched adjacent nontumor tissues. More interestingly, immunohistochemical expression of PHGDH was significantly associated with lymph node metastasis (P = .021) and TNM stage (P = .016). Kaplan-Meier survival analysis indicated that NSCLC patients with low levels of PHGDH outperformed patients with high levels of PHGDH regarding 5-year overall survival. Significantly longer survival in the former suggested the prognostic implication of PHGDH in NSCLC. Multivariate survival analysis using Cox regression model demonstrated that high PHGDH levels and advanced TNM stage (III + IV) were independent predictors of prognosis in NSCLC. Moreover, bioinformatics analysis confirmed the increase in PHGDH transcripts (data from The Cancer Genome Atlas) and its prognostic value (Kaplan-Meier plotter) in NSCLC. In conclusion, this study suggested the clinical implication of PHGDH in NSCLC. PHGDH may be a promising therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianqun Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tianjiao Ma
- Department of Internal Medicine, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Pulmonology, Affiliated Hospital of Nantong University, Nantong, City, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, City, China.
| |
Collapse
|
27
|
Samanta D, Semenza GL. Serine Synthesis Helps Hypoxic Cancer Stem Cells Regulate Redox. Cancer Res 2016; 76:6458-6462. [PMID: 27811150 DOI: 10.1158/0008-5472.can-16-1730] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
Abstract
Phosphoglycerate dehydrogenase (PHGDH) is the metabolic enzyme responsible for shunting the glycolytic intermediate 3-phosphoglycerate to the serine synthesis pathway. In breast cancer and several other types of cancer, increased PHGDH expression is associated with patient mortality. Early studies focused on the role of PHGDH in promoting cell proliferation in the small percentage of breast cancers with PHGDH gene amplification. However, recent studies have revealed a critical role for PHGDH and downstream enzymes of the serine synthesis pathway and one carbon metabolism in NADPH production and the maintenance of redox homeostasis, which are required for enrichment of breast cancer stem cells in response to hypoxia or chemotherapy. These results provide a mechanism for PHGDH overexpression in breast cancers in which PHGDH is not amplified and have implications for improving the response of triple-negative breast cancers to cytotoxic chemotherapy. Cancer Res; 76(22); 6458-62. ©2016 AACR.
Collapse
Affiliation(s)
- Debangshu Samanta
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gregg L Semenza
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Pediatrics, Medicine, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Abstract
In recent years there has been a growing interest among cancer biologists in cancer metabolism. This Review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in cancer cells, which is mediated by oncogenic drivers and by the undifferentiated character of cancer cells. The reprogrammed glucose metabolism in cancer cells is required to fulfil anabolic demands. This Review discusses the possibility of exploiting the reprogrammed glucose metabolism for therapeutic approaches that selectively target cancer cells.
Collapse
Affiliation(s)
- Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 and Research and Development Section, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA
| |
Collapse
|
29
|
Xian Y, Zhang S, Wang X, Qin J, Wang W, Wu H. Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer. Onco Targets Ther 2016; 9:5553-60. [PMID: 27660473 PMCID: PMC5019466 DOI: 10.2147/ott.s105787] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Phosphoglycerate dehydrogenase (PHGDH) acts as a key metabolic enzyme in the rate-limiting step in serine biosynthesis and plays an important role in metastasis of several cancers. The aim of this study was to investigate the prognostic value of PHGDH in gastric cancer (GC). METHODS The messenger RNA expression of PHGDH was determined in 20 pairs of cancerous and adjacent nontumor tissues by real-time polymerase chain reaction. Immunohistochemistry of PHGDH was performed on tissue microarray, composed of 482 GC and 64 matched adjacent nontumor tissues acquired from surgery, 20 chronic gastritis, 18 intestinal metaplasia, and 31 low-grade and 66 high-grade intraepithelial neoplasias acquired through gastric endoscopic biopsy. Univariate and multivariate Cox proportional hazard models were used to perform survival analyses. RESULTS Both PHGDH messenger RNA and protein product exhibited GC tissue-preferred expression, when compared with benign tissues. The high PHGDH expression was significantly correlated with histological type (P=0.011), tumor stage (P=0.014), and preoperative carcinoembryonic antigen (P<0.001). A negative correlation was found between PHGDH expression and the 5-year survival rate of patients with GC. Furthermore, multivariate analysis indicated that PHGDH was an independent prognostic factor for outcome in GC. CONCLUSION PHGDH is important in predicting patient outcomes and is a potential target for the development of therapeutic approaches to GC.
Collapse
Affiliation(s)
- Yun Xian
- School of Public Health, Nantong University
| | | | | | | | | | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Margan MM, Jitariu AA, Cimpean AM, Nica C, Raica M. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis. J Breast Cancer 2016; 19:99-111. [PMID: 27382385 PMCID: PMC4929267 DOI: 10.4048/jbc.2016.19.2.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022] Open
Abstract
Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis.
Collapse
Affiliation(s)
- Madalin Marius Margan
- Department XII-Obstetrics and Gynecology, Neonatology and Perinatal Care, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Adriana Jitariu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristian Nica
- Department of Surgery, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
31
|
Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman MLM, Wielenga VT, Moreira JMA. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol 2015; 9:1636-54. [PMID: 26026368 DOI: 10.1016/j.molonc.2015.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022] Open
Abstract
We have previously reported the 2D PAGE-based proteomic profiling of a prospective cohort of 78 triple negative breast cancer (TNBC) patients, and the establishment of a cumulative TNBC protein database. Analysis of this database identified a number of proteins as being specifically overexpressed in TNBC samples. One such protein was D-3-phosphoglycerate dehydrogenase (Phgdh), a candidate oncogene. We analysed expression of Phgdh in normal and TNBC mammary tissue samples by 2D gel-based proteomics and immunohistochemistry (IHC), and show here that high-level expression of Phgdh in mammary epithelial cells is primarily associated with cell lineage, as we found that Phgdh expression was predominant in CK5-positive cells, normal as well as malignant, thus identifying an association of this protein with the basal phenotype. Quantitative IHC analysis of Phgdh expression in normal breast tissue showed high-level expression of Phgdh in normal CK5-positive mammary epithelial cells, indicating that expression of this protein was not associated with malignancy, but rather with cell lineage. However, proteomic profiling of Phgdh showed it to be expressed in two major protein forms, and that the ratio of expression between these variants was associated with malignancy. Overexpression of Phgdh in CK5-positive cell lineages, and differential protein isoform expression, was additionally found in other tissues and cancer types, suggesting that overexpression of Phgdh is generally associated with CK5 cells, and that oncogenic function may be determined by isoform expression.
Collapse
Affiliation(s)
- Irina Gromova
- Cancer Proteomics, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark
| | - Pavel Gromov
- Cancer Proteomics, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark
| | - Naoko Honma
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Sudha Kumar
- Department of Pathology, Yale University Medical School, New Haven, USA
| | - David Rimm
- Department of Pathology, Yale University Medical School, New Haven, USA
| | - Maj-Lis Møller Talman
- Department of Pathology, The Centre of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - Vera Timmermans Wielenga
- Department of Pathology, The Centre of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - José M A Moreira
- Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark; Section for Molecular Disease Biology and Sino-Danish Breast Cancer Research Centre, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|