1
|
Zheng Y, Ou X, Li Q, Wu Z, Wu L, Li X, Zhang B, Sun Y. Genome-wide epigenetic dynamics of tea leaves under mechanical wounding stress during oolong tea postharvest processing. Food Res Int 2024; 194:114939. [PMID: 39232552 DOI: 10.1016/j.foodres.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase β-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China; Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Bo Zhang
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China.
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China.
| |
Collapse
|
2
|
Fuentes RR, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck HC, Schijlen E, Schouten HJ, Bai Y, Fransz P, Stam M, de Jong H, Trivino SD, de Ridder D, van Dijk ADJ, Peters SA. A catalogue of recombination coldspots in interspecific tomato hybrids. PLoS Genet 2024; 20:e1011336. [PMID: 38950081 PMCID: PMC11244794 DOI: 10.1371/journal.pgen.1011336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/12/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Jihed Chouaref
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Bao Y, Wei Y, Liu Y, Gao J, Cheng S, Liu G, You Q, Liu P, Lu Q, Li P, Zhang S, Hu N, Han Y, Liu S, Wu Y, Yang Q, Li Z, Ao G, Liu F, Wang K, Jiang J, Zhang T, Zhang W, Peng R. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol 2023; 21:165. [PMID: 37525156 PMCID: PMC10391996 DOI: 10.1186/s12915-023-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.
Collapse
Affiliation(s)
- Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jingjing Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Shuang Cheng
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qi You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Peng Liu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Nan Hu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guowei Ao
- Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Fang Liu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Kunbo Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Michigan State University AgBioResearch, East Lansing, MI, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, 455000, China.
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
- Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Ouyang K, Liang Q, Miao L, Zhang Z, Li Z. Genome-wide mapping of DNase I hypersensitive sites in pineapple leaves. Front Genet 2023; 14:1086554. [PMID: 37470036 PMCID: PMC10352800 DOI: 10.3389/fgene.2023.1086554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Pineapple [Ananas comosus (L.) Merr.] is the most economically important crop possessing crassulacean acid metabolism (CAM) photosynthesis which has a higher water use efficiency by control of nocturnal opening and diurnal closure of stomata. To provide novel insights into the diel regulatory landscape in pineapple leaves, we performed genome-wide mapping of DNase I hypersensitive sites (DHSs) in pineapple leaves at day (2a.m.) and night (10a.m.) using a simplified DNase-seq method. As a result, totally 33340 and 28753 DHSs were found in green-tip tissue, and 29597 and 40068 were identified in white-base tissue at 2a.m. and 10a.m., respectively. We observed that majority of the pineapple genes occupied less than two DHSs with length shorter than 1 kb, and the promotor DHSs showed a proximal trend to the transcription start site (>77% promotor DHSs within 1 kb). In addition, more intergenic DHSs were identified around transcription factors or transcription co-regulators (TFs/TCs) than other functional genes, indicating complex regulatory contexts around TFs/TCs. Through combined analysis of tissue preferential DHSs and genes, we respectively found 839 and 888 coordinately changed genes in green-tip at 2a.m. and 10a.m. (AcG2 and AcG10). Furthermore, AcG2-specific, AcG10-specific and common accessible DHSs were dissected from the total photosynthetic preferential DHSs, and the regulatory networks indicated dynamic regulations with multiple cis-regulatory elements occurred to genes preferentially expressed in photosynthetic tissues. Interestingly, binding motifs of several cycling TFs were identified in the DHSs of key CAM genes, revealing a circadian regulation to CAM coordinately diurnal expression. Our results provide a chromatin regulatory landscape in pineapple leaves during the day and night. This will provide important information to assist with deciphering the circadian regulation of CAM photosynthesis.
Collapse
Affiliation(s)
- Kai Ouyang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qifu Liang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Li Miao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiliang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhanjie Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Zheng X, Gong M, Zhang Q, Tan H, Li L, Tang Y, Li Z, Peng M, Deng W. Metabolism and Regulation of Ascorbic Acid in Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121602. [PMID: 35736753 PMCID: PMC9228137 DOI: 10.3390/plants11121602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Huaqiang Tan
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Liping Li
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Youwan Tang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Mingchao Peng
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| |
Collapse
|
7
|
Huang L, Li X, Dong L, Wang B, Pan L. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species. BMC Biol 2021; 19:189. [PMID: 34488759 PMCID: PMC8419926 DOI: 10.1186/s12915-021-01114-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background The identification of open chromatin regions and transcription factor binding sites (TFBs) is an important step in understanding the regulation of gene expression in diverse species. ATAC-seq is a technique used for such purpose by providing high-resolution measurements of chromatin accessibility revealed through integration of Tn5 transposase. However, the existence of cell walls in filamentous fungi and associated difficulty in purifying nuclei have precluded the routine application of this technique, leading to a lack of experimentally determined and computationally inferred data on the identity of genome-wide cis-regulatory elements (CREs) and TFBs. In this study, we constructed an ATAC-seq platform suitable for filamentous fungi and generated ATAC-seq libraries of Aspergillus niger and Aspergillus oryzae grown under a variety of conditions. Results We applied the ATAC-seq assay for filamentous fungi to delineate the syntenic orthologue and differentially changed chromatin accessibility regions among different Aspergillus species, during different culture conditions, and among specific TF-deleted strains. The syntenic orthologues of accessible regions were responsible for the conservative functions across Aspergillus species, while regions differentially changed between culture conditions and TFs mutants drove differential gene expression programs. Importantly, we suggest criteria to determine TFBs through the analysis of unbalanced cleavage of distinct TF-bound DNA strands by Tn5 transposase. Based on this criterion, we constructed data libraries of the in vivo genomic footprint of A. niger under distinct conditions, and generated a database of novel transcription factor binding motifs through comparison of footprints in TF-deleted strains. Furthermore, we validated the novel TFBs in vivo through an artificial synthetic minimal promoter system. Conclusions We characterized the chromatin accessibility regions of filamentous fungi species, and identified a complete TFBs map by ATAC-seq, which provides valuable data for future analyses of transcriptional regulation in filamentous fungi. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01114-0.
Collapse
Affiliation(s)
- Lianggang Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xuejie Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Liangbo Dong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Abstract
DNase I hypersensitive site (DHS) mapping combined with high-throughput sequencing (DNase-seq) enables the identification of cis-regulatory DNA elements (CREs) genome wide. However, despite the wide applications of DNase-seq in plants, its application to the highly repetitive genomes of plants has lagged. Here, we describe a modified DNase-seq method, making it more practical for application to plants with genomes enriched with repetitive DNA. This approach adopts a double-hit-based strategy, in which small (<250-bp) DNA fragments digested by DNase I are selected and used for sequencing library construction. Using these protocols, we have conducted DNase-seq in plants with high content of repetitive DNA, including maize, sugarcane, and tetraploid cotton. Genome-wide maps of DHS and CREs have been created using these DNase-seq datasets. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Nuclei isolation Basic Protocol 2: DNase I digestion Basic Protocol 3: Target DNA isolation Basic Protocol 4: Library construction and validation.
Collapse
Affiliation(s)
- Yankun Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- School of Life Science, Nantong University, Nantong, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Yue J, Hou X, Liu X, Wang L, Gao H, Zhao F, Shi L, Shi L, Yan H, Deng T, Gong J, Wang L, Zhang L. The landscape of chromatin accessibility in skeletal muscle during embryonic development in pigs. J Anim Sci Biotechnol 2021; 12:56. [PMID: 33934724 PMCID: PMC8091695 DOI: 10.1186/s40104-021-00577-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The development of skeletal muscle in pigs during the embryonic stage is precisely regulated by transcriptional mechanisms, which depend on chromatin accessibility. However, how chromatin accessibility plays a regulatory role during embryonic skeletal muscle development in pigs has not been reported. To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development, we performed ATAC-seq and RNA-seq analyses of skeletal muscle from pig embryos at 45, 70 and 100 days post coitus (dpc). RESULTS In total, 21,638, 35,447 and 60,181 unique regions (or peaks) were found across the embryos at 45 dpc (LW45), 70 dpc (LW70) and 100 dpc (LW100), respectively. More than 91% of the peaks were annotated within - 1 kb to 100 bp of transcription start sites (TSSs). First, widespread increases in specific accessible chromatin regions (ACRs) from embryos at 45 to 100 dpc suggested that the regulatory mechanisms became increasingly complicated during embryonic development. Second, the findings from integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the intensities of ACRs could control the expression of associated genes. Moreover, the motif screening of stage-specific ACRs revealed some transcription factors that regulate muscle development-related genes, such as MyoG, Mef2c, and Mef2d. Several potential transcriptional repressors, including E2F6, OTX2 and CTCF, were identified among the genes that exhibited different regulation trends between the ATAC-seq and RNA-seq data. CONCLUSIONS This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors. Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.
Collapse
Affiliation(s)
- Jingwei Yue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lijun Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hua Yan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianyu Deng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianfei Gong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Ma X, Zhao H, Yan H, Sheng M, Cao Y, Yang K, Xu H, Xu W, Gao Z, Su Z. Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data. Comput Struct Biotechnol J 2021; 19:2708-2718. [PMID: 34093986 PMCID: PMC8131310 DOI: 10.1016/j.csbj.2021.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Bamboo, one of the most crucial nontimber forest resources worldwide, has the capacity for rapid growth. In recent years, the genome of moso bamboo (Phyllostachys edulis) has been decoded, and a large amount of transcriptome data has been published. In this study, we generated the genome-wide profiles of the histone modification H3K4me3 in leaf, stem, and root tissues of bamboo. The trends in the distribution patterns were similar to those in rice. We developed a processing pipeline for predicting novel transcripts to refine the structural annotation of the genome using H3K4me3 ChIP-seq data and 29 RNA-seq datasets. As a result, 12,460 novel transcripts were predicted in the bamboo genome. Compared with the transcripts in the newly released version 2.0 of the bamboo genome, these novel transcripts are tissue-specific and shorter, and most have a single exon. Some representative novel transcripts were validated by semiquantitative RT-PCR and qRT-PCR analyses. Furthermore, we put these novel transcripts back into the ChIP-seq analysis pipeline and discovered that the percentages of H3K4me3 in genic elements were increased. Overall, this work integrated transcriptomic data and epigenomic data to refine the annotation of the genome in order to discover more functional genes and study bamboo growth and development, and the application of this predicted pipeline may help refine the structural annotation of the genome in other species.
Collapse
Affiliation(s)
- Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hansheng Zhao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hao Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Scaria V, Agarwal M. Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5280-5293. [PMID: 32526034 DOI: 10.1093/jxb/eraa286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/10/2020] [Indexed: 05/18/2023]
Abstract
Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.
Collapse
Affiliation(s)
- Vivek Kumar Raxwal
- Department of Botany, University of Delhi, Delhi, India
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sourav Ghosh
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Somya Singh
- Department of Botany, University of Delhi, Delhi, India
| | | | | | | | - Amar Kumar
- Department of Botany, University of Delhi, Delhi, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Zuo J, Grierson D, Courtney LT, Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Wang Q, Giovannoni JJ. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:980-994. [PMID: 32314448 DOI: 10.1111/tpj.14778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 05/28/2023]
Abstract
Ripening of tomato fruit is a complex tightly orchestrated developmental process that involves multiple physiological and metabolic changes that render fruit attractive, palatable and nutritious. Ripening requires initiation, activation and coordination of key pathways at the transcriptional and post-transcriptional levels that lead to ethylene synthesis and downstream ripening events determining quality. We studied wild-type, Gr and r mutant fruits at the coding and non-coding transcriptomic, metabolomic and genome methylation levels. Numerous differentially expressed non-coding RNAs were identified and quantified and potential competing endogenous RNA regulation models were constructed. Multiple changes in gene methylation were linked to the ethylene pathway and ripening processes. A combined analysis of changes in genome methylation, long non-coding RNAs, circular RNAs, micro-RNAs and fruit metabolites revealed many differentially expressed genes (DEGs) with differentially methylated regions encoding transcription factors and key enzymes related to ethylene or carotenoid pathways potentially targeted by differentially expressed non-coding RNAs. These included ACO2 (targeted by MSTRG.59396.1 and miR396b), CTR1 (targeted by MSTRG.43594.1 and miR171b), ERF2 (targeted by MSTRG.183681.1), ERF5 (targeted by miR9470-3p), PSY1 (targeted by MSTRG.95226.7), ZISO (targeted by 12:66127788|66128276) and NCED (targeted by MSTRG.181568.2). Understanding the functioning of this intricate genetic regulatory network provides new insights into the underlying integration and relationships between the multiple events that collectively determine the ripe phenotype.
Collapse
Affiliation(s)
- Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Lance T Courtney
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - James J Giovannoni
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Han J, Wang P, Wang Q, Lin Q, Chen Z, Yu G, Miao C, Dao Y, Wu R, Schnable JC, Tang H, Wang K. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. THE PLANT CELL 2020; 32:2457-2473. [PMID: 32471863 PMCID: PMC7401015 DOI: 10.1105/tpc.19.00716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 05/05/2023]
Abstract
Deep sequencing of DNase-I treated chromatin (DNase-seq) can be used to identify DNase I-hypersensitive sites (DHSs) and facilitates genome-scale mining of de novo cis-regulatory DNA elements. Here, we adapted DNase-seq to generate genome-wide maps of DHSs using control and cold-treated leaf, stem, and root tissues of three widely studied grass species: Brachypodium distachyon, foxtail millet (Setaria italica), and sorghum (Sorghum bicolor). Functional validation demonstrated that 12 of 15 DHSs drove reporter gene expression in transiently transgenic B. distachyon protoplasts. DHSs under both normal and cold treatment substantially differed among tissues and species. Intriguingly, the putative DHS-derived transcription factors (TFs) are largely colocated among tissues and species and include 17 ubiquitous motifs covering all grass taxa and all tissues examined in this study. This feature allowed us to reconstruct a regulatory network that responds to cold stress. Ethylene-responsive TFs SHINE3, ERF2, and ERF9 occurred frequently in cold feedback loops in the tissues examined, pointing to their possible roles in the regulatory network. Overall, we provide experimental annotation of 322,713 DHSs and 93 derived cold-response TF binding motifs in multiple grasses, which could serve as a valuable resource for elucidating the transcriptional networks that function in the cold-stress response and other physiological processes.
Collapse
Affiliation(s)
- Jinlei Han
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Pengxi Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Qiongli Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Qingfang Lin
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhiyong Chen
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Guangrun Yu
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Chenyong Miao
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yihang Dao
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ruoxi Wu
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Haibao Tang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
14
|
Pontvianne F, Liu C. Chromatin domains in space and their functional implications. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:1-10. [PMID: 31881292 DOI: 10.1016/j.pbi.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 05/19/2023]
Abstract
Genome organization displays functional compartmentalization. Many factors, including epigenetic modifications, transcription factors, chromatin remodelers, and RNAs, shape chromatin domains and the three-dimensional genome organization. Various types of chromatin domains with distinct epigenetic and spatial features exhibit different transcriptional activities. As part of the efforts to better understand plant functional genomics, over the past a few years, spatial distribution patterns of plant chromatin domains have been brought to light. In this review, we discuss chromatin domains associated with the nuclear periphery and the nucleolus, as well as chromatin domains staying in proximity and showing physical interactions. The functional implication of these domains is discussed, with a particular focus on the transcriptional regulation and replication timing. Finally, from a biophysical point of view, we discuss potential roles of liquid-liquid phase separation in plant nuclei in the genesis and maintenance of spatial chromatin domains.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France; UPVD, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France.
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany.
| |
Collapse
|
15
|
Yan S, Chen N, Huang Z, Li D, Zhi J, Yu B, Liu X, Cao B, Qiu Z. Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. THE NEW PHYTOLOGIST 2020; 225:2048-2063. [PMID: 31625612 DOI: 10.1111/nph.16272] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/13/2019] [Indexed: 05/20/2023]
Abstract
Anthocyanin fruit (Aft) and atroviolacea (atv) were characterized in wild tomato and can enhance anthocyanin content in tomato fruit. However, the gene underlying the Aft locus and the mechanism by which Aft and atv act remain largely unknown. In this study, the Aft locus was fine-mapped to an approximately 145-kb interval on chromosome 10, excluding SlAN2 (Solyc10g086250), SlANT1 (Solyc10g086260) and SlANT1-like (Solyc10g086270), which have previously been suggested as candidates. Thus, the R2R3-MYB transcription factor SlAN2-like (Solyc10g086290) was considered the best candidate gene for Aft. The CRISPR/Cas9-mediated SlAN2-like mutants show a much lower accumulation of anthocyanins associated with the downregulation of multiple anthocyanin-related genes compared to the wild-type tomato, indicating that SlAN2-like is responsible for the Aft phenotype. The repressive function of SlMYBATV also was confirmed through the CRISPR/Cas9 approach. A yeast-two-hybrid assay revealed that SlMYBATV interacts with the bHLH protein SlJAF13. Furthermore, yeast-one-hybrid and dual-luciferase transient expression assays showed that Aft directly binds to the SlMYBATV promoter and activates its expression. The results herein provide candidate genes to enhance anthocyanin content in tomato fruit. This research also provides insight into a mechanism involving the Aft-SlMYBATV pathway that fine-tunes anthocyanin accumulation in tomato fruit.
Collapse
Affiliation(s)
- Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Na Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zejun Huang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Dongjing Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Zhi
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory of New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
16
|
Abstract
cis-regulatory DNA elements (CREs) are noncoding but functional DNA sequences. The binding of regulatory proteins into CRE regions leads to chromatin high sensitive to DNase I digestion, which are termed as DNase I hypersensitive sites (DHSs). These DHSs can be efficiently detected through DNase I digestion followed by high-throughput DNA sequencing (DNase-seq). Thus, DNase-seq has become a powerful technique for DHSs mapping at whole-genome level in both plants and animals. Here we describe a DNase-seq procedure modified and developed for crop plants. These plants usually contain large amounts of repetitive sequences and complex organic constituents. With the main improvement in nuclei isolation, this method has been successfully used in mapping DHSs in cotton and sugarcane.
Collapse
|
17
|
Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ. The prevalence, evolution and chromatin signatures of plant regulatory elements. NATURE PLANTS 2019; 5:1250-1259. [PMID: 31740772 DOI: 10.1038/s41477-019-0548-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/09/2019] [Indexed: 05/03/2023]
Abstract
Chromatin accessibility and modification is a hallmark of regulatory DNA, the study of which led to the discovery of cis-regulatory elements (CREs). Here, we characterize chromatin accessibility, histone modifications and sequence conservation in 13 plant species. We identified thousands of putative CREs and revealed that distal CREs are prevalent in plants, especially in species with large and complex genomes. The majority of distal CREs have been moved away from their target genes by transposable-element (TE) proliferation, but a substantial number of distal CREs also seem to be created by TEs. Finally, plant distal CREs are associated with three major types of chromatin signatures that are distinct from metazoans. Taken together, these results suggest that CREs are prevalent in plants, highly dynamic during evolution and function through distinct chromatin pathways to regulate gene expression.
Collapse
Affiliation(s)
- Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
18
|
Brown K, Takawira LT, O'Neill MM, Mizrachi E, Myburg AA, Hussey SG. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis. THE NEW PHYTOLOGIST 2019; 223:1937-1951. [PMID: 31063599 DOI: 10.1111/nph.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 05/03/2023]
Abstract
Accessible chromatin changes dynamically during development and harbours functional regulatory regions which are poorly understood in the context of wood development. We explored the importance of accessible chromatin in Eucalyptus grandis in immature xylem generally, and MYB transcription factor-mediated transcriptional programmes specifically. We identified biologically reproducible DNase I Hypersensitive Sites (DHSs) and assessed their functional significance in immature xylem through their associations with gene expression, epigenomic data and DNA sequence conservation. We identified in vitro DNA binding sites for six secondary cell wall-associated Eucalyptus MYB (EgrMYB) transcription factors using DAP-seq, reconstructed protein-DNA networks of predicted targets based on binding sites within or outside DHSs and assessed biological enrichment of these networks with published datasets. 25 319 identified immature xylem DHSs were associated with increased transcription and significantly enriched for various epigenetic signatures (H3K4me3, H3K27me3, RNA pol II), conserved noncoding sequences and depleted single nucleotide variants. Predicted networks built from EgrMYB binding sites located in accessible chromatin were significantly enriched for systems biology datasets relevant to wood formation, whereas those occurring in inaccessible chromatin were not. Our study demonstrates that DHSs in E. grandis immature xylem, most of which are intergenic, are of functional significance to gene regulation in this tissue.
Collapse
Affiliation(s)
- Katrien Brown
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Lazarus T Takawira
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Marja M O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Steven G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| |
Collapse
|
19
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017; 171:470-480.e8. [PMID: 28919077 DOI: 10.1016/j.cell.2017.08.030] [Citation(s) in RCA: 580] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/30/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022]
Abstract
Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.
Collapse
Affiliation(s)
| | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jarrett Man
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|