1
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
2
|
Praat M, Jiang Z, Earle J, Smeekens S, van Zanten M. Using a thermal gradient table to study plant temperature signalling and response across a temperature spectrum. PLANT METHODS 2024; 20:114. [PMID: 39075474 PMCID: PMC11285400 DOI: 10.1186/s13007-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.
Collapse
Affiliation(s)
- Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joe Earle
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Present address: Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Netherlands Plant Eco-Phenotyping Centre, Institute of Environmental Biology, Utrecht University, Padualaan 6, Utrecht, 3584CH, The Netherlands.
| |
Collapse
|
3
|
Su Y, Fang J, Zeeshan Ul Haq M, Yang W, Yu J, Yang D, Liu Y, Wu Y. Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut ( Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2077. [PMID: 39124195 PMCID: PMC11313903 DOI: 10.3390/plants13152077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Casparian strip membrane domain proteins (CASPs), regulating the formation of Casparian strips in plants, serve crucial functions in facilitating plant growth, development, and resilience to abiotic stress. However, little research has focused on the characteristics and functions of AhCASPs in cultivated peanuts. In this study, the genome-wide identification and expression analysis of the AhCASPs gene family was performed using bioinformatics and transcriptome data. Results showed that a total of 80 AhCASPs members on 20 chromosomes were identified and divided into three subclusters, which mainly localized to the cell membrane. Ka/Ks analysis revealed that most of the genes underwent purifying selection. Analysis of cis elements suggested the possible involvement of AhCASPs in hormonal and stress responses, including GA, MeJA, IAA, ABA, drought, and low temperature. Moreover, 20 different miRNAs for 37 different AhCASPs genes were identified by the psRNATarget service. Likewise, transcriptional analysis revealed key AhCASPs responding to various stresses, hormonal processing, and tissue types, including 33 genes in low temperature and drought stress and 41 genes in tissue-specific expression. These results provide an important theoretical basis for the functions of AhCASPs in growth, development, and multiple stress resistance in cultivated peanuts.
Collapse
Affiliation(s)
- Yating Su
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jieyun Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Wanli Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
4
|
Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154160. [PMID: 38147808 DOI: 10.1016/j.jplph.2023.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenwen Mao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Qiu YM, Guo J, Jiang WZ, Ding JH, Song RF, Zhang JL, Huang X, Yuan HM. HbBIN2 Functions in Plant Cold Stress Resistance through Modulation of HbICE1 Transcriptional Activity and ROS Homeostasis in Hevea brasiliensis. Int J Mol Sci 2023; 24:15778. [PMID: 37958762 PMCID: PMC10649430 DOI: 10.3390/ijms242115778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Cold stress poses significant limitations on the growth, latex yield, and ecological distribution of rubber trees (Hevea brasiliensis). The GSK3-like kinase plays a significant role in helping plants adapt to different biotic and abiotic stresses. However, the functions of GSK3-like kinase BR-INSENSITIVE 2 (BIN2) in Hevea brasiliensis remain elusive. Here, we identified HbBIN2s of Hevea brasiliensis and deciphered their roles in cold stress resistance. The transcript levels of HbBIN2s are upregulated by cold stress. In addition, HbBIN2s are present in both the nucleus and cytoplasm and have the ability to interact with the INDUCER OF CBF EXPRESSION1(HbICE1) transcription factor, a central component in cold signaling. HbBIN2 overexpression in Arabidopsis displays decreased tolerance to chilling stress with a lower survival rate and proline content but a higher level of electrolyte leakage (EL) and malondialdehyde (MDA) than wild type under cold stress. Meanwhile, HbBIN2 transgenic Arabidopsis treated with cold stress exhibits a significant increase in the accumulation of reactive oxygen species (ROS) and a decrease in the activity of antioxidant enzymes. Further investigation reveals that HbBIN2 inhibits the transcriptional activity of HbICE1, thereby attenuating the expression of C-REPEAT BINDING FACTOR (HbCBF1). Consistent with this, overexpression of HbBIN2 represses the expression of CBF pathway cold-regulated genes under cold stress. In conclusion, our findings indicate that HbBIN2 functions as a suppressor of cold stress resistance by modulating HbICE1 transcriptional activity and ROS homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| |
Collapse
|
6
|
An JP, Liu ZY, Zhang XW, Wang DR, Zeng F, You CX, Han Y. Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. PLANT PHYSIOLOGY 2023; 193:1652-1674. [PMID: 37392474 DOI: 10.1093/plphys/kiad371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhi-Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fanchang Zeng
- College of Agriculture, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
7
|
Lee Y, Hoang NV, Do VG, Foster TM, McGhie TK, Kim S, Yang SJ, Park JH, Park J, Lee JY. Identification of genes associated with the regulation of cold tolerance and the RNA movement in the grafted apple. Sci Rep 2023; 13:11583. [PMID: 37463950 DOI: 10.1038/s41598-023-38571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
In grafted apple, rootstock-derived signals influence scion cold tolerance by initiating physiological changes to survive over the winter. To understand the underlying molecular interactions between scion and rootstock responsive to cold, we developed transcriptomics and metabolomics data in the stems of two scion/rootstock combinations, 'Gala'/'G202' (cold resistant rootstock) and 'Gala'/'M9' (cold susceptible rootstock). Outer layers of scion and rootstock stem, including vascular tissues, were collected from the field-grown grafted apple during the winter. The clustering of differentially expressed genes (DEGs) and gene ontology enrichment indicated distinct expression dynamics in the two graft combinations, which supports the dependency of scion cold tolerance on the rootstock genotypes. We identified 544 potentially mobile mRNAs of DEGs showing highly-correlated seasonal dynamics between scion and rootstock. The mobility of a subset of 544 mRNAs was validated by translocated genome-wide variants and the measurements of selected RNA mobility in tobacco and Arabidopsis. We detected orthologous genes of potentially mobile mRNAs in Arabidopsis thaliana, which belong to cold regulatory networks with RNA mobility. Together, our study provides a comprehensive insight into gene interactions and signal exchange between scion and rootstock responsive to cold. This will serve for future research to enhance cold tolerance of grafted tree crops.
Collapse
Affiliation(s)
- Youngsuk Lee
- School of Biological Sciences, College of National Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, 107, Soboangye-Ro, Gunwi, 39000, South Korea.
| | - Nam V Hoang
- School of Biological Sciences, College of National Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
- Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, 107, Soboangye-Ro, Gunwi, 39000, South Korea
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited, 55 Old Mill Road, Motueka, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | - Seonae Kim
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, 107, Soboangye-Ro, Gunwi, 39000, South Korea
| | - Sang Jin Yang
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, 107, Soboangye-Ro, Gunwi, 39000, South Korea
| | - Ju-Hyeon Park
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, 107, Soboangye-Ro, Gunwi, 39000, South Korea
| | - Jongsung Park
- School of Biological Sciences, College of National Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of National Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Liu M, Shan Q, Ding E, Gu T, Gong B. Karrikin increases tomato cold tolerance via strigolactone and the abscisic acid signaling network. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111720. [PMID: 37120034 DOI: 10.1016/j.plantsci.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
As a class of biostimulants, karrikins (KARs) were first identified from plant-derived smoke to regulate plant growth, development, and stress tolerance. However, the roles of KARs in plant cold tolerance and their crosstalk with strigolactones (SLs) and abscisic acid (ABA) remain elusive. We studied the interaction among KAR, SLs, and ABA in cold acclimatization with KAI2-, MAX1-, SnRK2.5-silenced, or cosilenced plant materials. KAI2 is involved in smoke-water- (SW-) and KAR-mediated cold tolerance. MAX1 acts downstream of KAR in cold acclimation. ABA biosynthesis and sensitivity are regulated by KAR and SLs, which improve cold acclimation through the SnRK2.5 component. The physiological mechanisms of SW and KAR in improving growth, yield, and tolerance under a long-term sublow temperature environment were also studied. SW and KAR were shown to improve tomato growth and yield under sublow temperature conditions by regulating nutritional uptake, leaf temperature control, photosynthetic defense, ROS scavenging, and CBF transcriptional activation. Together, SW, which functions via the KAR-mediated SL and ABA signaling network, has potential application value for increasing cold tolerance in tomato production.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Qing Shan
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Erqiao Ding
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Tingting Gu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Ji'nan 250100, China
| | - Biao Gong
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
9
|
Gusain S, Joshi S, Joshi R. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107646. [PMID: 36958153 DOI: 10.1016/j.plaphy.2023.107646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Cold stress is a crucial environmental factor influencing growth and distribution and possessing yield penalties. To survive in the cold, plants have evolved to use a range of molecular mechanisms. The major regulatory pathway under low-temperature stress involves the conversion of external stimulus into an internal signal that triggers a defence mechanism through a transcriptional cascade to counter stress. Cold-receptive mechanism and cell signalling involve cold-related signalling molecules, sensors, calcium signals, MAPK cascade, and ICE-COR-CBF pathway that modulate signal transduction in plants. Of these, the ICE-CBF-COR signalling is considered to be an important regulator for cold-stress acclimation. ICE stimulates acclimation to cold and plays a pivotal role in regulating CBF-mediated cold-tolerance mechanism. Thus, CBFs regulate COR gene expression by binding to its promoter. Similarly, the C-repeat binding factor-dependent signalling cascade also stimulates osmotic stress-regulatory gene expression. This review elucidates the regulatory mechanism underlying cold stress, i.e., signal molecules, cold receptors, signal-transduction pathways, metabolic regulation under cold stress, and crosstalk of regulatory pathways with other abiotic stresses in plants. The results may pave the way for crop improvement in low-temperature environments.
Collapse
Affiliation(s)
- Suman Gusain
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Shubham Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Guo L, Wang S, Nie Y, Shen Y, Ye X, Wu W. Convergent evolution of AP2/ERF III and IX subfamilies through recurrent polyploidization and tandem duplication during eudicot adaptation to paleoenvironmental changes. PLANT COMMUNICATIONS 2022; 3:100420. [PMID: 35949168 PMCID: PMC9700204 DOI: 10.1016/j.xplc.2022.100420] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 05/10/2023]
Abstract
Whole-genome duplication (WGD or polyploidization) has been suggested as a genetic contributor to angiosperm adaptation to environmental changes. However, many eudicot lineages did not undergo recent WGD (R-WGD) around and/or after the Cretaceous-Paleogene (K-Pg) boundary, times of severe environmental changes; how those plants survived has been largely ignored. Here, we collected 22 plants from major branches of the eudicot phylogeny and classified them into two groups according to the occurrence or absence of R-WGD: 12 R-WGD-containing plants (R-WGD-Y) and 10 R-WGD-lacking plants (R-WGD-N). Subsequently, we identified 496 gene-rich families in R-WGD-Y and revealed that members of the AP2/ERF transcription factor family were convergently over-retained after R-WGDs and showed exceptional cold stimulation. The evolutionary trajectories of the AP2/ERF family were then compared between R-WGD-Y and R-WGD-N to reveal convergent expansions of the AP2/ERF III and IX subfamilies through recurrent independent WGDs and tandem duplications (TDs) after the radiation of the plants. The expansions showed coincident enrichments in- times around and/or after the K-Pg boundary, when global cooling was a major environmental stressor. Consequently, convergent expansions and co-retentions of AP2/ERF III C-repeat binding factor (CBF) duplicates and their regulons in different eudicot lineages contributed to the rewiring of cold-specific regulatory networks. Moreover, promoter analysis of cold-responsive AP2/ERF genes revealed an underlying cis-regulatory code (G-box: CACGTG). We propose a seesaw model of WGDs and TDs in the convergent expansion of AP2/ERF III and IX genes that has contributed to eudicot adaptation during paleoenvironmental changes, and we suggest that TD may be a reciprocal/alternative mechanism for genetic innovation in plants that lack WGD.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
11
|
Li C, Dong S, Beckles DM, Miao H, Sun J, Liu X, Wang W, Zhang S, Gu X. The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2593-2607. [PMID: 35764690 DOI: 10.1007/s00122-022-04097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.
Collapse
Affiliation(s)
- Caixia Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Dav is Davis, CA, 95616, USA
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Tang B, Xie L, Yang H, Li X, Chen Y, Zou X, Liu F, Dai X. Analysis of the Expression and Function of Key Genes in Pepper Under Low-Temperature Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:852511. [PMID: 35599873 PMCID: PMC9116226 DOI: 10.3389/fpls.2022.852511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The mechanism of resistance of plants to cold temperatures is very complicated, and the molecular mechanism and related gene network in pepper are largely unknown. Here, during cold treatment, we used cluster analysis (k-means) to classify all expressed genes into 15 clusters, 3,680 and 2,405 differentially expressed genes (DEGs) were observed in the leaf and root, respectively. The DEGs associated with certain important basic metabolic processes, oxidoreductase activity, and overall membrane compositions were most significantly enriched. In addition, based on the homologous sequence alignment of Arabidopsis genes, we identified 14 positive and negative regulators of the ICE-CBF-COR module in pepper, including CBF and ICE, and compared their levels in different data sets. The correlation matrix constructed based on the expression patterns of whole pepper genes in leaves and roots after exposure to cold stress showed the correlation between 14 ICE-CBF-COR signaling module genes, and provided insight into the relationship between these genes in pepper. These findings not only provide valuable resources for research on cold tolerance, but also lay the foundation for the genetic modification of cold stress regulators, which would help us achieve improved crop tolerance. To our knowledge, this is the first study to demonstrate the relationship between positive and negative regulators related to the ICE-CBF-COR module, which is of great significance to the study of low-temperature adaptive mechanisms in plants.
Collapse
Affiliation(s)
- Bingqian Tang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Lingling Xie
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Huiping Yang
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Xiumin Li
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Ying Chen
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiongze Dai
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
13
|
Paes de Melo B, Carpinetti PDA, Fraga OT, Rodrigues-Silva PL, Fioresi VS, de Camargos LF, Ferreira MFDS. Abiotic Stresses in Plants and Their Markers: A Practice View of Plant Stress Responses and Programmed Cell Death Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1100. [PMID: 35567101 PMCID: PMC9103730 DOI: 10.3390/plants11091100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/12/2023]
Abstract
Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Trait Development Department, LongPing HighTech, Cravinhos 14140-000, SP, Brazil
| | - Paola de Avelar Carpinetti
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | - Otto Teixeira Fraga
- Applied Biochemistry Program, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | | | - Vinícius Sartori Fioresi
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | | | - Marcia Flores da Silva Ferreira
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| |
Collapse
|
14
|
Li M, Duan X, Gao G, Liu T, Qi H. Running title: ABA pathway meets CBF pathway at CmADC. HORTICULTURE RESEARCH 2022; 9:uhac002. [PMID: 35147169 PMCID: PMC9016860 DOI: 10.1093/hr/uhac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/30/2021] [Indexed: 05/11/2023]
Abstract
Low temperatures severely restrict melon-seedling growth. However, the mechanisms by which melon adapts to cold stress are poorly understood. Arginine decarboxylase (ADC), a key synthetase, catalyzes putrescine biosynthesis in plants. In this study, we found that CmADC functions as a positive regulator of melon-seedling cold tolerance. In addition, two transcription factors, abscisic acid-responsive element (ABRE)-binding factor 1 (CmABF1) and C-repeat binding factor 4 (CmCBF4), directly target CmADC to trigger its expression. Consistently, virus-induced gene silencing (VIGS) of CmABF1 or CmCBF4 downregulated CmADC abundance, decreased putrescine accumulation and reduced cold tolerance. Furthermore, some other CBF and ABF members, at least in part, have functional redundancy and complementarity with CmABF1 and CmCBF4. Overall, our work reveals that the ABA, CBF and polyamine pathways may form a regulatory network to co-participate in plant cold stress.
Collapse
Affiliation(s)
- Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, Liaoning, China
- National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, Liaoning, China
| | - Xiaoyu Duan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, Liaoning, China
- National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, Liaoning, China
| | - Ge Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, Liaoning, China
- National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, Liaoning, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, Liaoning, China
- National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, Liaoning, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, Liaoning, China
- National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, Liaoning, China
| |
Collapse
|
15
|
Wang X, Liu WC, Zeng XW, Yan S, Qiu YM, Wang JB, Huang X, Yuan HM. HbSnRK2.6 Functions in ABA-Regulated Cold Stress Response by Promoting HbICE2 Transcriptional Activity in Hevea brasiliensis. Int J Mol Sci 2021; 22:12707. [PMID: 34884520 PMCID: PMC8657574 DOI: 10.3390/ijms222312707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Low temperature remarkably limits rubber tree (Hevea brasiliensis Muell. Arg.) growth, latex production, and geographical distribution, but the underlying mechanisms of Hevea brasiliensis cold stress response remain elusive. Here, we identified HbSnRK2.6 as a key component in ABA signaling functions in phytohormone abscisic acid (ABA)-regulated cold stress response in Hevea brasiliensis. Exogenous application of ABA enhances Hevea brasiliensis cold tolerance. Cold-regulated (COR) genes in the CBF pathway are upregulated by ABA. Transcript levels of all five HbSnRK2.6 members are significantly induced by cold, while HbSnRK2.6A, HbSnRK2.6B, and HbSnRK2.6C can be further activated by ABA under cold conditions. Additionally, HbSnRK2.6s are localized in the cytoplasm and nucleus, and can physically interact with HbICE2, a crucial positive regulator in the cold signaling pathway. Overexpression of HbSnRK2.6A or HbSnRK2.6B in Arabidopsis extensively enhances plant responses to ABA and expression of COR genes, leading to increased cold stress tolerance. Furthermore, HbSnRK2.6A and HbSnRK2.6B can promote transcriptional activity of HbICE2, thus, increasing the expression of HbCBF1. Taken together, we demonstrate that HbSnRK2.6s are involved in ABA-regulated cold stress response in Hevea brasiliensis by regulating transcriptional activity of HbICE2.
Collapse
Affiliation(s)
- Xue Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Xue-Wei Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Sa Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Yi-Min Qiu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Jin-Bo Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| |
Collapse
|
16
|
Ritonga FN, Ngatia JN, Wang Y, Khoso MA, Farooq U, Chen S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1953-1968. [PMID: 34616115 PMCID: PMC8484489 DOI: 10.1007/s12298-021-01061-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 05/07/2023]
Abstract
Increasing the vulnerability of plants especially crops to a wide range of cold stress reduces plant growth, development, yield production, and plant distribution. Cold stress induces physiological, morphological, biochemical, phenotypic, and molecular changes in plants. Transcription factor (TF) is one of the most important regulators that mediate gene expression. TF is activated by the signal transduction pathway, together with cis-acting element modulate the transcription of cold-responsive genes which contribute to increasing cold tolerance in plants. Here, AP2/ERF TF family is one of the most important cold stress-related TF families that along with other TF families, such as WRKY, bHLH, bZIP, MYB, NAC, and C2H2 interrelate to enhance cold stress tolerance. Over the past decade, significant progress has been found to solve the role of transcription factors (TFs) in improving cold tolerance in plants, such as omics analysis. Furthermore, numerous studies have identified and characterized the complexity of cold stress mechanisms among TFs or between TFs and other factors (endogenous and exogenous) including phytohormones, eugenol, and light. The role, function, and relationship among these TFs or between TFs and other factors to enhance cold tolerance still need to be clarified. Here, the current study analysed the role of AP2/ERF TF and the linkages among AP2/ERF with MYB, WRKY, bZIP, bHLH, C2H2, or NAC against cold stress tolerance.
Collapse
Affiliation(s)
| | - Jacob Njaramba Ngatia
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040 China
| | - Yiran Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China
| | - Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Umar Farooq
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
17
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
18
|
Praat M, De Smet I, van Zanten M. Protein kinase and phosphatase control of plant temperature responses. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab345. [PMID: 34283227 DOI: 10.1093/jxb/erab345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. Suboptimal high and low temperatures, and stressful extreme temperatures, induce adaptive mechanisms that allow optimal performance and survival, respectively. These processes have been extensively studied at the physiological, transcriptional and (epi)genetic level. Cellular temperature signalling cascades and tolerance mechanisms also involve post-translational modifications (PTMs), particularly protein phosphorylation. Many protein kinases are known to be involved in cold acclimation and heat stress responsiveness but research on the role and importance of kinases and phosphatases in triggering responses to mild changes in temperature such as thermomorphogenesis is inadequately understood. In this review, we summarize the current knowledge on the roles of kinases and phosphatases in plant temperature responses. We discuss how kinases can function over a range of temperatures in different signalling pathways and provide an outlook to the application of PTM-modifying factors for the development of thermotolerant crops.
Collapse
Affiliation(s)
- Myrthe Praat
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| |
Collapse
|
19
|
Lee ES, Park JH, Wi SD, Kang CH, Chi YH, Chae HB, Paeng SK, Ji MG, Kim WY, Kim MG, Yun DJ, Stacey G, Lee SY. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants. NATURE PLANTS 2021; 7:914-922. [PMID: 34155371 DOI: 10.1038/s41477-021-00944-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
The activities of cold-responsive C-repeat-binding transcription factors (CBFs) are tightly controlled as they not only induce cold tolerance but also regulate normal plant growth under temperate conditions1-4. Thioredoxin h2 (Trx-h2)-a cytosolic redox protein identified as an interacting partner of CBF1-is normally anchored to cytoplasmic endomembranes through myristoylation at the second glycine residue5,6. However, after exposure to cold conditions, the demyristoylated Trx-h2 is translocated to the nucleus, where it reduces the oxidized (inactive) CBF oligomers and monomers. The reduced (active) monomers activate cold-regulated gene expression. Thus, in contrast to the Arabidopsis trx-h2 (AT5G39950) null mutant, Trx-h2 overexpression lines are highly cold tolerant. Our findings reveal the mechanism by which cold-mediated redox changes induce the structural switching and functional activation of CBFs, therefore conferring plant cold tolerance.
Collapse
Affiliation(s)
- Eun Seon Lee
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Yong Hun Chi
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Min Gab Kim
- College of Pharmacy, Gyeongsang National University, Jinju, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, Korea
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
20
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
21
|
Baison J, Zhou L, Forsberg N, Mörling T, Grahn T, Olsson L, Karlsson B, Wu HX, Mellerowicz EJ, Lundqvist SO, García-Gil MR. Genetic control of tracheid properties in Norway spruce wood. Sci Rep 2020; 10:18089. [PMID: 33093525 PMCID: PMC7581746 DOI: 10.1038/s41598-020-72586-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/03/2020] [Indexed: 01/20/2023] Open
Abstract
Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce.
Collapse
Affiliation(s)
- J Baison
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Linghua Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Nils Forsberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Tommy Mörling
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Thomas Grahn
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Lars Olsson
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Bo Karlsson
- Skogforsk, Ekebo 2250, 268 90, Svalov, Sweden
| | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Sven-Olof Lundqvist
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
- IIC, Rosenlundsgatan 48B, 11863, Stockholm, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden.
| |
Collapse
|
22
|
Peng YL, Wang YS, Fei J, Sun CC. Isolation and expression analysis of two novel C-repeat binding factor (CBF) genes involved in plant growth and abiotic stress response in mangrove Kandelia obovata. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:718-725. [PMID: 32394360 DOI: 10.1007/s10646-020-02219-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
Kandelia obovata is one of the cold tolerant mangrove plants along the China coast. To reveal the cold tolerant mechanism of K. obovata, the present work isolated two CBF/DREB1 genes (designated KoCBF1 and KoCBF3) from cold-stressed K. obovata and characterized their expression profiles in various organs and in response to multiple abiotic stresses. The deduced proteins of KoCBF1 and 3 all contain specific features of CBFs, and show high similarity to AmCBF1 and 3 from Avicennia marina, respectively. Different expression patterns of the two CBF orthologous under various abiotic stresses and exogenous hormone suggested that they may have different regulators and be involved in different regulatory pathway. The high basal and cold induced expression of the two genes indicated that they may all play important roles in growth and cold resistance of plants. The significant induction of KoCBF3 after salt and lead (Pb2+) treatments suggested that this CBF gene may also participate in response to salinity and heavy metal stresses. This study will provide a better understanding of CBF-regulated stress-resistant mechanism, which may be benefit in mangrove biotechnological breeding, high-latitude transplanting, and bioremediation of heavy metal pollutions.
Collapse
Affiliation(s)
- Ya-Lan Peng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
23
|
Ritonga FN, Chen S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E560. [PMID: 32353940 PMCID: PMC7284489 DOI: 10.3390/plants9050560] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Previous studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold stress has been carried out. In molecular terms, researchers prioritize research into the field of the ICE-CBF-COR signaling pathway which is believed to be the important key to the cold acclimation process. Inducer of CBF Expression (ICE) is a pioneer of cold acclimation and plays a central role in C-repeat binding (CBF) cold induction. CBFs activate the expression of COR genes via binding to cis-elements in the promoter of COR genes. An ICE-CBF-COR signaling pathway activates the appropriate expression of downstream genes, which encodes osmoregulation substances. In this review, we summarize the recent progress of cold stress tolerance in plants from molecular and physiological perspectives and other factors, such as hormones, light, and circadian clock. Understanding the process of cold stress tolerance and the genes involved in the signaling network for cold stress is essential for improving plants, especially crops.
Collapse
Affiliation(s)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
24
|
Acuña-Rodríguez IS, Newsham KK, Gundel PE, Torres-Díaz C, Molina-Montenegro MA. Functional roles of microbial symbionts in plant cold tolerance. Ecol Lett 2020; 23:1034-1048. [PMID: 32281227 DOI: 10.1111/ele.13502] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
In this review, we examine the functional roles of microbial symbionts in plant tolerance to cold and freezing stresses. The impacts of symbionts on antioxidant activity, hormonal signaling and host osmotic balance are described, including the effects of the bacterial endosymbionts Burkholderia, Pseudomonas and Azospirillum on photosynthesis and the accumulation of carbohydrates such as trehalose and raffinose that improve cell osmotic regulation and plasma membrane integrity. The influence of root fungal endophytes and arbuscular mycorrhizal fungi on plant physiology at low temperatures, for example their effects on nutrient acquisition and the accumulation of indole-3-acetic acid and antioxidants in tissues, are also reviewed. Meta-analyses are presented showing that aspects of plant performance (shoot biomass, relative water content, sugar and proline concentrations and Fv /Fm ) are enhanced in symbiotic plants at low (-1 to 15 °C), but not at high (20-26 °C), temperatures. We discuss the implications of microbial symbionts for plant performance at low and sub-zero temperatures in the natural environment and propose future directions for research into the effects of symbionts on the cold and freezing tolerances of plants, concluding that further studies should routinely incorporate symbiotic microbes in their experimental designs.
Collapse
Affiliation(s)
- Ian S Acuña-Rodríguez
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | | | - Pedro E Gundel
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Marco A Molina-Montenegro
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Campus San Miguel, Talca, Chile
| |
Collapse
|
25
|
Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y. Genome-Wide Characterization of the C-repeat Binding Factor (CBF) Gene Family Involved in the Response to Abiotic Stresses in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2020; 11:921. [PMID: 32849669 PMCID: PMC7396485 DOI: 10.3389/fpls.2020.00921] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 05/18/2023]
Abstract
C-repeat (CRT)/dehydration responsive element (DRE)-binding factor CBFs, a small family of genes encoding transcriptional activators, play important roles in plant cold tolerance. In this study, a comprehensive genome-wide analysis was carried out to identify and characterize the functional dynamics of CsCBFs in tea plant (Camellia sinensis). A total of 6 CBF genes were obtained from the tea plant genome and named CBF1-6. All of the CsCBFs had an AP2/ERF DNA-binding domain and nuclear localization signal (NLS) sequence. CsCBF-eGFP fusion and DAPI staining analysis confirmed the nuclear localization of the CsCBFs. Transactivation assays showed that the CsCBFs, except CsCBF1, had transcriptional activity. CsCBF expression was differentially induced by cold, heat, PEG, salinity, ABA, GA, MeJA, and SA stresses. In particular, the CsCBF genes were significantly induced by cold treatments. To further characterize the functions of CsCBF genes, we overexpressed the CsCBF3 gene in Arabidopsis thaliana plants. The resulting transgenic plants showed increased cold tolerance compared with the wild-type Arabidopsis plant. The enhanced cold tolerance of the transgenic plants was potentially achieved through an ABA-independent pathway. This study will help to increase our understanding of CsCBF genes and their contributions to stress tolerance in tea plants.
Collapse
|
26
|
Dong S, Wang W, Bo K, Miao H, Song Z, Wei S, Zhang S, Gu X. Quantitative Trait Loci Mapping and Candidate Gene Analysis of Low Temperature Tolerance in Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:1620. [PMID: 31921263 PMCID: PMC6917663 DOI: 10.3389/fpls.2019.01620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/18/2019] [Indexed: 05/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop worldwide, but it is sensitive to low temperatures. Cucumber seedlings exposed to long-term low temperature stress (LT), i.e., below 20°C during the day, and 8°C at night, exhibit leaf yellowing, accelerated senescence, and reduced yield, therefore posing a threat to cucumber production. Studying the underlying mechanisms involved in LT tolerance in cucumber seedlings, and developing germplasm with improved LT-tolerance could provide fundamental solutions to the problem. In this study, an F2 population was generated from two parental lines, "CG104" (LT-tolerant inbred line) and "CG37" (LT-sensitive inbred line), to identify loci that are responsible for LT tolerance in cucumber seedlings. Replicated phenotypic analysis of the F2-derived F3 family using a low-temperature injury index (LTII) suggested that the LT tolerance of cucumber seedlings is controlled by multiple genes. A genetic map of 990.8 cM was constructed, with an average interval between markers of 5.2 cM. One quantitative trait loci (QTL) named qLTT5.1 on chromosome 5, and two QTLs named qLTT6.1 and qLTT6.2 on chromosome 6 were detected. Among them, qLTT6.2 accounted for 26.8 and 24.1% of the phenotypic variation in two different experiments. Single-nucleotide polymorphism (SNP) variations within the region of qLTT6.2 were analyzed using two contrasting in silico bulks generated from the cucumber core germplasm. Result showed that 214 SNPs were distributed within the 42-kb interval, containing three candidate genes. Real-time quantitative reverse transcription PCR and sequence analysis suggested that two genes Csa6G445210, an auxin response factor, and Csa6G445230, an ethylene-responsive transmembrane protein, might be candidate genes responsible for LT tolerance in cucumber seedlings. This study furthers the understanding of the molecular mechanism underlying LT tolerance in cucumber seedlings, and provides new markers for molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingfang Gu
- *Correspondence: Xingfang Gu, ; Shengping Zhang,
| |
Collapse
|
27
|
Identification of CBF Transcription Factors in Tea Plants and a Survey of Potential CBF Target Genes under Low Temperature. Int J Mol Sci 2019; 20:ijms20205137. [PMID: 31627263 PMCID: PMC6829267 DOI: 10.3390/ijms20205137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/05/2022] Open
Abstract
C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.
Collapse
|
28
|
Aslam M, Fakher B, Anandhan S, Pande V, Ahmed Z, Qin Y. Ectopic Expression of Cold Responsive LlaCIPK Gene Enhances Cold Stress Tolerance in Nicotiana tabacum. Genes (Basel) 2019; 10:E446. [PMID: 31212842 PMCID: PMC6627969 DOI: 10.3390/genes10060446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022] Open
Abstract
Low-temperature stress severely affects the growth, development, and geographical distribution of various crop plants, resulting in significant economic loss to producers. In a quest to identify cold-regulated genes, we constructed a cDNA suppression subtractive library from a high altitude adapted ecotype of Lepidium. We cloned a cold-induced gene LlaCIPK from the subtracted cDNA library which gave homology to Arabidopsis CIPK15 gene. The predicted 3D structure of LlaCIPK protein also showed homology with Arabidopsis CIPK protein. Quantitative real-time PCR analysis in Lepidium seedlings exposed to 6 h of cold stress shows a 3-fold increase in the expression of LlaCIPK transcript. The expression of LlaCIPK was also differentially regulated by ethylene, CaCl2, ABA, and SA treatments. Ethylene and CaCl2 treatments up regulated LlaCIPK expression, whereas ABA and SA treatments down regulated the LlaCIPK expression. Transgenic plants overexpressing LlaCIPK gene under constitutive promoter show an increased level of proline and cell membrane stability. Taken together, our results suggest that the LlaCIPK contributes to the cold-response pathway in Lepidium plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Beenish Fakher
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | | | - Veena Pande
- Department of Biotechnology, Kumaon University Bhimtal Campus, Bhimtal 263136, India.
| | - Zakwan Ahmed
- Defence Institute of Bio-Energy Research, Goraparao, Haldwani 263139, India.
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
29
|
Liu B, Mo WJ, Zhang D, De Storme N, Geelen D. Cold Influences Male Reproductive Development in Plants: A Hazard to Fertility, but a Window for Evolution. PLANT & CELL PHYSIOLOGY 2019; 60:7-18. [PMID: 30602022 DOI: 10.1093/pcp/pcy209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 05/16/2023]
Abstract
Being sessile organisms, plants suffer from various abiotic stresses including low temperature. In particular, male reproductive development of plants is extremely sensitive to cold which may dramatically reduce viable pollen shed and plant fertility. Cold stress disrupts stamen development and prominently interferes with the tapetum, with the stress-responsive hormones ABA and gibberellic acid being greatly involved. In particular, low temperature stress delays and/or inhibits programmed cell death of the tapetal cells which consequently damages pollen development and causes male sterility. On the other hand, studies in Arabidopsis and crops have revealed that ectopically decreased temperature has an impact on recombination and cytokinesis during meiotic cell division, implying a putative role for temperature in manipulating plant genomic diversity and architecture during the evolution of plants. Here, we review the current understanding of the physiological impact of cold stress on the main male reproductive development processes including tapetum development, male meiosis and gametogenesis. Moreover, we provide insights into the genetic factors and signaling pathways that are involved, with putative mechanisms being discussed.
Collapse
Affiliation(s)
- Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Wen-Juan Mo
- Experiment Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nico De Storme
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
30
|
Wisniewski M, Nassuth A, Arora R. Cold Hardiness in Trees: A Mini-Review. FRONTIERS IN PLANT SCIENCE 2018; 9:1394. [PMID: 30294340 PMCID: PMC6158558 DOI: 10.3389/fpls.2018.01394] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/03/2018] [Indexed: 05/26/2023]
Abstract
Significant advances have been made in our understanding of the regulation of cold hardiness. The existence of numerous biophysical and biochemical adaptive mechanisms in perennial woody plants and the complexity their regulation has made the development of methods for managing and improving cold hardiness in perennial woody plants has been very difficult. This may be partially attributed to viewing cold hardiness as a single dimensional response, rather than as a complex phenomenon, involving different mechanisms (avoidance and tolerance), different stages (mid-winter vs. late winter), and having an intimate overlap with the genetic regulation of dormancy. In particular separating the molecular regulation of cold hardiness from growth processes has been challenging. ICE and C-repeat binding factor (CBF), transcription factors (Inducer of CBF expression and CRT-binding factor) have been shown to be an important aspect in the regulation of cold-induced gene expression. Evidence has emerged, however, that they are also intimately involved in the regulation of growth, flowering, dormancy, and stomatal development. This evidence includes the presence of CBF binding motifs in genes regulating these processes, or through cross-talk between the pathways that regulate them. Recent changes in climate that have resulted in erratic episodes of unseasonal warming followed by more seasonal patterns of low temperatures has also highlighted the need to better understand the genetic and molecular regulation of deacclimation, a topic of research that is only more recently being addressed. Environmentally-induced epigenetic regulation of stress responses and seasonal processes such as cold acclimation, deacclimation, and dormancy have been documented but are still poorly understood. Advances in the ability to efficiently generate large DNA and RNA datasets and genetic transformation technologies have greatly increased our ability to explore the regulation of gene expression and explore genetic diversity. Greater knowledge of the interplay between epigenetic and genetic regulation of cold hardiness, along with the application of advanced genetic analyses, such as genome-wide-association-studies (GWAS), are needed to develop strategies for addressing the complex processes associated with cold hardiness in woody plants. A cautionary note is also indicated regarding the time-scale needed to examine and interpret plant response to freezing temperatures if progress is to be made in developing effective approaches for manipulating and improving cold hardiness.
Collapse
Affiliation(s)
- Michael Wisniewski
- United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Annette Nassuth
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, ON, Canada
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, United States
| |
Collapse
|
31
|
Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L. Reduction of Tomato-Plant Chilling Tolerance by CRISPR-Cas9-Mediated SlCBF1 Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9042-9051. [PMID: 30096237 DOI: 10.1021/acs.jafc.8b02177] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chilling stress is the main constraint in tomato ( Solanum lycopersicum) production, as this is a chilling-sensitive horticultural crop. The highly conserved C-repeat binding factors (CBFs) are cold-response-system components found in many species. In this study, we generated slcbf1 mutants using the CRISPR-Cas9 system and investigated the role of SlCBF1 in tomato-plant chilling tolerances. The slcbf1 mutants exhibited more severe chilling-injury symptoms with higher electrolyte leakage and malondialdehyde levels than wild-type (WT) plants. Additionally, slcbf1 mutants showed lower proline and protein contents and higher hydrogen peroxide contents and activities of antioxidant enzymes than WT plants. Knockout of SlCBF1 significantly increased indole acetic acid contents but decreased methyl jasmonate, abscisic acid, and zeatin riboside contents. The reduced chilling tolerance of the slcbf1 mutants was further reflected by the down-regulation of CBF-related genes. These results contribute to a better understanding of the molecular basis underlying SlCBF1 mediation of tomato chilling sensitivity.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Lixing Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Liu Wang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Lin Chen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development , Renmin University of China , Beijing 100872 , China
| | - Lin Shen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
32
|
Zhao K, Zhou Y, Li Y, Zhuo X, Ahmad S, Han Y, Yong X, Zhang Q. Crosstalk of PmCBFs and PmDAMs Based on the Changes of Phytohormones under Seasonal Cold Stress in the Stem of Prunus mume. Int J Mol Sci 2018; 19:ijms19020015. [PMID: 29360732 PMCID: PMC5855539 DOI: 10.3390/ijms19020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Plants facing the seasonal variations always need a growth restraining mechanism when temperatures turn down. C-repeat binding factor (CBF) genes work essentially in the cold perception. Despite lots of researches on CBFs, the multiple crosstalk is still interesting on their interaction with hormones and dormancy-associated MADS (DAM) genes in the growth and dormancy control. Therefore, this study highlights roles of PmCBFs in cold-induced dormancy from different orgens. And a sense-response relationship between PmCBFs and PmDAMs is exhibited in this process, jointly regulated by six PmCBFs and PmDAM4-6. Meantime, GA3 and ABA showed negative and positive correlation with PmCBFs expression levels, respectively. We also find a high correlation between IAA and PmDAM1-3. Finally, we display the interaction mode of PmCBFs and PmDAMs, especially PmCBF1-PmDAM1. These results can disclose another view of molecular mechanism in plant growth between cold-response pathway and dormancy regulation together with genes and hormones.
Collapse
Affiliation(s)
- Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yuzhen Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yushu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China.
| |
Collapse
|
33
|
Abstract
Plants in temperate climates utilize cold acclimation modes to improve frost tolerance during phases of active growth. Two papers in this issue of Developmental Cell (Li et al., 2017; Zhao et al., 2017) now highlight the important role MAP kinases play in this process in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Veronica E Ramirez
- Biotechnology of Horticultural Crops, School for Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, School for Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany.
| |
Collapse
|
34
|
Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:3-22. [PMID: 30288701 DOI: 10.1007/978-981-13-1244-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.
Collapse
|