1
|
Liu J, Wang Y, Zhang L, Xia Y, Bai K, Gao H. Plant Rho GTPase ROP6 Is Essential for Manganese Homeostasis in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:1259-1272. [PMID: 39440658 DOI: 10.1111/pce.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Manganese (Mn) is an indispensable mineral for plant growth and development. However, plants cultivated in acidic and poorly drained soils are vulnerable to Mn2+ toxicity due to its heightened increased bioavailability. Despite the crucial roles of the Rho of plant (ROP) GTPases in various cellular processes, their precise function in regulating Mn homeostasis remains elusive. In this study, we unveil a novel ROP6 GTPase signalling pathway that profoundly influences Mn phytotoxicity tolerance in Arabidopsis. Remarkably, the rop6 and dominant-negative ROP6 (rop6DN) mutant plants displayed a dramatically sensitive phenotype to Mn toxicity, whereas ROP6-overexpression and constitutively activated ROP6 (rop6CA) lines exhibited enhanced Mn stress tolerance. Immunoblot analysis corroborated that the ROP6 protein, especially the active form of ROP6, increased in abundance in the presence of high Mn levels. Further, we identified that ROP6 physically interacted and colocalized with Metal Tolerance Protein 8 (MTP8) in vivo. Mn transport complementation assays in yeast, combined with biochemical analyses, emphasized the essentiality of ROP6 for MTP8's transport activity. In addition, genetic analyses indicated that ROP6 acted upstream of MTP8 in the regulatory cascade. Collectively, our findings elucidate that ROP6 GTPase signalling positively modulates and enhances Mn stress tolerance in plants.
Collapse
Affiliation(s)
- Jiaming Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yingge Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linyue Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yilin Xia
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kaibo Bai
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Huiling Gao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Li Y, Zhu S. Polar localization and local translation of RHO-RELATED PROTEIN FROM PLANTS2 mRNAs promote root hair growth in Arabidopsis. THE PLANT CELL 2024; 37:koae333. [PMID: 39692591 DOI: 10.1093/plcell/koae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
Root hairs are tip-growing cells that anchor plants in the soil and are critical for water uptake, nutrient acquisition, and plant-environment interactions. While the molecular mechanisms that maintain the polar growth of root hairs through the asymmetric distribution of proteins, such as RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2), have been described, it is unclear whether and how the transcripts encoding these tip-localized proteins are polarly localized and locally translated. Here, we demonstrated that ROP2 mRNA exhibits polar localization in Arabidopsis (Arabidopsis thaliana) root hairs. We showed that region VI (250-350 bp downstream of the stop codon) of the ROP2 3' untranslated region (UTR) is necessary for proper mRNA localization. Moreover, region VI-mediated ROP2 mRNA polar localization was required for local translation of ROP2 transcripts, contributing to the proper subcellular localization of ROP2. Region III (100-200 bp downstream of the stop codon) influenced the local translation of ROP2 mRNA. Phenotypic investigations demonstrated that both regions III and VI of the ROP2 3' UTR play crucial roles in modulating root hair growth. These findings help explain the local protein biosynthesis of ROP2, advancing our understanding of the regulatory mechanism and genetic basis of mRNA localization and local translation in plants.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| |
Collapse
|
3
|
Gao L, Pei Y, Wang P, Cen Y, Yan X, Hou Y. Cotton SNARE complex component GhSYP121 regulates salicylic acid signaling during defense against Verticillium dahliae. J Cell Physiol 2024; 239:e31329. [PMID: 38801215 DOI: 10.1002/jcp.31329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Syntaxin of plant (SYP) plays a crucial role in SNARE-mediated membrane trafficking during endocytic and secretory pathways, contributing to the regulation and execution of plant immunity against pathogens. Verticillium wilt is among the most destructive fungal diseases affecting cotton worldwide. However, information regarding SYP family genes in cotton is scarce. Through genome-wide identification and transcriptome profiling, we identified GhSYP121, a Qa SNARE gene in Gossypium hirsutum. GhSYP121 is notably induced by Verticillium dahliae, the causal agent of Verticillium wilt in cotton, and acts as a negative regulator of defense against V. dahliae. This is evidenced by the reduced resistance of GhSYP121-deficient cotton and the increased susceptibility of GhSYP121-overexpressing lines. Furthermore, the activation of the salicylic acid (SA) pathway by V. dahliae is inversely correlated with the expression level of GhSYP121. GhSYP121 interacts with its cognate SNARE component, GhSNAP33, which is required for the penetration resistance against V. dahliae in cotton. Collectively, GhSYP121, as a member of the cotton SNARE complex, is involved in regulating the SA pathway during plant defense against V. dahliae. This finding enhances our understanding of the potential role of GhSYP121 in these distinct pathways that contribute to plant defense against V. dahliae infection.
Collapse
Affiliation(s)
- Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Yuhan Cen
- College of Science, China Agricultural University, Beijing, China
| | - Xin Yan
- College of Science, China Agricultural University, Beijing, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
5
|
Cermesoni C, Grefen C, Ricardi MM. Where R-SNAREs like to roam - the vesicle-associated membrane proteins VAMP721 & VAMP722 in trafficking hotspots. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102571. [PMID: 38896926 DOI: 10.1016/j.pbi.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Martiniano M Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany.
| |
Collapse
|
6
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Ding X, Wang S, Cui X, Zhong H, Zou H, Zhao P, Guo Z, Chen H, Li C, Zhu L, Li J, Fu Y. LKS4-mediated SYP121 phosphorylation participates in light-induced stomatal opening in Arabidopsis. Curr Biol 2024; 34:3102-3115.e6. [PMID: 38944035 DOI: 10.1016/j.cub.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/29/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024]
Abstract
By modulating stomatal opening and closure, plants control gas exchange, water loss, and photosynthesis in response to various environmental signals. During light-induced stomatal opening, the transport of ions and solutes across the plasma membrane (PM) of the surrounding guard cells results in an increase in turgor pressure, leading to cell swelling. Simultaneously, vesicles for exocytosis are delivered via membrane trafficking to compensate for the enlarged cell surface area and maintain an appropriate ion-channel density in the PM. In eukaryotic cells, soluble N-ethylmaleimide-sensitive factor adaptor protein receptors (SNAREs) mediate membrane fusion between vesicles and target compartments by pairing the cognate glutamine (Q)- and arginine (R)-SNAREs to form a core SNARE complex. Syntaxin of plants 121 (SYP121) is a known Q-SNARE involved in stomatal movement, which not only facilitates the recycling of K+ channels to the PM but also binds to the channels to regulate their activity. In this study, we found that the expression of a receptor-like cytoplasmic kinase, low-K+ sensitive 4/schengen 1 (LKS4/SGN1), was induced by light; it directly interacted with SYP121 and phosphorylated T270 within the SNARE motif. Further investigation revealed that LKS4-dependent phosphorylation of SYP121 facilitated the interaction between SYP121 and R-SNARE vesicle-associated membrane protein 722 (VAMP722), promoting the assembly of the SNARE complex. Our findings demonstrate that the phosphorylation of SNARE proteins is an important strategy adopted by plants to regulate the SNARE complex assembly as well as membrane fusion. Additionally, we discovered the function of LKS4/SGN1 in light-induced stomatal opening via the phosphorylation of SYP121.
Collapse
Affiliation(s)
- Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongyu Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zonglin Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haoyang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Hu D, Cui R, Wang K, Yang Y, Wang R, Zhu H, He M, Fan Y, Wang L, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lü H, Zhang D, Wang J, Kong F, Yu D, Zhang H, Zhang D. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean. THE PLANT CELL 2024; 36:2176-2200. [PMID: 38345432 PMCID: PMC11132883 DOI: 10.1093/plcell/koae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.
Collapse
Affiliation(s)
- Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengshi He
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Le Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shanshan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiyan Lü
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Zhang
- State Key Laboratory of Agricultural Microbiology, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshe Wang
- Zhengzhou National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengyou Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Liu X, Zhu D, Zhao F, Gao Y, Li J, Li Y. VAMP726 and VAMP725 regulate vesicle secretion and pollen tube growth in Arabidopsis. PLANT CELL REPORTS 2023; 42:1951-1965. [PMID: 37805949 DOI: 10.1007/s00299-023-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex. Secretory vesicle fusion with the plasma membrane of the pollen tube tip is a key step in pollen tube growth. Membrane fusion was mediated by SNAREs. However, little is known about the composition and function of the SNARE complex during pollen tube tip growth. In this study, we constructed a double mutant vamp725 vamp726 via CRISPR‒Cas9. Fluorescence labeling combined with microscopic observation, luciferase complementation imaging, co-immunoprecipitation and GST pull-down were applied in the study. We show that double mutation of the R-SNAREs VAMP726 and VAMP725 significantly inhibits pollen tube growth in Arabidopsis and slows vesicle exocytosis at the apex of the pollen tube. GFP-VAMP726 and VAMP725-GFP localize mainly to secretory vesicles and the plasma membrane at the apex of the pollen tube. In addition, fluorescence recovery after photobleaching (FRAP) experiments showed that mCherry-VAMP726 colocalizes with Qa-SNARE SYP131 in the central region of the pollen tube apical plasma membrane. Furthermore, we found that VAMP726 and VAMP725 can interact with the SYP131. Based on these results, we suggest that VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex, and vesicle secretion may mainly occur at the central region of the pollen tube apical plasma membrane.
Collapse
Affiliation(s)
- Xinyan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dandan Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuli Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yadan Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianji Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Hirano T, Ebine K, Ueda T, Higaki T, Watanabe-Nakayama T, Konno H, Takigawa-Imamura H, Sato MH. The SYP123-VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. THE PLANT CELL 2023; 35:4347-4365. [PMID: 37713604 PMCID: PMC10689195 DOI: 10.1093/plcell/koad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
11
|
Ruan J, Lai L, Ou H, Yi P. Two subtypes of GTPase-activating proteins coordinate tip growth and cell size regulation in Physcomitrium patens. Nat Commun 2023; 14:7084. [PMID: 37925570 PMCID: PMC10625565 DOI: 10.1038/s41467-023-42879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The establishment of cell polarity is a prerequisite for many developmental processes. However, how it is achieved during tip growth in plants remains elusive. Here, we show that the RHO OF PLANTs (ROPs), ROP GUANINE NUCLEOTIDE EXCHANGE FACTORs (RopGEFs), and ROP GTPASE-ACTIVATING PROTEINs (RopGAPs) assemble into membrane domains in tip-growing cells of the moss Physcomitrium patens. The confinement of membrane domains requires redundant global inactivation of ROPs by PpRopGAPs and the PLECKSTRIN HOMOLOGY (PH) domain-containing RenGAP PpREN. Unexpectedly, PpRopGAPs and PpREN exert opposing effects on domain size and cell width upon overexpression. Biochemical and functional analyses indicate that PpRopGAPs are recruited to the membrane by active ROPs to restrict domain size through clustering, whereas PpREN rapidly inactivates ROPs and inhibits PpRopGAP-induced clustering. We propose that the activity- and clustering-based domain organization by RopGAPs and RenGAPs is a general mechanism for coordinating polarized cell growth and cell size regulation in plants.
Collapse
Affiliation(s)
- Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China
| | - Linyu Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China
| | - Hongxin Ou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
12
|
Müller S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. PLANT PHYSIOLOGY 2023; 193:26-41. [PMID: 37070572 DOI: 10.1093/plphys/kiad229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The unequal (asymmetric) distribution of cell structures and proteins within a cell is designated as cell polarity. Cell polarity is a crucial prerequisite for morphogenetic processes such as oriented cell division and directed cell expansion. Rho-related GTPase from plants (ROPs) are required for cellular morphogenesis through the reorganization of the cytoskeleton and vesicle transport in various tissues. Here, I review recent advances in ROP-dependent tip growth, vesicle transport, and tip architecture. I report on the regulatory mechanisms of ROP upstream regulators found in different cell types. It appears that these regulators assemble in nanodomains with specific lipid compositions and recruit ROPs for activation in a stimulus-dependent manner. Current models link mechanosensing/mechanotransduction to ROP polarity signaling involved in feedback mechanisms via the cytoskeleton. Finally, I discuss ROP signaling components that are upregulated by tissue-specific transcription factors and exhibit specific localization patterns during cell division, clearly suggesting ROP signaling in division plane alignment.
Collapse
Affiliation(s)
- Sabine Müller
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Xiang X, Zhang S, Li E, Shi XL, Zhi JY, Liang X, Yin GM, Qin Z, Li S, Zhang Y. RHO OF PLANT proteins are essential for pollen germination in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:140-155. [PMID: 36974907 DOI: 10.1093/plphys/kiad196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Pollen germination is a process of polarity establishment, through which a single and unique growth axis is established. Although most of the intracellular activities associated with pollen germination are controlled by RHO OF PLANTs (ROPs) and increased ROP activation accompanies pollen germination, a critical role of ROPs in this process has not yet been demonstrated. Here, by genomic editing of all 4 Arabidopsis (Arabidopsis thaliana) ROPs that are preferentially expressed in pollen, we showed that ROPs are essential for polarity establishment during pollen germination. We further identified and characterized 2 ROP effectors in pollen germination (REGs) through genome-wide interactor screening, boundary of ROP domain (BDR) members BDR8 and BDR9, whose functional loss also resulted in no pollen germination. BDR8 and BDR9 were distributed in the cytosol and the vegetative nucleus of mature pollen grains but redistributed to the plasma membrane (PM) of the germination site and to the apical PM of growing pollen tubes. We demonstrated that the PM redistribution of BDR8 and BDR9 during pollen germination relies on ROPs but not vice versa. Furthermore, enhanced expression of BDR8 partially restored germination of rop1 pollen but had no effects on that of the quadruple rop pollen, supporting their genetic epistasis. Results presented here demonstrate an ROP signaling route essential for pollen germination, which supports evolutionarily conserved roles of Rho GTPases in polarity establishment.
Collapse
Affiliation(s)
- Xiaojiao Xiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xue-Lian Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Yu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Gui-Min Yin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| |
Collapse
|
14
|
Schaefer K, Cairo Baza A, Huang T, Cioffi T, Elliott A, Shaw SL. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells. PLANT PHYSIOLOGY 2023; 192:2687-2702. [PMID: 37096683 DOI: 10.1093/plphys/kiad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Light, temperature, water, and nutrient availability influence how plants grow to maximize access to resources. Axial growth, the linear extension of tissues by coordinated axial cell expansion, plays a central role in these adaptive morphological responses. Using Arabidopsis (Arabidopsis thaliana) hypocotyl cells to explore axial growth control mechanisms, we investigated WAVE-DAMPENED2-LIKE4 (WDL4), an auxin-induced, microtubule-associated protein and member of the larger WDL gene family shown to modulate hypocotyl growth under changing environmental conditions. Loss-of-function wdl4 seedlings exhibited a hyper-elongation phenotype under light conditions, continuing to elongate when wild-type Col-0 hypocotyls arrested and reaching 150% to 200% of wild-type length before shoot emergence. wdl4 seedling hypocotyls showed dramatic hyper-elongation (500%) in response to temperature elevation, indicating an important role in morphological adaptation to environmental cues. WDL4 was associated with microtubules under both light and dark growth conditions, and no evidence was found for altered microtubule array patterning in loss-of-function wdl4 mutants under various conditions. Examination of hormone responses showed altered sensitivity to ethylene and evidence for changes in the spatial distribution of an auxin-dependent transcriptional reporter. Our data provide evidence that WDL4 regulates hypocotyl cell elongation without substantial changes to microtubule array patterning, suggesting an unconventional role in axial growth control.
Collapse
Affiliation(s)
- Kristina Schaefer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Tina Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Timothy Cioffi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Goldy C, Caillaud MC. Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102365. [PMID: 37084498 DOI: 10.1016/j.pbi.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Plants have developed fine-tuned cellular mechanisms to respond to a variety of intracellular and extracellular signals. These responses often necessitate the rearrangement of the plant cytoskeleton to modulate cell shape and/or to guide vesicle trafficking. At the cell periphery, both actin filaments and microtubules associate with the plasma membrane that acts as an integrator of the intrinsic and extrinsic environments. At this membrane, acidic phospholipids such as phosphatidic acid, and phosphoinositides contribute to the selection of peripheral proteins and thereby regulate the organization and dynamic of the actin and microtubules. After recognition of the importance of phosphatidic acid on cytoskeleton dynamics and rearrangement, it became apparent that the other lipids might play a specific role in shaping the cytoskeleton. This review focuses on the emerging role of the phosphatidylinositol 4,5-bisphosphate for the regulation of the peripherical cytoskeleton during cellular processes such as cytokinesis, polar growth, biotic and abiotic responses.
Collapse
Affiliation(s)
- Camila Goldy
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342, Lyon, France.
| |
Collapse
|
16
|
Fan T, Fan Y, Yang Y, Qian D, Niu Y, An L, Xiang Y. SEC1A and SEC6 synergistically regulate pollen tube polar growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36951316 DOI: 10.1111/jipb.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.
Collapse
Affiliation(s)
- Tingting Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
18
|
Li E, Zhang YL, Qin Z, Xu M, Qiao Q, Li S, Li SW, Zhang Y. Signaling network controlling ROP-mediated tip growth in Arabidopsis and beyond. PLANT COMMUNICATIONS 2023; 4:100451. [PMID: 36114666 PMCID: PMC9860187 DOI: 10.1016/j.xplc.2022.100451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cell polarity operates across a broad range of spatial and temporal scales and is essential for specific biological functions of polarized cells. Tip growth is a special type of polarization in which a single and unique polarization site is established and maintained, as for the growth of root hairs and pollen tubes in plants. Extensive studies in past decades have demonstrated that the spatiotemporal localization and activity of Rho of Plants (ROPs), the only class of Rho GTPases in plants, are critical for tip growth. ROPs are switched on or off by different factors to initiate dynamic intracellular activities, leading to tip growth. Recent studies have also uncovered several feedback modules for ROP signaling. In this review, we summarize recent progress on ROP signaling in tip growth, focusing on molecular mechanisms that underlie the dynamic distribution and activity of ROPs in Arabidopsis. We also highlight feedback modules that control ROP-mediated tip growth and provide a perspective for building a complex ROP signaling network. Finally, we provide an evolutionary perspective for ROP-mediated tip growth in Physcomitrella patens and during plant-rhizobia interaction.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yu-Ling Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
19
|
Ou H, Yi P. ROP GTPase-dependent polarity establishment during tip growth in plants. THE NEW PHYTOLOGIST 2022; 236:49-57. [PMID: 35832004 DOI: 10.1111/nph.18373] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Polar cell growth in plants requires a cell peripheral region that undergoes membrane extension and cell wall remodeling. Since the 1990s, RHO-RELATED GTPASES FROM PLANTS (ROPs) have been identified as master regulators that determine the site of cell growth. ROPs function to regulate actin and microtubule cytoskeletons, calcium gradients, and exocytosis, thus directing the delivery of materials for membrane and cell wall extension. In recent years, our understanding of the regulatory mechanisms underlying polar localization and the activation of ROPs has greatly advanced. Evidence points to the crucial roles of membrane lipids, receptor-like kinases, and cell wall components. In this review, we provide updates on the mechanisms underlying polarity control in tip-growing cells, with a focus on ROP effectors and membrane-associated signals. By integrating knowledge from pollen tubes, root hairs, and findings in bryophyte protonema cells and rhizoids, we hope to offer important insights into a common conceptual framework on polarity establishment governed by intercellular and extracellular signals.
Collapse
Affiliation(s)
- Hongxin Ou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|