1
|
Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. J Cell Biol 2024; 223:e202311125. [PMID: 38558238 PMCID: PMC10983811 DOI: 10.1083/jcb.202311125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
Collapse
Affiliation(s)
- Christian Wiese
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Abele
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin Al
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Alexander Steiner
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nils Kalbfuß
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Strohmayr
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raksha Ravikumar
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Barbara Brunschweiger
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Farhah F. Assaad
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Lebecq A, Goldy C, Fangain A, Gascon E, Belcram K, Pastuglia M, Bouchez D, Caillaud MC. The phosphoinositide signature guides the final step of plant cytokinesis. SCIENCE ADVANCES 2023; 9:eadf7532. [PMID: 37467331 PMCID: PMC10355833 DOI: 10.1126/sciadv.adf7532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Plant cytokinesis, which fundamentally differs from that in animals, requires the outward expansion of a plasma membrane precursor named the cell plate. How the transition from a cell plate to a plasma membrane occurs remains poorly understood. Here, we report that the acquisition of plasma membrane identity occurs through lateral patterning of the phosphatidylinositol 4,5-bisphosphate PI(4,5)P2 at the newly formed cell plate membrane. There, the phosphoinositide phosphatase SAC9 emerges as a key regulator, colocalizing with and regulating the function of the microtubule-associated protein MAP65-3 at the cell plate leading zone. In sac9-3 mutant, the polar distribution of PI(4,5)P2 at the cell plate is altered, leading to ectopic recruitment of the cytokinesis apparatus and formation of an additional cell plate insertion site. We propose that at the cell plate, SAC9 drives the depletion of PI(4,5)P2, which acts as a polar cue to spatially separate cell plate expansion from the acquisition of plasma membrane identity during final step of cytokinesis.
Collapse
Affiliation(s)
- Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Camila Goldy
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Elsa Gascon
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| |
Collapse
|
3
|
Wu SY, Hou LL, Zhu J, Wang YC, Zheng YL, Hou JQ, Yang ZN, Lou Y. Ascorbic acid-mediated reactive oxygen species homeostasis modulates the switch from tapetal cell division to cell differentiation in Arabidopsis. THE PLANT CELL 2023; 35:1474-1495. [PMID: 36781400 PMCID: PMC10118275 DOI: 10.1093/plcell/koad037] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.
Collapse
Affiliation(s)
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Chen Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu-Ling Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Qiao Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | |
Collapse
|
4
|
Fan T, Fan Y, Yang Y, Qian D, Niu Y, An L, Xiang Y. SEC1A and SEC6 synergistically regulate pollen tube polar growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36951316 DOI: 10.1111/jipb.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.
Collapse
Affiliation(s)
- Tingting Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Arabidopsis exocyst subunit SEC6 is involved in cell plate formation during Microgametogenesis. Biochem Biophys Res Commun 2022; 598:100-106. [DOI: 10.1016/j.bbrc.2022.01.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022]
|
6
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
7
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
8
|
Máthé C, Nick P, Pasternak TP. Editorial: How Cells Build Plants: Regulatory Mechanisms for Integrated Functioning of Plant Cells and the Whole Plant Body. FRONTIERS IN PLANT SCIENCE 2021; 12:706892. [PMID: 34295348 PMCID: PMC8291082 DOI: 10.3389/fpls.2021.706892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Csaba Máthé
- Laboratory of Plant Cell and Developmental Biology, Department of Botany, Faculty of Science and Technology, Institute of Biology and Ecology, University of Debrecen, Debrecen, Hungary
| | - Peter Nick
- Department of Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Taras P. Pasternak
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Brejšková L, Hála M, Rawat A, Soukupová H, Cvrčková F, Charlot F, Nogué F, Haluška S, Žárský V. SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:831-843. [PMID: 33599020 DOI: 10.1111/tpj.15205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Spatially directed cell division and expansion is important for plant growth and morphogenesis and relies on cooperation between the cytoskeleton and the secretory pathway. The phylogenetically conserved octameric complex exocyst mediates exocytotic vesicle tethering at the plasma membrane. Unlike other exocyst subunits of land plants, the core exocyst subunit SEC6 exists as a single paralog in Physcomitrium patens and Arabidopsis thaliana genomes. Arabidopsis SEC6 (AtSEC6) loss-of-function (LOF) mutation causes male gametophytic lethality. Our attempts to inactivate the P. patens SEC6 gene, PpSEC6, using targeted gene replacement produced two independent partial LOF ('weak allele') mutants via perturbation of the PpSEC6 gene locus. These mutants exhibited the same pleiotropic developmental defects: protonema with dominant chloronema stage; diminished caulonemal filament elongation rate; and failure in post-initiation gametophore development. Mutant gametophore buds, mostly initiated from chloronema cells, exhibited disordered cell file organization and cross-wall perforations, resulting in arrested development at the eight- to 10-cell stage. Complementation of both sec6 moss mutant lines by both PpSEC6 and AtSEC6 cDNA rescued gametophore development, including sexual organ differentiation. However, regular sporophyte formation and viable spore production were recovered only by the expression of PpSEC6, whereas the AtSEC6 complementants were only rarely fertile, indicating moss-specific SEC6 functions.
Collapse
Affiliation(s)
- Lucie Brejšková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Anamika Rawat
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Hana Soukupová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Samuel Haluška
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
11
|
Máthé C, M-Hamvas M, Freytag C, Garda T. The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic-Facts and Questions. Int J Mol Sci 2021; 22:975. [PMID: 33478110 PMCID: PMC7835740 DOI: 10.3390/ijms22020975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP-GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole plant development. Overall, PP2A has essential roles in membrane interactions of plant cell and it is crucial for plant development and stress responses.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.M.-H.); (C.F.); (T.G.)
| | | | | | | |
Collapse
|
12
|
Gerien KS, Zhang S, Russell AC, Zhu YH, Purde V, Wu JQ. Roles of Mso1 and the SM protein Sec1 in efficient vesicle fusion during fission yeast cytokinesis. Mol Biol Cell 2020; 31:1570-1583. [PMID: 32432970 PMCID: PMC7521796 DOI: 10.1091/mbc.e20-01-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking during cytokinesis is essential for the delivery of membrane lipids and cargoes to the division site. However, the molecular mechanisms are still incompletely understood. In this study, we demonstrate the importance of uncharacterized fission yeast proteins Mso1 and Sec1 in membrane trafficking during cytokinesis. Fission yeast Mso1 shares homology with budding yeast Mso1 and human Mint1, proteins that interact with Sec1/Munc18 family proteins during vesicle fusion. Sec1/Munc18 proteins and their interactors are important regulators of SNARE complex formation during vesicle fusion. The roles of these proteins in vesicle trafficking during cytokinesis have been barely studied. Here, we show that fission yeast Mso1 is also a Sec1-binding protein and Mso1 and Sec1 localize to the division site interdependently during cytokinesis. The loss of Sec1 localization in mso1Δ cells results in a decrease in vesicle fusion and cytokinesis defects such as slow ring constriction, defective ring disassembly, and delayed plasma membrane closure. We also find that Mso1 and Sec1 may have functions independent of the exocyst tethering complex on the plasma membrane at the division site. Together, Mso1 and Sec1 play essential roles in regulating vesicle fusion and cargo delivery at the division site during cytokinesis.
Collapse
Affiliation(s)
- Kenneth S Gerien
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Alexandra C Russell
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Vedud Purde
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Otegui MS. Electron Tomography and Immunogold Labeling as Tools to Analyze De Novo Assembly of Plant Cell Walls. Methods Mol Biol 2020; 2149:365-382. [PMID: 32617946 DOI: 10.1007/978-1-0716-0621-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
High-resolution imaging of the membranous intermediates and cytoskeletal arrays involved in the assembly of a new cell wall during plant cytokinesis requires state-of-the-art electron microscopy techniques. The combination of cryofixation/freeze-substitution methods with electron tomography (ET) has revealed amazing structural details of this unique cellular process. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant cytokinesis, sample preparation by high-pressure freezing/freeze substitution, and ET of plastic sections. In addition, immunogold approaches for identification of proteins and polysaccharides during cell wall assembly are discussed.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, WI, USA.
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF. Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:279-297. [PMID: 31264742 DOI: 10.1111/tpj.14442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab-A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP-bound) versus wild-type or constitutively active (GTP-bound) RAB-A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab-A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB-A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB-A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP-bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF-Rab interactions will be crucial to unravel the co-ordination of plant membrane traffic.
Collapse
Affiliation(s)
- Monika Kalde
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Raksha Ravikumar
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Katarzyna Rybak
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Christian Wiese
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Miriam Abele
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Benjamin Al
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Nils Kalbfuß
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Alexander Steiner
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Chen Meng
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, 82152, Germany
| | - Christina Ludwig
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Farhah F Assaad
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| |
Collapse
|
15
|
Plant cell division - defining and finding the sweet spot for cell plate insertion. Curr Opin Cell Biol 2019; 60:9-18. [PMID: 30999231 DOI: 10.1016/j.ceb.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
The plant microtubules form unique arrays using acentrosomal microtubule nucleation pathways, yet utilizing evolutionary conserved centrosomal proteins. In cytokinesis, a multi-component cytoskeletal apparatus, the phragmoplast mediates the biosynthesis of the new cell plate by dynamic centrifugal expansion, a process that demands exquisite coordination of microtubule turnover and endomembrane trafficking. At the same time, the phragmoplast is guided to meet with the parental wall at a cortical site that is predefined before mitotic entry and transiently marked by the preprophase band of microtubules. The cortical division zone maintains positional information of the selected division plane for the entire duration of cell division and for the guidance of the phragmoplast during cytokinesis. Its establishment is an essential requirement for normal plant organogenesis, due to the confinement of cells by rigid cell walls.
Collapse
|
16
|
Tang H, de Keijzer J, Overdijk EJR, Sweep E, Steentjes M, Vermeer JEM, Janson ME, Ketelaar T. Exocyst subunit Sec6 is positioned by microtubule overlaps in the moss phragmoplast prior to cell plate membrane arrival. J Cell Sci 2019; 132:jcs222430. [PMID: 30635445 DOI: 10.1242/jcs.222430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.
Collapse
Affiliation(s)
- Han Tang
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Els Sweep
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maikel Steentjes
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Lin F, Krishnamoorthy P, Schubert V, Hause G, Heilmann M, Heilmann I. A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J 2019; 38:embj.2018100303. [PMID: 30617084 DOI: 10.15252/embj.2018100303] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Plant cytokinesis involves membrane trafficking and cytoskeletal rearrangements. Here, we report that the phosphoinositide kinases PI4Kβ1 and PI4Kβ2 integrate these processes in Arabidopsis thaliana (Arabidopsis) roots. Cytokinetic defects of an Arabidopsis pi4kβ1 pi4kβ2 double mutant are accompanied by defects in membrane trafficking. Specifically, we show that trafficking of the proteins KNOLLE and PIN2 at the cell plate, clathrin recruitment, and endocytosis is impaired in pi4kβ1 pi4kβ2 double mutants, accompanied by unfused vesicles at the nascent cell plate and around cell wall stubs. Interestingly, pi4kβ1 pi4kβ2 plants also display ectopic overstabilization of phragmoplast microtubules, which guide membrane trafficking at the cell plate. The overstabilization of phragmoplasts in the double mutant coincides with mislocalization of the microtubule-associated protein 65-3 (MAP65-3), which cross-links microtubules and is a downstream target for inhibition by the MAP kinase MPK4. Based on similar cytokinetic defects of the pi4kβ1 pi4kβ2 and mpk4-2 mutants and genetic and physical interaction of PI4Kβ1 and MPK4, we propose that PI4Kβ and MPK4 influence localization and activity of MAP65-3, respectively, acting synergistically to control phragmoplast dynamics.
Collapse
Affiliation(s)
- Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
18
|
Zhang C, Shen Y, Tang D, Shi W, Zhang D, Du G, Zhou Y, Liang G, Li Y, Cheng Z. The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet 2018; 14:e1007769. [PMID: 30419020 PMCID: PMC6258382 DOI: 10.1371/journal.pgen.1007769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/26/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Meiotic cytokinesis influences the fertility and ploidy of gametes. However, limited information is available on the genetic control of meiotic cytokinesis in plants. Here, we identified a rice mutant with low male fertility, defective callose in meiosis 1 (dcm1). The pollen grains of dcm1 are proved to be defective in exine formation. Meiotic cytokinesis is disrupted in dcm1, resulting in disordered spindle orientation during meiosis II and formation of pollen grains with varied size and DNA content. We demonstrated that meiotic cytokinesis defect in dcm1 is caused by prematurely dissolution of callosic plates. Furthermore, peripheral callose surrounding the dcm1 pollen mother cells (PMCs) also disappeared untimely around pachytene. The DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly (A) binding proteins (PABNs) in nuclear speckles. The expression profiles of genes related to callose synthesis and degradation are significantly modified in dcm1. Together, we propose that DCM1 plays an essential role in male meiotic cytokinesis by preserving callose from prematurely dissolution in rice. Meiosis comprises two successive cell divisions after a single S phase, generating four haploid products. Meiotic caryokinesis (nuclear division) has been extensively studied in many organisms, while mechanisms underlying meiotic cytokinesis remain elusive. Here, we identified a novel CCCH-tandem zinc finger protein DCM1 that prevent the premature dissolution of callose both around the PMCs and at the dividing site (callosic plates). Loss of the callosic plates disrupts the meiotic cytokinesis, leading to the random distribution of spindles during meiosis II and aberrant meiotic products. DCM1 interacts with the two rice poly (A) binding proteins, independently of the conserved CCCH domain. Moreover, DCM1 coordinates the expression profiles of genes related to callose synthesis and degradation. We suspect monocots and dicots may adopt distinct meiotic cytokinesis patterns during male gamete generation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| |
Collapse
|
19
|
Ravikumar R, Kalbfuß N, Gendre D, Steiner A, Altmann M, Altmann S, Rybak K, Edelmann H, Stephan F, Lampe M, Facher E, Wanner G, Falter-Braun P, Bhalerao RP, Assaad FF. Independent yet overlapping pathways ensure the robustness and responsiveness of trans-Golgi network functions in Arabidopsis. Development 2018; 145:145/21/dev169201. [DOI: 10.1242/dev.169201] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/02/2018] [Indexed: 01/21/2023]
Abstract
ABSTRACT
The trans-Golgi-network (TGN) has essential housekeeping functions in secretion, endocytosis and protein sorting, but also more specialized functions in plant development. How the robustness of basal TGN function is ensured while specialized functions are differentially regulated is poorly understood. Here, we investigate two key regulators of TGN structure and function, ECHIDNA and the Transport Protein Particle II (TRAPPII) tethering complex. An analysis of physical, network and genetic interactions suggests that two network communities are implicated in TGN function and that ECHIDNA and TRAPPII belong to distinct yet overlapping pathways. Whereas ECHIDNA and TRAPPII colocalized at the TGN in interphase cells, their localization diverged in dividing cells. Moreover, ECHIDNA and TRAPPII localization patterns were mutually independent. TGN structure, endocytosis and sorting decisions were differentially impacted in echidna and trappii mutants. Our analyses point to a partitioning of specialized TGN functions, with ECHIDNA being required for cell elongation and TRAPPII for cytokinesis. Two independent pathways able to compensate for each other might contribute to the robustness of TGN housekeeping functions and to the responsiveness and fine tuning of its specialized functions.
Collapse
Affiliation(s)
- Raksha Ravikumar
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Nils Kalbfuß
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Delphine Gendre
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Alexander Steiner
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Stefan Altmann
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Katarzyna Rybak
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Holger Edelmann
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Friederike Stephan
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Dept. I Ludwig-Maximilians-Universität, 80638 Munich, Germany
| | - Gerhard Wanner
- Faculty of Biology, Dept. I, Ludwig-Maximillians Universität, 82152 Planegg-Martinsried, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Farhah F. Assaad
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
20
|
Herrmann A, Livanos P, Lipka E, Gadeyne A, Hauser MT, Van Damme D, Müller S. Dual localized kinesin-12 POK2 plays multiple roles during cell division and interacts with MAP65-3. EMBO Rep 2018; 19:e46085. [PMID: 30002118 PMCID: PMC6123660 DOI: 10.15252/embr.201846085] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Kinesins are versatile nano-machines that utilize variable non-motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin-12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre-selected cell plate fusion site at the cell cortex. Here, we report on the spatio-temporal localization pattern of POK2, mediated by distinct protein domains. Functional dissection of POK2 domains revealed the association of POK2 with the site of the future cell division plane and with the phragmoplast during cytokinesis. Accumulation of POK2 at the phragmoplast midzone depends on its functional POK2 motor domain and is fine-tuned by its carboxy-terminal region that also directs POK2 to the division site. Furthermore, POK2 likely stabilizes the phragmoplast midzone via interaction with the conserved microtubule-associated protein MAP65-3/PLEIADE, a well-established microtubule cross-linker. Collectively, our results suggest that dual localized POK2 plays multiple roles during plant cell division.
Collapse
Affiliation(s)
- Arvid Herrmann
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Pantelis Livanos
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Elisabeth Lipka
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Astrid Gadeyne
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Sabine Müller
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Zhang H, Deng X, Sun B, Lee Van S, Kang Z, Lin H, Lee YRJ, Liu B. Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. NATURE PLANTS 2018; 4:485-494. [PMID: 29967519 DOI: 10.1038/s41477-018-0192-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/04/2018] [Indexed: 05/15/2023]
Abstract
The evolutionarily conserved WD40 protein budding uninhibited by benzimidazole 3 (BUB3) is known for its function in spindle assembly checkpoint control. In the model plant Arabidopsis thaliana, nearly identical BUB3;1 and BUB3;2 proteins decorated the phragmoplast midline through interaction with the microtubule-associated protein MAP65-3 during cytokinesis. BUB3;1 and BUB3;2 interacted with the carboxy-terminal segment of MAP65-3 (but not MAP65-1), which harbours its microtubule-binding domain for its post-mitotic localization. Reciprocally, BUB3;1 and BUB3;2 also regulated MAP65-3 localization in the phragmoplast by enhancing its microtubule association. In the bub3;1 bub3;2 double mutant, MAP65-3 localization was often dissipated away from the phragmoplast midline and abolished upon treatment of low doses of the cytokinesis inhibitory drug caffeine that were tolerated by the control plant. The phragmoplast microtubule array exhibited uncoordinated expansion pattern in the double mutant cells as the phragmoplast edge reached the parental plasma membrane at different times in different areas. Upon caffeine treatment, phragmoplast expansion was halted as if the microtubule array was frozen. As a result, cytokinesis was abolished due to failed cell plate assembly. Our findings have uncovered a novel function of the plant BUB3 in MAP65-3-dependent microtubule reorganization during cytokinesis.
Collapse
Affiliation(s)
- Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Baojuan Sun
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Sonny Lee Van
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Honghui Lin
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
22
|
Functional diversification of Arabidopsis SEC1-related SM proteins in cytokinetic and secretory membrane fusion. Proc Natl Acad Sci U S A 2018; 115:6309-6314. [PMID: 29844177 DOI: 10.1073/pnas.1722611115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sec1/Munc18 (SM) proteins contribute to membrane fusion by interacting with Qa-SNAREs or nascent trans-SNARE complexes. Gymnosperms and the basal angiosperm Amborella have only a single SEC1 gene related to the KEULE gene in Arabidopsis However, the genomes of most angiosperms including Arabidopsis encode three SEC1-related SM proteins of which only KEULE has been functionally characterized as interacting with the cytokinesis-specific Qa-SNARE KNOLLE during cell-plate formation. Here we analyze the closest paralog of KEULE named SEC1B. In contrast to the cytokinesis defects of keule mutants, sec1b mutants are homozygous viable. However, the keule sec1b double mutant was nearly gametophytically lethal, displaying collapsed pollen grains, which suggests substantial overlap between SEC1B and KEULE functions in secretion-dependent growth. SEC1B had a strong preference for interaction with the evolutionarily ancient Qa-SNARE SYP132 involved in secretion and cytokinesis, whereas KEULE interacted with both KNOLLE and SYP132. This differential interaction with Qa-SNAREs is likely conferred by domains 1 and 2a of the two SM proteins. Comparative analysis of all four possible combinations of the relevant SEC1 Qa-SNARE double mutants revealed that in cytokinesis, the interaction of SEC1B with KNOLLE plays no role, whereas the interaction of KEULE with KNOLLE is prevalent and functionally as important as the interactions of both SEC1B and KEU with SYP132 together. Our results suggest that functional diversification of the two SEC1-related SM proteins during angiosperm evolution resulted in enhanced interaction of SEC1B with Qa-SNARE SYP132, and thus a predominant role of SEC1B in secretion.
Collapse
|
23
|
Ravikumar R, Steiner A, Assaad FF. Multisubunit tethering complexes in higher plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:97-105. [PMID: 28889036 DOI: 10.1016/j.pbi.2017.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
Tethering complexes mediate the initial, specific contact between donor and acceptor membranes. This review focuses on the modularity and function of multisubunit tethering complexes (MTCs) in higher plants. One emphasis is on molecular interactions of plant MTCs. Here, a number of insights have been gained concerning interactions between different tethering complexes, and between tethers and microtubule-associated proteins. The roles of tethering complexes in abiotic stress responses appear indirect, but in the context of biotic stress responses it has been suggested that some tethers are direct targets of pathogen effectors or virulence factors. In light of the central roles tethering complexes play in plant development, an emerging concept is that tethers may be co-opted for plant adaptive responses.
Collapse
Affiliation(s)
| | | | - Farhah F Assaad
- Botany, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
24
|
Plant Cytokinesis: Terminology for Structures and Processes. Trends Cell Biol 2017; 27:885-894. [PMID: 28943203 DOI: 10.1016/j.tcb.2017.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022]
Abstract
Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.
Collapse
|
25
|
Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics 2016; 17:946. [PMID: 27871222 PMCID: PMC5117540 DOI: 10.1186/s12864-016-3229-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Maize (Zea mays) husk referring to the leafy outer enclosing the ear, plays an important role in grain production by directly contributing photosynthate and protecting ear from pathogen infection. Although the physiological functions related to husk have been extensively studied, little is known about its morphological variation and genetic basis in natural population. Results Here we utilized a maize association panel including 508 inbred lines with tropical, subtropical and temperate backgrounds to decipher the genetic architecture attributed to four husk traits, i.e. number of layers, length, width and thickness. Evaluating the phenotypic diversity at two different environments showed that four traits exhibit broadly natural variations and moderate levels of heritability with 0.64, 0.74, 0.49 and 0.75 for number, length, width and thickness, respectively. Diversity analysis indicated that different traits have dissimilar responses to subpopulation effects. A series of significantly positive or negative correlations between husk phenotypes and other agronomic traits were identified, indicating that husk growth is coordinated with other developmental processes. Combining husk traits with about half of a million of single nucleotide polymorphisms (SNPs) via genome-wide association study revealed a total of 9 variants significantly associated with traits at P < 1.04 × 10-5, which are implicated in multiple functional categories, such as cellular trafficking, transcriptional regulation and metabolism. Conclusions These results provide instrumental information for understanding the genetic basis of husk development, and further studies on identified candidate genes facilitate to illuminate molecular pathways regulating maize husk growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Cui
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinhong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Chuangye Qi
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Yanye Ruan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Ao Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
26
|
Steiner A, Rybak K, Altmann M, McFarlane HE, Klaeger S, Nguyen N, Facher E, Ivakov A, Wanner G, Kuster B, Persson S, Braun P, Hauser MT, Assaad FF. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:531-541. [PMID: 27420177 DOI: 10.1111/tpj.13275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.
Collapse
Affiliation(s)
| | - Katarzyna Rybak
- Botany, Technische Universität München, Freising, 85354, Germany
| | - Melina Altmann
- Plant Systems Biology, Technische Universität München, Freising, 85354, Germany
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Parkville, 3010, Victoria, Australia
- Max Planck Institute for Molecular Plant Physiology, Postdam, 14476, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Ngoc Nguyen
- Botany, Technische Universität München, Freising, 85354, Germany
| | - Eva Facher
- Department Biologie I, Ludwig-Maximillians Universität, Planegg-Martinsried, 82152, Germany
| | - Alexander Ivakov
- School of Biosciences, University of Melbourne, Parkville, 3010, Victoria, Australia
- Max Planck Institute for Molecular Plant Physiology, Postdam, 14476, Germany
| | - Gerhard Wanner
- Department Biologie I, Ludwig-Maximillians Universität, Planegg-Martinsried, 82152, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, 3010, Victoria, Australia
- Max Planck Institute for Molecular Plant Physiology, Postdam, 14476, Germany
- School of Biosciences, ARC Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Pascal Braun
- Plant Systems Biology, Technische Universität München, Freising, 85354, Germany
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Farhah F Assaad
- Botany, Technische Universität München, Freising, 85354, Germany
| |
Collapse
|
27
|
Uemura T. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2016; 57:2013-2019. [PMID: 27649735 DOI: 10.1093/pcp/pcw149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/12/2016] [Indexed: 05/02/2023]
Abstract
Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|