1
|
Liang X, Wang Y, Shen W, Liao B, Liu X, Yang Z, Chen J, Zhao C, Liao Z, Cao J, Wang P, Wang P, Ke F, Xu J, Lin Q, Xi W, Wang L, Xu J, Zhao X, Sun C. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. MOLECULAR PLANT 2024; 17:1753-1772. [PMID: 39444162 DOI: 10.1016/j.molp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
Collapse
Affiliation(s)
- Xiao Liang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Bin Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zimeng Yang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jiebiao Chen
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Ping Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
Sun M, Li Y, Chen Y, Chen DY, Wang H, Ren J, Guo M, Dong S, Li X, Yang G, Gao L, Chu X, Wang JG, Yuan X. Combined transcriptome and physiological analysis reveals exogenous sucrose enhances photosynthesis and source capacity in foxtail millet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109189. [PMID: 39406001 DOI: 10.1016/j.plaphy.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is an environmentally friendly crop that meets the current requirements of international food security and is widely accepted as a photosynthesis research model. However, whether exogenous sucrose treatment has a positive effect on foxtail millet growth remains unknown. Here, we employed physiological and molecular approaches to identify photosynthesis and source capacity associated with exogenous sucrose during the growth of Jingu 21 seedlings. RNA-seq analysis showed that some differentially expressed genes (DEGs) related to photosynthesis and carotenoid biosynthesis were induced by exogenous sucrose and that most of these genes were up-regulated. An increase in gas exchange parameters, chlorophyll content, and chlorophyll fluorescence of Jingu 21 was noted after exogenous sucrose addition. Furthermore, exogenous sucrose up-regulated genes encoding sucrose and hexose transporters and enhanced starch and sucrose metabolism. More DEGs were up-regulated by sucrose, the nonstructural carbohydrate (NSC) content in the leaves increased and energy metabolism and sucrose loading subsequently improved, ultimately enhancing photosynthesis under normal and dark conditions. Further analysis revealed that WRKYs, ERFs, HY5, RAP2, and ABI5 could be key transcription factors involved in growth regulation. These results indicate that exogenous sucrose affects the normal photosynthetic performance of foxtail millet by increasing NSC transport and loading. They improve our understanding of the molecular mechanisms of the effects of exogenous sucrose on photosynthesis in foxtail millet, providing an effective measure to enhance source-sink relationships and improve yield.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yongchao Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yunhao Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dan-Ying Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Haiyu Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianhong Ren
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Meijun Guo
- College of Biology Science and Technology, Jinzhong University, Jinzhong, 030600, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
3
|
Hu H, Zhang R, Zhao Y, Yang J, Zhao H, Zhao L, Wang L, Cheng Z, Zhao W, Wang B, Larkin RM, Chen L. Cell wall remodeling confers plant architecture with distinct wall structure in Nelumbo nucifera. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39427333 DOI: 10.1111/tpj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Lotus (Nelumbo nucifera G.) is a perennial aquatic horticultural plant with diverse architectures. Distinct plant architecture (PA) has certain attractive and practical qualities, but its genetic morphogenesis in lotus remains elusive. In this study, we employ genome-wide association analysis (GWAS) for the seven traits of petiole length (PLL), leaf length (LL), leaf width (LW), peduncle length (PLF), flower diameter (FD), petal length (PeL), and petal width (PeW) in 301 lotus accessions. A total of 90 loci are identified to associate with these traits across 4 years of trials. Meanwhile, we perform RNA sequencing (RNA-seq) to analyze the differential expression of the gene (DEG) transcripts between large and small PA (LPA and SPA) of lotus stems (peduncles and petioles). As a result, eight key candidate genes are identified that are all primarily involved in plant cell wall remodeling significantly associated with PA traits by integrating the results of DEGs and GWAS. To verify this result, we compare the cell wall compositions and structures of LPA versus SPA in representative lotus germplasms. Intriguingly, compared with the SPA lotus, the LPA varieties have higher content of cellulose and hemicellulose, but less filling substrates of pectin and lignin. Additionally, we verified longer cellulose chains and higher cellulose crystallinity with less interference in LPA varieties. Taken together, our study illustrates how plant cell wall remodeling affects PA in lotus, shedding light on the genetic architecture of this significant ornamental trait and offering a priceless genetic resource for future genomic-enabled breeding.
Collapse
Affiliation(s)
- Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Ran Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yongjing Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Lin Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Zhipeng Cheng
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Wanyue Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Bo Wang
- Wuhan Genoseq Technology Co., Ltd, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
4
|
Liu G, Luo L, Yao L, Wang C, Sun X, Du C. Examining Carotenoid Metabolism Regulation and Its Role in Flower Color Variation in Brassica rapa L. Int J Mol Sci 2024; 25:11164. [PMID: 39456950 PMCID: PMC11508860 DOI: 10.3390/ijms252011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Carotenoids are vital organic pigments that determine the color of flowers, roots, and fruits in plants, imparting them yellow, orange, and red hues. This study comprehensively analyzes carotenoid accumulation in different tissues of the Brassica rapa mutant "YB1", which exhibits altered flower and root colors. Integrating physiological and biochemical assessments, transcriptome profiling, and quantitative metabolomics, we examined carotenoid accumulation in the flowers, roots, stems, and seeds of YB1 throughout its growth and development. The results indicated that carotenoids continued to accumulate in the roots and stems of YBI, especially in its cortex, throughout plant growth and development; however, the carotenoid levels in the petals decreased with progression of the flowering stage. In total, 54 carotenoid compounds were identified across tissues, with 30 being unique metabolites. Their levels correlated with the expression pattern of 22 differentially expressed genes related to carotenoid biosynthesis and degradation. Tissue-specific genes, including CCD8 and NCED in flowers and ZEP in the roots and stems, were identified as key regulators of color variations in different plant parts. Additionally, we identified genes in the seeds that regulated the conversion of carotenoids to abscisic acid. In conclusion, this study offers valuable insights into the regulation of carotenoid metabolism in B. rapa, which can guide the selection and breeding of carotenoid-rich varieties.
Collapse
Affiliation(s)
- Guomei Liu
- Agricultural College, Shanxi Agricultural University, Jinzhong 030801, China;
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Liuyan Luo
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Lin Yao
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Chen Wang
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Xuan Sun
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| | - Chunfang Du
- Agricultural College, Shanxi Agricultural University, Jinzhong 030801, China;
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China; (L.L.); (L.Y.); (C.W.); (X.S.)
| |
Collapse
|
5
|
Zhao X, Liu M, Li C, Zhang J, Li T, Sun F, Lu P, Xu Y. Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet ( Panicum miliaceum L.). Int J Mol Sci 2024; 25:11012. [PMID: 39456795 PMCID: PMC11507134 DOI: 10.3390/ijms252011012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest crops, domesticated nearly 8000 years ago in northern China. It gradually spread across the entire Eurasian continent, as well as to America and Africa, with recent improvement in various reproductive and vegetative traits. To identify the genes that were selected during the domestication and improvement processes, we performed a comparative transcriptome analysis based on wild types, landraces, and improved cultivars of broomcorn millet at both seeding and filling stages. The variations in gene expression patterns between wild types and landraces and between landraces and improved cultivars were further evaluated to explore the molecular mechanisms underlying the domestication and improvement of broomcorn millet. A total of 2155 and 3033 candidate genes involved in domestication and a total of 84 and 180 candidate genes related to improvement were identified at seedling and filling stages of broomcorn millet, respectively. The annotation results suggested that the genes related to metabolites, stress resistance, and plant hormones were widely selected during both domestication and improvement processes, while some genes were exclusively selected in either domestication or improvement stages, with higher selection pressure detected in the domestication process. Furthermore, some domestication- and improvement-related genes involved in stress resistance either lost their functions or reduced their expression levels due to the trade-offs between stress resistance and productivity. This study provided novel genetic materials for further molecular breeding of broomcorn millet varieties with improved agronomic traits.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
- School of Life Sciences, Northeast Normal University, Changchun 130021, China
| | - Minxuan Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.L.); (P.L.)
| | - Chunxiang Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
| | - Jingyi Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
| | - Tianshu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Ping Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.L.); (P.L.)
| | - Yue Xu
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Zhang H, Luo Y, Wang Y, Zhao J, Wang Y, Li Y, Pu Y, Wang X, Ren X, Zhao B. Genome-Wide Identification and Characterization of Alternative Oxidase ( AOX) Genes in Foxtail Millet ( Setaria italica): Insights into Their Abiotic Stress Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:2565. [PMID: 39339540 PMCID: PMC11434880 DOI: 10.3390/plants13182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable tolerance to abiotic stresses and minimal requirement for fertilizer. In this study, we conducted a comprehensive genome-wide identification of AOX genes in foxtail millet genome, discovering a total of five SiAOX genes. Phylogenetic analysis categorized these SiAOX members into two subgroups. Prediction of cis-elements within the promoter regions, coupled with co-expression network analysis, intimated that SiAOX proteins are likely involved in the plant's adaptive response to abiotic stresses. Employing RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR), we scrutinized the expression patterns of the SiAOX genes across a variety of tissues and under multiple abiotic stress conditions. Specifically, our analysis uncovered that SiAOX1, SiAOX2, SiAOX4, and SiAOX5 display distinct tissue-specific expression profiles. Furthermore, SiAOX2, SiAOX3, SiAOX4, and SiAOX5 exhibit responsive expression patterns under abiotic stress conditions, with significant differences in expression levels observed between the shoot and root tissues of foxtail millet seedlings. Haplotype analysis of SiAOX4 and SiAOX5 revealed that these genes are in linkage disequilibrium, with Hap_2 being the superior haplotype for both, potentially conferring enhanced cold stress tolerance in the cultivar group. These findings suggest that both SiAOX4 and SiAOX5 may be targeted for selection in future breeding programs aimed at improving foxtail millet's resilience to cold stress.
Collapse
Affiliation(s)
- Hui Zhang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yidan Luo
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yujing Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Juan Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yueyue Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yihao Pu
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xingchun Wang
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xuemei Ren
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bo Zhao
- Houji Laboratory in Shanxi Province, College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
7
|
Zheng J, Ma Y, Liang Y, Zhang T, Chen C, Amo A, Wang W, Ma F, Han Y, Li H, Hou S, Yang Y. An integration of genome-wide survey, homologous comparison and gene expression analysis provides a basic framework for the ZRT, IRT-like protein (ZIP) in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1467015. [PMID: 39301166 PMCID: PMC11410603 DOI: 10.3389/fpls.2024.1467015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Essential mineral elements such as zinc and iron play a crucial role in maintaining crop growth and development, as well as ensuring human health. Foxtail millet is an ancient food crop rich in mineral elements and constitutes an important dietary supplement for nutrient-deficient populations. The ZIP (ZRT, IRT-like protein) transporters are primarily responsible for the absorption, transportation and accumulation of Zn, Fe and other metal ions in plants. Here, we identified 14 ZIP transporters in foxtail millet (SiZIP) and systematically characterized their phylogenetic relationships, expression characteristics, sequence variations, and responses to various abiotic stresses. As a result, SiZIPs display rich spatiotemporal expression characteristics in foxtail millet. Multiple SiZIPs demonstrated significant responses to Fe, Cd, Na, and K metal ions, as well as drought and cold stresses. Based on homologous comparisons, expression characteristics and previous studies, the functions of SiZIPs were predicted as being classified into several categories: absorption/efflux, transport/distribution and accumulation of metal ions. Simultaneously, a schematic diagram of SiZIP was drawn. In general, SiZIPs have diverse functions and extensively involve in the transport of metal ions and osmotic regulation under abiotic stresses. This work provides a fundamental framework for the transport and accumulation of mineral elements and will facilitate the quality improvement of foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yunxiao Ma
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yu Liang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Tianhan Zhang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Chang Chen
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Wenyu Wang
- Xinjiang Research Institute, Join Hope Seed Co., Ltd, Changji, Xinjiang, China
| | - Fangfang Ma
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Hongying Li
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Milletomics: a metabolomics centered integrated omics approach toward genetic progression. Funct Integr Genomics 2024; 24:149. [PMID: 39218822 DOI: 10.1007/s10142-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Producing alternative staple foods like millet will be essential to feeding ten billion people by 2050. The increased demand for millet is driving researchers to improve its genetic variation. Millets include protein, dietary fiber, phenolic substances, and flavonoid components. Its climate resilience makes millet an appealing crop for agronomic sustainability. Integrative omics technologies could potentially identify and develop millets with desirable phenotypes that may have high agronomic value. Millets' salinity and drought tolerance have been enhanced using transcriptomics. In foxtail, finger, and pearl millet, proteomics has discovered salt-tolerant protein, phytohormone-focused protein, and drought tolerance. Metabolomics studies have revealed that certain metabolic pathways including those involving lignin, flavonoids, phenylpropanoid, and lysophospholipids are critical for many processes, including seed germination, photosynthesis, energy metabolism, and the synthesis of bioactive chemicals necessary for drought tolerance. Metabolomics integration with other omics revealed metabolome engineering and trait-specific metabolite creation. Integrated metabolomics and ionomics are still in the development stage, but they could potentially assist in comprehending the pathway of ionomers to control nutrient levels and biofortify millet. Epigenomic analysis has shown alterations in DNA methylation patterns and chromatin structure in foxtail and pearl millets in response to abiotic stress. Whole-genome sequencing utilizing next-generation sequencing is the most proficient method for finding stress-induced phytoconstituent genes. New genome sequencing enables novel biotechnological interventions including genome-wide association, mutation-based research, and other omics approaches. Millets can breed more effectively by employing next-generation sequencing and genotyping by sequencing, which may mitigate climate change. Millet marker-assisted breeding has advanced with high-throughput markers and combined genotyping technologies.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Zhang F, Yang C, Guo H, Li Y, Shen S, Zhou Q, Li C, Wang C, Zhai T, Qu L, Zhang C, Liu X, Luo J, Chen W, Wang S, Yang J, Yu C, Liu Y. Dissecting the genetic basis of UV-B responsive metabolites in rice. Genome Biol 2024; 25:234. [PMID: 39210441 PMCID: PMC11360312 DOI: 10.1186/s13059-024-03372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND UV-B, an important environmental factor, has been shown to affect the yield and quality of rice (Oryza sativa) worldwide. However, the molecular mechanisms underlying the response to UV-B stress remain elusive in rice. RESULTS We perform comprehensive metabolic profiling of leaves from 160 diverse rice accessions under UV-B and normal light conditions using a widely targeted metabolomics approach. Our results reveal substantial differences in metabolite accumulation between the two major rice subspecies indica and japonica, especially after UV-B treatment, implying the possible role and mechanism of metabolome changes in subspecies differentiation and the stress response. We next conduct a transcriptome analysis from four representative rice varieties under UV-B stress, revealing genes from amino acid and flavonoid pathways involved in the UV-B response. We further perform a metabolite-based genome-wide association study (mGWAS), which reveals 3307 distinct loci under UV-B stress. Identification and functional validation of candidate genes show that OsMYB44 regulates tryptamine accumulation to mediate UV-B tolerance, while OsUVR8 interacts with OsMYB110 to promote flavonoid accumulation and UV-B tolerance in a coordinated manner. Additionally, haplotype analysis suggests that natural variation of OsUVR8groupA contributes to UV-B resistance in rice. CONCLUSIONS Our study reveals the complex biochemical and genetic foundations that govern the metabolite dynamics underlying the response, tolerance, and adaptive strategies of rice to UV-B stress. These findings provide new insights into the biochemical and genetic basis of the metabolome underlying the crop response, tolerance, and adaptation to UV-B stress.
Collapse
Affiliation(s)
- Feng Zhang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chenkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Hao Guo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Yufei Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Shuangqian Shen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Ting Zhai
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng Zhang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China.
| | - Cui Yu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2024:1-26. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
11
|
Liu H, Zhang X, Shang Y, Zhao S, Li Y, Zhou X, Huo X, Qiao P, Wang X, Dai K, Li H, Guo J, Shi W. Genome-wide association study reveals genetic loci for ten trace elements in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:186. [PMID: 39017920 DOI: 10.1007/s00122-024-04690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
KEY MESSAGE One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.
Collapse
Affiliation(s)
- Hanxiao Liu
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Zhang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yuping Shang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaoxing Zhao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yingjia Li
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xutao Zhou
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xiaoyu Huo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Pengfei Qiao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Wang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Huixia Li
- Millet Research Institute, Shanxi Agricultural University, Changzhi, 046000, China
| | - Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
12
|
Gong W, Xiong L, Fu H. Combined analysis of the metabolome and transcriptome reveals the metabolic characteristics and candidate genes involved in alkaloid metabolism in Heuchera micrantha Douglas ex Lindl. BMC PLANT BIOLOGY 2024; 24:639. [PMID: 38971732 PMCID: PMC11227142 DOI: 10.1186/s12870-024-05363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Alkaloids, important secondary metabolites produced by plants, play a crucial role in responding to environmental stress. Heuchera micrantha, a well-known plant used in landscaping, has the ability to purify air, and absorb toxic and radioactive substances, showing strong environmental adaptability. However, there is still limited understanding of the accumulation characteristics and metabolic mechanism of alkaloids in H. micrantha. RESULTS In this study, four distinct varieties of H. micrantha were used to investigate the accumulation and metabolic traits of alkaloids in its leaves. We conducted a combined analysis of the plant's metabolome and transcriptome. Our analysis identified 44 alkaloids metabolites in the leaves of the four H. micrantha varieties, with 26 showing different levels of accumulation among the groups. The HT and JQ varieties exhibited higher accumulation of differential alkaloid metabolites compared to YH and HY. We annotated the differential alkaloid metabolites to 22 metabolic pathways, including several alkaloid metabolism. Transcriptome data revealed 5064 differentially expressed genes involved in these metabolic pathways. Multivariate analysis showed that four key metabolites (N-hydroxytryptamine, L-tyramine, tryptamine, and 2-phenylethylamine) and three candidate genes (Cluster-15488.116815, Cluster-15488.146268, and Cluster-15488.173297) that merit further investigation. CONCLUSIONS This study provided preliminarily insight into the molecular mechanism of the biosynthesis of alkaloids in H. micrantha. However, further analysis is required to elucidate the specific regulatory mechanisms of the candidate gene involved in the synthesis of key alkaloid metabolites. In summary, our findings provide important information about how alkaloid metabolites build up and the metabolic pathways involved in H. micrantha varieties. This gives us a good starting point for future research on the regulation mechanism, and development, and utilization of alkaloids in H. micrantha.
Collapse
Affiliation(s)
- Weichang Gong
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Lina Xiong
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China.
| |
Collapse
|
13
|
Zhang J, Liu G, Wei J. Assembly and comparative analysis of the first complete mitochondrial genome of Setaria italica. PLANTA 2024; 260:23. [PMID: 38850310 DOI: 10.1007/s00425-024-04386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 06/10/2024]
Abstract
MAIN CONCLUSION In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.
Collapse
Affiliation(s)
- Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
14
|
Chen H, Liu F, Chen J, Ji K, Cui Y, Ge W, Wang Z. Identification, molecular evolution, codon bias, and expansion analysis of NLP transcription factor family in foxtail millet ( Setaria italica L.) and closely related crops. Front Genet 2024; 15:1395224. [PMID: 38836039 PMCID: PMC11148446 DOI: 10.3389/fgene.2024.1395224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
The NODULE-INCEPTION-like protein (NLP) family is a plant-specific transcription factor (TF) family involved in nitrate transport and assimilation in plants, which are essential for improving plant nitrogen use efficiency. Currently, the molecular nature and evolutionary trajectory of NLP genes in the C4 model crop foxtail millet are unknown. Therefore, we performed a comprehensive analysis of NLP and molecular evolution in foxtail millet by scanning the genomes of foxtail millet and representative species of the plant kingdom. We identified seven NLP genes in the foxtail millet genome, all of which are individually and separately distributed on different chromosomes. They were not structurally identical to each other and were mainly expressed on root tissues. We unearthed two key genes (Si5G004100.1 and Si6G248300.1) with a variety of excellent characteristics. Regarding its molecular evolution, we found that NLP genes in Gramineae mainly underwent dispersed duplication, but maize NLP genes were mainly generated via WGD events. Other factors such as base mutations and natural selection have combined to promote the evolution of NLP genes. Intriguingly, the family in plants showed a gradual expansion during evolution with more duplications than losses, contrary to most gene families. In conclusion, this study advances the use of NLP genetic resources and the understanding of molecular evolution in cereals.
Collapse
Affiliation(s)
- Huilong Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fang Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Kexin Ji
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yutong Cui
- College of Management, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhenyi Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
15
|
Ramírez Gonzales LY, Cannarozzi G, Jäggi L, Assefa K, Chanyalew S, Dell'Acqua M, Tadele Z. The role of omics in improving the orphan crop tef. Trends Genet 2024; 40:449-461. [PMID: 38599921 DOI: 10.1016/j.tig.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Tef or teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop indigenous to the Horn of Africa, where it is a staple food for a large population. The popularity of tef arises from its resilience to environmental stresses and its nutritional value. For many years, tef has been considered an orphan crop, but recent research initiatives from across the globe are helping to unravel its undisclosed potential. Advanced omics tools and techniques have been directed toward the exploration of tef's diversity with the aim of increasing its productivity. In this review, we report on the most recent advances in tef omics that brought the crop into the spotlight of international research.
Collapse
Affiliation(s)
| | - Gina Cannarozzi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea Jäggi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Kebebew Assefa
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Solomon Chanyalew
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | | | - Zerihun Tadele
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
16
|
He Q, Wang C, He Q, Zhang J, Liang H, Lu Z, Xie K, Tang S, Zhou Y, Liu B, Zhi H, Jia G, Guo G, Du H, Diao X. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. MOLECULAR PLANT 2024; 17:219-222. [PMID: 38155573 DOI: 10.1016/j.molp.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Qiang He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chunchao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Jun Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongkai Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sha Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhan Zhou
- State Key Laboratory of Rice Biology & Breeding, Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Zhi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanqing Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ganggang Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Xianmin Diao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Dai K, Wang X, Liu H, Qiao P, Wang J, Shi W, Guo J, Diao X. Efficient identification of QTL for agronomic traits in foxtail millet (Setaria italica) using RTM- and MLM-GWAS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:18. [PMID: 38206376 DOI: 10.1007/s00122-023-04522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE Eleven QTLs for agronomic traits were identified by RTM- and MLM-GWAS, putative candidate genes were predicted and two markers for grain weight were developed and validated. Foxtail millet (Setaria italica), the second most cultivated millet crop after pearl millet, is an important grain crop in arid regions. Seven agronomic traits of 408 diverse foxtail millet accessions from 15 provinces in China were evaluated in three environments. They were clustered into two divergent groups based on genotypic data using ADMIXTURE, which was highly consistent with their geographical distribution. Two models for genome-wide association studies (GWAS), namely restricted two-stage multi-locus multi-allele (RTM)-GWAS and mixed linear model (MLM)-GWAS, were used to dissect the genetic architecture of the agronomic traits based on 13,723 SNPs. Eleven quantitative trait loci (QTLs) for seven traits were identified using two models (RTM- and MLM-GWAS). Among them, five were considered stable QTLs that were identified in at least two environments using MLM-GWAS. One putative candidate gene (SETIT_006045mg, Chr4: 744,701-746,852) that can enhance grain weight per panicle was identified based on homologous gene comparison and gene expression analysis and was validated by haplotype analysis of 330 accessions with high-depth (10×) resequencing data (unpublished). In addition, homologous gene comparison and haplotype analysis identified one putative foxtail millet ortholog (SETIT_032906mg, Chr2: 5,020,600-5,029,771) with rice affecting the target traits. Two markers (cGWP6045 and kTGW2906) were developed and validated and can be used for marker-assisted selection of foxtail millet with high grain weight. The results provide a fundamental resource for foxtail millet genetic research and breeding and demonstrate the power of integrating RTM- and MLM-GWAS approaches as a complementary strategy for investigating complex traits in foxtail millet.
Collapse
Affiliation(s)
- Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Wang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Hanxiao Liu
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Pengfei Qiao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jiaxue Wang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Liang Y, Han Y. Pan-genome brings opportunities to revitalize the ancient crop foxtail millet. PLANT COMMUNICATIONS 2024; 5:100735. [PMID: 37864332 PMCID: PMC10811366 DOI: 10.1016/j.xplc.2023.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Taigu 030810, China; Joint Key Laboratory of Sustainable Dryland Agriculture of MOARA (with Shanxi Province), Shanxi Agricultural University, Taigu 030810, China.
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu 030810, China; Joint Key Laboratory of Sustainable Dryland Agriculture of MOARA (with Shanxi Province), Shanxi Agricultural University, Taigu 030810, China; Houji Laboratory, Shanxi Agricultural University, Taiyuan 030810, China.
| |
Collapse
|
19
|
Bai Y, Yu H, Chen L, Meng Y, Ma Y, Wang D, Qian Y, Zhang D, Feng X, Zhou Y. Time-Course Transcriptome Analysis of Aquilegia vulgaris Root Reveals the Cell Wall's Roles in Salinity Tolerance. Int J Mol Sci 2023; 24:16450. [PMID: 38003641 PMCID: PMC10671252 DOI: 10.3390/ijms242216450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress has a considerable impact on the development and growth of plants. The soil is currently affected by salinisation, a problem that is becoming worse every year. This means that a significant amount of salt-tolerant plant material needs to be added. Aquilegia vulgaris has aesthetically pleasing leaves, unique flowers, and a remarkable tolerance to salt. In this study, RNA-seq technology was used to sequence and analyse the transcriptome of the root of Aquilegia vulgaris seedlings subjected to 200 mM NaCl treatment for 12, 24, and 48 h. In total, 12 Aquilegia vulgaris seedling root transcriptome libraries were constructed. At the three time points of salt treatment compared with the control, 3888, 1907, and 1479 differentially expressed genes (DEGs) were identified, respectively. Various families of transcription factors (TFs), mainly AP2, MYB, and bHLH, were identified and might be linked to salt tolerance. Gene Ontology (GO) analysis of DEGs revealed that the structure and composition of the cell wall and cytoskeleton may be crucial in the response to salt stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed a significant enrichment of the pentose and glucuronate interconversion pathway, which is associated with cell wall metabolism after 24 and 48 h of salt treatment. Based on GO and KEGG analyses of DEGs, the pentose and glucuronate interconversion pathway was selected for further investigation. AP2, MYB, and bHLH were found to be correlated with the functional genes in this pathway based on a correlation network. This study provides the groundwork for understanding the key pathways and gene networks in response to salt stress, thereby providing a theoretical basis for improving salt tolerance in Aquilegia vulgaris.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.Y.); (L.C.); (Y.M.); (Y.M.); (D.W.); (Y.Q.); (D.Z.); (X.F.)
| |
Collapse
|
20
|
Zhang Z, Zhou D, Li S, Pan J, Liang J, Wu X, Wu XN, Krall L, Zhu G. Multiomics Analysis Reveals the Chemical and Genetic Bases of Pigmented Potato Tuber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16402-16416. [PMID: 37856829 DOI: 10.1021/acs.jafc.3c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Anthocyanins and carotenoids determine the diversity of potato tuber flesh pigmentation; here, the underlying chemical and genetic bases were elucidated by multiomics analyses. A total of 31 anthocyanins and 30 carotenoids were quantified in five differently pigmented tubers. Cyanidin and pelargonidin derivatives determined the redness, while malvidin, petunidin, and delphinidin derivatives contributed to purpleness. Violaxanthin derivatives determined the light-yellow color, while zeaxanthin and antheraxanthin derivatives further enhanced the deep-yellow deposition. Integrated transcriptome and proteome analyses identified that F3'5'H highly enhanced anthocyanin biosynthesis in purple flesh and was responsible for metabolic divergence between red and purple samples. BCH2 significantly enhanced carotenoid biosynthesis in yellow samples and along with ZEP, NCED1, and CCD1 genes determined metabolic divergence between light and deep-yellow samples. The weighted correlation network analysis constructed a regulatory network revealing the central role of AN1 in regulating anthocyanin biosynthesis, and 10 new transcription factors related to anthocyanin and carotenoid metabolism regulation were identified. Our findings provide targeted genes controlling tuber pigmentation, which will be meaningful for the genetic manipulation of tuber quality improvement.
Collapse
Affiliation(s)
- Zhong Zhang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dao Zhou
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jun Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jun Liang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xi Wu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guangtao Zhu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| |
Collapse
|
21
|
Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, Singh SK. The potentialities of omics resources for millet improvement. Funct Integr Genomics 2023; 23:210. [PMID: 37355501 DOI: 10.1007/s10142-023-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Millets are nutrient-rich (nutri-rich) cereals with climate resilience attributes. However, its full productive potential is not realized due to the lack of a focused yield improvement approach, as evidenced by the available literature. Also, the lack of well-characterized genomic resources significantly limits millet improvement. But the recent availability of genomic data and advancement in omics tools has shown its enormous potential to enhance the efficiency and precision faced by conventional breeding in millet improvement. The development of high throughput genotyping platforms based on next-generation sequencing (NGS) has provided a low-cost method for genomic information, specifically for neglected nutri-rich cereals with the availability of a limited number of reference genome sequences. NGS has created new avenues for millet biotechnological interventions such as mutation-based study, GWAS, GS, and other omics technologies. The simultaneous discovery of high-throughput markers and multiplexed genotyping platform has aggressively aided marker-assisted breeding for millet improvement. Therefore, omics technology offers excellent opportunities to explore and combine useful variations for targeted traits that could impart high nutritional value to high-yielding cultivars under changing climatic conditions. In millet improvement, an in-depth account of NGS, integrating genomics data with different biotechnology tools, is reviewed in this context.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agricultural, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Samastipur, Bihar, 848125, India.
| | - Priyanka Jaiswal
- Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Mithilesh Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| | - Khem Raj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, 305817, India
| | - Satish Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
22
|
Li X, Hou S, Feng M, Xia R, Li J, Tang S, Han Y, Gao J, Wang X. MDSi: Multi-omics Database for Setaria italica. BMC PLANT BIOLOGY 2023; 23:223. [PMID: 37101150 PMCID: PMC10134609 DOI: 10.1186/s12870-023-04238-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Foxtail millet (Setaria italica) harbors the small diploid genome (~ 450 Mb) and shows the high inbreeding rate and close relationship to several major foods, feed, fuel and bioenergy grasses. Previously, we created a mini foxtail millet, xiaomi, with an Arabidopsis-like life cycle. The de novo assembled genome data with high-quality and an efficient Agrobacterium-mediated genetic transformation system made xiaomi an ideal C4 model system. The mini foxtail millet has been widely shared in the research community and as a result there is a growing need for a user-friendly portal and intuitive interface to perform exploratory analysis of the data. RESULTS Here, we built a Multi-omics Database for Setaria italica (MDSi, http://sky.sxau.edu.cn/MDSi.htm ), that contains xiaomi genome of 161,844 annotations, 34,436 protein-coding genes and their expression information in 29 different tissues of xiaomi (6) and JG21 (23) samples that can be showed as an Electronic Fluorescent Pictograph (xEFP) in-situ. Moreover, the whole-genome resequencing (WGS) data of 398 germplasms, including 360 foxtail millets and 38 green foxtails and the corresponding metabolic data were available in MDSi. The SNPs and Indels of these germplasms were called in advance and can be searched and compared in an interactive manner. Common tools including BLAST, GBrowse, JBrowse, map viewer, and data downloads were implemented in MDSi. CONCLUSION The MDSi constructed in this study integrated and visualized data from three levels of genomics, transcriptomics and metabolomics, and also provides information on the variation of hundreds of germplasm resources that can satisfies the mainstream requirements and supports the corresponding research community.
Collapse
Affiliation(s)
- Xukai Li
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Siyu Hou
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mengmeng Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Xia
- South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Jiawei Li
- South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanhuai Han
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhua Gao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingchun Wang
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
23
|
Li X, Shi Z, Gao J, Wang X, Guo K. CandiHap: a haplotype analysis toolkit for natural variation study. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:21. [PMID: 37313297 PMCID: PMC10248607 DOI: 10.1007/s11032-023-01366-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Haplotype blocks greatly assist association-based mapping of casual candidate genes by significantly reducing genotyping effort. The gene haplotype could be used to evaluate variants of affected traits captured from the gene region. While there is a rising interest in gene haplotypes, much of the corresponding analysis was carried out manually. CandiHap allows rapid and robust haplotype analysis and candidate identification preselection of candidate causal single-nucleotide polymorphisms and InDels from Sanger or next-generation sequencing data. Investigators can use CandiHap to specify a gene or linkage sites based on genome-wide association studies and explore favorable haplotypes of candidate genes for target traits. CandiHap can be run on computers with Windows, Mac, or UNIX platforms in a graphical user interface or command line, and applied to any species, such as plant, animal, and microbial. The CandiHap software, user manual, and example datasets are freely available at BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007080) or GitHub (https://github.com/xukaili/CandiHap). Supplementary information The online version contains supplementary material available at 10.1007/s11032-023-01366-4.
Collapse
Affiliation(s)
- Xukai Li
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Jianhua Gao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Xingchun Wang
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
24
|
Large-scale metabolome analysis reveals dynamic changes of metabolites during foxtail millet grain filling. Food Res Int 2023; 165:112516. [PMID: 36869517 DOI: 10.1016/j.foodres.2023.112516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Compared with traditional staple crops, foxtail millet grain is rich in nutrition and beneficial to human health. Foxtail millet is also tolerance to various abiotic stresses, including drought, making it a good plant for growing in barren land. The study on the composition of metabolites and its dynamics changes during grain development is helpful to understand the process of foxtail millet grain formation. In our study, metabolic and transcriptional analysis were used to uncover the metabolic processes that could influence grain filling in foxtail millet. A total of 2104 known metabolites, belonging to 14 categories, were identified during grain filling. Functional analysis of DAMs and DEGs revealed a stage-specific metabolic properties in foxtail millet grain filling. Some important metabolic processes, such as flavonoid biosynthesis, glutathione metabolism, linoleic acid metabolism, starch and sucrose metabolism and valine, leucine and isoleucine biosynthesis were co-mapped for DEGs and DAMs. Thus, we constructed a gene-metabolite regulatory network of these metabolic pathways to explain their potential functions during grain filling. Our study showed the important metabolic processes during grain filling and focused on the dynamic changes of related metabolites and genes at different stages, which provided a reference for us to better understand and improve foxtail millet grain development and yield.
Collapse
|
25
|
Ramesh P, Singh RK, Panchal A, Prasad M. 5M approach to decipher starch-lipid interaction in minor millets. PLANT CELL REPORTS 2023; 42:461-464. [PMID: 36208305 DOI: 10.1007/s00299-022-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The 5M approach can be applied to understand genetic complexity underlying nutritional traits of minor millets. It will help to systematically identify genomic regions/candidate genes imprinting metabolite profiles.
Collapse
Affiliation(s)
- Palakurthi Ramesh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
26
|
Protective Effect of Foxtail Millet Protein Hydrolysate on Ethanol and Pyloric Ligation-Induced Gastric Ulcers in Mice. Antioxidants (Basel) 2022; 11:antiox11122459. [PMID: 36552666 PMCID: PMC9774519 DOI: 10.3390/antiox11122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Foxtail millet has been traditionally considered to possess gastroprotective effects, but studies evaluating its use as a treatment for gastric ulcers are lacking. Here, we assessed the antiulcer effects of foxtail millet protein hydrolysate (FPH) and explored its mechanism by using blocking agents. In a mouse model of ethanol-induced gastric ulcers, pretreatment with FPH reduced the ulcerative lesion index, downregulated the expression of inflammatory cytokines in the gastric tissue, increased the activity of antioxidant enzymes, and improved the oxidative status. FPH increased constitutive the activity of nitric oxide synthase (cNOS), NO levels, and mucin expression in gastric mucosa, and inhibited the activation of the ET-1/PI3K/Akt pathway. In a mouse model of pyloric ligation-induced gastric ulcers, FPH inhibited gastric acid secretion and decreased the activity of gastric protease. Pretreatment of mice with the sulfhydryl blocker NEM and the NO synthesis inhibitor L-NAME abolished the gastroprotective effect of FPH, but not the KATP channel blocker glibenclamide and the PGE2 synthesis blocker indomethacin. Among the peptides identified in FPH, 10 peptides were predicted to have regulatory effects on the gastric mucosa, and the key sequences were GP and PG. The results confirmed the gastroprotective effect of FPH and revealed that its mechanism was through the regulation of gastric mucosal mucus and NO synthesis. This study supports the health effects of a millet-enriched diet and provides a basis for millet protein as a functional food to improve gastric ulcers and its related oxidative stress.
Collapse
|
27
|
Cheng J, Tan H, Shan M, Duan M, Ye L, Yang Y, He L, Shen H, Yang Z, Wang X. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria. FRONTIERS IN PLANT SCIENCE 2022; 13:1043832. [PMID: 36589108 PMCID: PMC9795848 DOI: 10.3389/fpls.2022.1043832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Introduction Nitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N. Methods Bioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2. Results We identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins withNO 3 - were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs-NO 3 - binding energy ranged from -3.8 to -2.7 kcal/mol. Discussion Taken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency.
Collapse
Affiliation(s)
- Jinjin Cheng
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meng Shan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mengmeng Duan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Ling Ye
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yulu Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lu He
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Huimin Shen
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zhirong Yang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
28
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
29
|
The Integration of Genome-Wide Association Study and Homology Analysis to Explore the Genomic Regions and Candidate Genes for Panicle-Related Traits in Foxtail Millet. Int J Mol Sci 2022; 23:ijms232314735. [PMID: 36499063 PMCID: PMC9741022 DOI: 10.3390/ijms232314735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Panicle traits are important factors affecting yield, and their improvement has long been a critical goal in foxtail millet breeding. In order to understand the genetic basis of panicle formation, a large-scale genome-wide association study (GWAS) was performed in this study for six panicle-related traits based on 706,646 high-polymorphism SNP loci in 407 accessions. As a result, 87 quantitative trait loci (QTL) regions with a physical distance of less than 100 kb were detected to be associated with these traits in three environments. Among them, 27 core regions were stably detected in at least two environments. Based on rice-foxtail millet homologous comparison, expression, and haplotype analysis, 27 high-confidence candidate genes in the QTL regions, such as Si3g11200 (OsDER1), Si1g27910 (OsMADS6), Si7g27560 (GS5), etc., affected panicle-related traits by involving multiple plant growth regulator pathways, a photoperiod response, as well as panicle and grain development. Most of these genes showed multiple effects on different panicle-related traits, such as Si3g11200 affecting all six traits. In summary, this study clarified a strategy based on the integration of GWAS, a homologous comparison, and haplotype analysis to discover the genomic regions and candidate genes for important traits in foxtail millet. The detected QTL regions and candidate genes could be further used for gene clone and marker-assisted selection in foxtail millet breeding.
Collapse
|
30
|
Tian B, Zhang L, Hu J, Liu Y, Zhou L, Ping W, Zou J, Li H. Genetic characterization of hull color using BSR-Seq and genome re-sequencing approaches in foxtail millet. FRONTIERS IN PLANT SCIENCE 2022; 13:1019496. [PMID: 36262655 PMCID: PMC9574255 DOI: 10.3389/fpls.2022.1019496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Hull color of foxtail millet is an important indicator of certain nutritional quality parameters. An F2:6 recombinant inbred line (RIL) population developed by crossing a yellow-hulled cultivar Yugu 5 and a brown-hulled cultivar Jigu 31 was used to determine the genetic control of the hull color trait. This population segregated for yellow and brown hull colors in a ratio of 2:1, indicating that hull color is regulated by multiple genetic loci. A bulk segregant analysis-RNA sequencing (BSR-Seq) approach performed using the RNA bulks from 30 lines with brown and yellow hull colors each identified three genomic regions on chromosomes 1 (4,570,517-10,698,955 bp), 2 (40,301,380-46,168,003 bp), and 3 (44,469,860-50,532,757 bp). A new QTL for brown hull color of Jigu 31, QHC.czas1, was detected between bin markers Block43 and Block697 on chromosome 1 with the genetic linkage map constructed by re-sequencing a subset of the 147 RILs. This QTL explained a high level of phenotypic variation ranging from 28.0% to 47.0%. The corresponding genomic region of this QTL in the foxtail millet reference genome overlapped with that detected on chromosome 1 by the BSR-Seq analysis. Nineteen genes associated with biosynthesis of anthocyanin were annotated in this genomic region. Gene Si1g06530 encoding a SANT/Myb domain protein was highly expressed in developing panicles and seeds, which warrants further verification as the candidate gene for the brown color hull of Jigu 31. Moreover, several annotated genes for biosynthesis of anthocyanin were identified in the genomic regions of chromosomes 2 and 3.
Collapse
Affiliation(s)
- Bohong Tian
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Lixin Zhang
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanli Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Lulu Zhou
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Wenchao Ping
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Jingwei Zou
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Shi X, Shen J, Niu B, Lam SK, Zong Y, Zhang D, Hao X, Li P. An optimistic future of C 4 crop broomcorn millet ( Panicum miliaceum L.) for food security under increasing atmospheric CO 2 concentrations. PeerJ 2022; 10:e14024. [PMID: 36097526 PMCID: PMC9463996 DOI: 10.7717/peerj.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Broomcorn millet, a C4 cereal, has better tolerance to environmental stresses. Although elevated atmospheric CO2 concentration has led to grain nutrition reduction in most staple crops, studies evaluating its effects on broomcorn millet are still scarce. The yield, nutritional quality and metabolites of broomcorn millet were investigated under ambient CO2 (aCO2, 400 µmol mol-1) and elevated CO2 (eCO2, aCO2+ 200 µmol mol-1) for three years using open-top chambers (OTC). The results showed that the yield of broomcorn millet was markedly increased under eCO2 compared with aCO2. On average, eCO2 significantly increased the concentration of Mg (27.3%), Mn (14.6%), and B (21.2%) over three years, whereas it did not affect the concentration of P, K, Fe, Ca, Cu or Zn. Protein content was significantly decreased, whereas starch and oil concentrations were not changed by eCO2. With the greater increase in grain yield, eCO2 induced increase in the grain accumulations of P (23.87%), K (29.5%), Mn (40.08%), Ca (22.58%), Mg (51.31%), Zn (40.95%), B (48.54%), starch (16.96%) and oil (28.37%) on average for three years. Flavonoids such as kaempferol, apigenin, eriodictyol, luteolin, and chrysoeriol were accumulated under eCO2. The reduction in L-glutamine and L-lysine metabolites, which were the most representative amino acid in grain proteins, led to a reduction of protein concentration under eCO2. Broomcorn millet has more desirable nutritional traits for combating hidden hunger. This may potentially be useful for breeding more nutritious plants in the era of climate change.
Collapse
Affiliation(s)
- Xinrui Shi
- Shanxi Agricultural University, Taigu, China
| | - Jie Shen
- Changzhi University, Changzhi, China
| | - Bingjie Niu
- Shanxi Agricultural University, Taigu, China
| | - Shu Kee Lam
- University of Melbourne, Melbourne, Australia
| | | | | | - Xingyu Hao
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| | - Ping Li
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| |
Collapse
|