1
|
Du ZZ, He JB, Jiao WB. SynDiv: An efficient tool for chromosome collinearity-based population genomics analyses. PLANT COMMUNICATIONS 2024; 5:101071. [PMID: 39182168 DOI: 10.1016/j.xplc.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Ze-Zhen Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Bao He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
He Q, Li W, Miao Y, Wang Y, Liu N, Liu J, Li T, Xiao Y, Zhang H, Wang Y, Liang H, Yun Y, Wang S, Sun Q, Wang H, Gong Z, Du H. The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats. NATURE PLANTS 2024; 10:2062-2078. [PMID: 39627369 DOI: 10.1038/s41477-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Avena sterilis, the ancestral species of cultivated oats, is a valuable genetic resource for oat improvement. Here we generated a near-complete 10.99 Gb A. sterilis genome and a high-quality 10.89 Gb cultivated oat genome. Genome evolution analysis revealed the centromeres dynamic and structural variations landscape associated with domestication between wild and cultivated oats. Population genetic analysis of 117 wild and cultivated oat accessions worldwide detected many candidate genes associated with important agronomic traits for oat domestication and improvement. Remarkably, a large fragment duplication from chromosomes 4A to 4D harbouring many agronomically important genes was detected during oat domestication and was fixed in almost all cultivated oats from around the world. The genes in the duplication region from 4A showed significantly higher expression levels and lower methylation levels than the orthologous genes located on 4D in A. sterilis. This study provides valuable resources for evolutionary and functional genomics and genetic improvement of oat.
Collapse
Affiliation(s)
- Qiang He
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Wei Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yuqing Miao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ningkun Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Tao Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yaru Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yange Yun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shuhui Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Qingbin Sun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhizhong Gong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China.
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China.
| |
Collapse
|
3
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2744-4. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
4
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
5
|
Kong Q, Jiang Y, Sun M, Wang Y, Zhang L, Zeng X, Wang Z, Wang Z, Liu Y, Gan Y, Liu H, Gao X, Yang X, Song X, Liu H, Shi J. Biparental graph strategy to represent and analyze hybrid plant genomes. PLANT PHYSIOLOGY 2024; 196:1284-1297. [PMID: 38991561 PMCID: PMC11444280 DOI: 10.1093/plphys/kiae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.
Collapse
Affiliation(s)
- Qianqian Kong
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Jiang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mingfei Sun
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zhiheng Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanxian Gan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang Gao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuerong Yang
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjun Liu
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Shi
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Zhang Z, Zhang J, Kang L, Qiu X, Xu S, Xu J, Guo Y, Niu Z, Niu B, Bi A, Zhao X, Xu D, Wang J, Yin C, Lu F. Structural variation discovery in wheat using PacBio high-fidelity sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:687-698. [PMID: 39239888 DOI: 10.1111/tpj.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Structural variations (SVs) pervade plant genomes and contribute substantially to the phenotypic diversity. However, most SVs were ineffectively assayed due to their complex nature and the limitations of early genomic technologies. By applying the PacBio high-fidelity (HiFi) sequencing for wheat genomes, we performed a comprehensive evaluation of mainstream long-read aligners and SV callers in SV detection. The results indicated that the accuracy of deletion discovery is markedly influenced by callers, accounting for 87.73% of the variance, whereas both aligners (38.25%) and callers (49.32%) contributed substantially to the accuracy variance for insertions. Among the aligners, Winnowmap2 and NGMLR excelled in detecting deletions and insertions, respectively. For SV callers, SVIM achieved the best performance. We demonstrated that combining the aligners and callers mentioned above is optimal for SV detection. Furthermore, we evaluated the effect of sequencing depth on the accuracy of SV detection, revealing that low-coverage HiFi sequencing is sufficiently robust for high-quality SV discovery. This study thoroughly evaluated SV discovery approaches and established optimal workflows for investigating structural variations using low-coverage HiFi sequencing in the wheat genome, which will advance SV discovery and decipher the biological functions of SVs in wheat and many other plants.
Collapse
Affiliation(s)
- Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelin Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beirui Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Wu JJ, Deng QW, Qiu YY, Liu C, Lin CF, Ru YL, Sun Y, Lai J, Liu LX, Shen XX, Pan R, Zhao YP. Post-transfer adaptation of HGT-acquired genes and contribution to guanine metabolic diversification in land plants. THE NEW PHYTOLOGIST 2024; 244:694-707. [PMID: 39166427 DOI: 10.1111/nph.20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Wen Deng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yi-Yang Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Feng Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Lu Ru
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue Sun
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lai
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Xian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Zhou L, Wu S, Chen Y, Huang R, Cheng B, Mao Q, Liu T, Liu Y, Zhao K, Pan H, Yu C, Gao X, Luo L, Zhang Q. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat Commun 2024; 15:8469. [PMID: 39349447 PMCID: PMC11443146 DOI: 10.1038/s41467-024-52782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Rose is an important ornamental crop cultivated globally for perfume production. However, our understanding of the mechanisms underlying scent production and molecular breeding for fragrance is hindered by the lack of a reference genome for tea roses. We present the first complete telomere-to-telomere (T2T) genome of Rosa gigantea, with high quality (QV > 60), including detailed characterization of the structural features of repetitive regions. The expansion of genes associated with phenylpropanoid biosynthesis may account for the unique tea scent. We uncover the release rhythm of aromatic volatile organic compounds and their gene regulatory networks through comparative genomics and time-ordered gene co-expression networks. Analyzes of eugenol homologs demonstrate how plants attract pollinators using specialized phenylpropanoids in specific tissues. This study highlights the conservation and utilization of genetic diversity from wild endangered species through multi-omics approaches, providing a scientific foundation for enhancing rose fragrance via de novo domestication.
Collapse
Affiliation(s)
- Lijun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sihui Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yunyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Runhuan Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tinghan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuchen Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China.
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
9
|
Liu JN, Yan L, Chai Z, Liang Q, Dong Y, Wang C, Li X, Li C, Mu Y, Gong A, Yang J, Li J, Yang KQ, Wu D, Fang H. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. PLANT COMMUNICATIONS 2024:101137. [PMID: 39308021 DOI: 10.1016/j.xplc.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Ash trees (Fraxinus) exhibit rich genetic diversity and wide adaptation to various ecological environments, and several species are highly salt tolerant. Dissecting the genomic basis of salt adaptation in Fraxinus is vital for its resistance breeding. Here, we present 11 high-quality chromosome-level genome assemblies for Fraxinus species, which reveal two unequal subgenome compositions and two recent whole-genome triplication events in their evolutionary history. A Fraxinus pan-genome was constructed on the basis of structural variations and revealed that presence-absence variations (PAVs) of transmembrane transport genes have likely contributed to salt adaptation in Fraxinus. Through whole-genome resequencing of an F1 population from an interspecies cross of F. velutina 'Lula 3' (salt tolerant) with F. pennsylvanica 'Lula 5' (salt sensitive), we mapped salt-tolerance PAV-based quantitative trait loci (QTLs) and pinpointed two PAV-QTLs and candidate genes associated with Fraxinus salt tolerance. Mechanistically, FvbHLH85 enhances salt tolerance by mediating reactive oxygen species and Na+/K+ homeostasis, whereas FvSWEET5 enhances salt tolerance by mediating osmotic homeostasis. Collectively, these findings provide valuable genomic resources for Fraxinus salt-resistance breeding and the research community.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jinfeng Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jiaxiao Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China.
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
10
|
Tong Z, Huang Y, Zhu QH, Fan L, Xiao B, Shen E. Retrospect and prospect of Nicotiana tabacum genome sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1474658. [PMID: 39354948 PMCID: PMC11442231 DOI: 10.3389/fpls.2024.1474658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
Abstract
Investigating plant genomes offers crucial foundational resources for exploring various aspects of plant biology and applications, such as functional genomics and breeding practices. With the development in sequencing and assembly technology, several Nicotiana tabacum genomes have been published. In this paper, we reviewed the progress on N. tabacum genome assembly and quality, from the initial draft genomes to the recent high-quality chromosome-level assemblies. The application of long-read sequencing, optical mapping, and Hi-C technologies has significantly improved the contiguity and completeness of N. tabacum genome assemblies, with the latest assemblies having a contig N50 size over 50 Mb. Despite these advancements, further improvements are still required and possible, particularly on the development of pan-genome and telomere-to-telomere (T2T) genomes. These new genomes will capture the genomic diversity and variations among different N. tabacum cultivars and species, and provide a comprehensive view of the N. tabacum genome structure and gene content, so to deepen our understanding of the N. tabacum genome and facilitate precise breeding and functional genomics.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yujie Huang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| | - Longjiang Fan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Enhui Shen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Yang J, Sun M, Ren X, Li P, Hui J, Zhang J, Lin G. Revealing the Genetic Diversity and Population Structure of Garlic Resource Cultivars and Screening of Core Cultivars Based on Specific Length Amplified Fragment Sequencing (SLAF-Seq). Genes (Basel) 2024; 15:1135. [PMID: 39336726 PMCID: PMC11431738 DOI: 10.3390/genes15091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Garlic is an important vegetable and condiment that has good medical and health care effects. At present, the origin of Chinese garlic and its association with other types of quality are limited to the molecular marker level, and there are few reports at the genome level. Therefore, this study is based on the specific length amplified fragment sequencing (SLAF-seq) of 102 copies of garlic germplasm resources, the group structure, and further screening of the core germplasm. SLAF-seq of 102 garlic cultivars yielded 1949.85 Mb of clean data and 526,432,275 SNPs. Through principal component analysis, evolutionary tree, population structure, and genetic relationship analysis, all garlic cultivars were divided into 3 groups. Among them, Group 1 contains 45 Chinese cultivars and 1 Egyptian cultivar, which are distributed mainly in the coastal and central areas of China. Group 2 contains 36 Chinese cultivars and 1 U.S. cultivar, which are distributed mainly in Northwest China. Group 3 contains 19 Chinese cultivars, which are distributed mainly in Xinjiang, China. The genetic diversity results indicate that the fixation index (Fst) values of Group 1 and Group 2 are lower than those of Group 1 and Group 3 and that the diversity of nucleotides (π) of Group 3 is greater than those of Group 2 and Group 1. Finally, the 30 parts of the cultivars were used as the core germplasms, and there was no difference between the two cultivars in terms of core quality. In summary, this study provides tags for the determination of garlic molecular markers and genotypes and provides a theoretical basis for subsequent resource protection and utilization, genetic positioning of important agronomic traits, and molecular marking agglomeration breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guocang Lin
- Comprehensive Experimental Field, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.Y.); (M.S.); (X.R.); (P.L.); (J.H.); (J.Z.)
| |
Collapse
|
13
|
Mangal V, Verma LK, Singh SK, Saxena K, Roy A, Karn A, Rohit R, Kashyap S, Bhatt A, Sood S. Triumphs of genomic-assisted breeding in crop improvement. Heliyon 2024; 10:e35513. [PMID: 39170454 PMCID: PMC11336775 DOI: 10.1016/j.heliyon.2024.e35513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Conventional breeding approaches have played a significant role in meeting the food demand remarkably well until now. However, the increasing population, yield plateaus in certain crops, and limited recombination necessitate using genomic resources for genomics-assisted crop improvement programs. As a result of advancements in the next-generation sequence technology, GABs have developed dramatically to characterize allelic variants and facilitate their rapid and efficient incorporation in crop improvement programs. Genomics-assisted breeding (GAB) has played an important role in harnessing the potential of modern genomic tools, exploiting allelic variation from genetic resources and developing cultivars over the past decade. The availability of pangenomes for major crops has been a significant development, albeit with varying degrees of completeness. Even though adopting these technologies is essentially determined on economic grounds and cost-effective assays, which create a wealth of information that can be successfully used to exploit the latent potential of crops. GAB has been instrumental in harnessing the potential of modern genomic resources and exploiting allelic variation for genetic enhancement and cultivar development. GAB strategies will be indispensable for designing future crops and are expected to play a crucial role in breeding climate-smart crop cultivars with higher nutritional value.
Collapse
Affiliation(s)
- Vikas Mangal
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| | | | - Sandeep Kumar Singh
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Kanak Saxena
- Department of Genetics and Plant Breeding, Rabindranath Tagore University, Raisen, Madhya Pradesh, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| | - Anandi Karn
- Plant Breeding & Graduate Program, IFAS - University of Florida, Gainesville, USA
| | - Rohit Rohit
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Shruti Kashyap
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Ashish Bhatt
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Salej Sood
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
14
|
Liu L, Zhan J, Yan J. Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design. J Genet Genomics 2024; 51:781-789. [PMID: 38531485 DOI: 10.1016/j.jgg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Long Y, Wendel JF, Zhang X, Wang M. Evolutionary insights into the organization of chromatin structure and landscape of transcriptional regulation in plants. TRENDS IN PLANT SCIENCE 2024; 29:638-649. [PMID: 38061928 DOI: 10.1016/j.tplants.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 06/09/2024]
Abstract
Development of complex traits necessitates the functioning and coordination of intricate regulatory networks involving multiple genes. Understanding 3D chromatin structure can facilitate insight into the regulation of gene expression by regulatory elements. This potential, of visualizing the role of chromatin organization in the evolution and function of regulatory elements, remains largely unexplored. Here, we describe new perspectives that arise from the dual considerations of sequence variation of regulatory elements and chromatin structure, with a special focus on whole-genome doubling or polyploidy. We underscore the significance of hierarchical chromatin organization in gene regulation during evolution. In addition, we describe strategies for exploring chromatin organization in future investigations of regulatory evolution in plants, enabling insights into the evolutionary influence of regulatory elements on gene expression and, hence, phenotypes.
Collapse
Affiliation(s)
- Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Poretsky E, Cagirici HB, Andorf CM, Sen TZ. Harnessing the predicted maize pan-interactome for putative gene function prediction and prioritization of candidate genes for important traits. G3 (BETHESDA, MD.) 2024; 14:jkae059. [PMID: 38492232 PMCID: PMC11075552 DOI: 10.1093/g3journal/jkae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/20/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The recent assembly and annotation of the 26 maize nested association mapping population founder inbreds have enabled large-scale pan-genomic comparative studies. These studies have expanded our understanding of agronomically important traits by integrating pan-transcriptomic data with trait-specific gene candidates from previous association mapping results. In contrast to the availability of pan-transcriptomic data, obtaining reliable protein-protein interaction (PPI) data has remained a challenge due to its high cost and complexity. We generated predicted PPI networks for each of the 26 genomes using the established STRING database. The individual genome-interactomes were then integrated to generate core- and pan-interactomes. We deployed the PPI clustering algorithm ClusterONE to identify numerous PPI clusters that were functionally annotated using gene ontology (GO) functional enrichment, demonstrating a diverse range of enriched GO terms across different clusters. Additional cluster annotations were generated by integrating gene coexpression data and gene description annotations, providing additional useful information. We show that the functionally annotated PPI clusters establish a useful framework for protein function prediction and prioritization of candidate genes of interest. Our study not only provides a comprehensive resource of predicted PPI networks for 26 maize genomes but also offers annotated interactome clusters for predicting protein functions and prioritizing gene candidates. The source code for the Python implementation of the analysis workflow and a standalone web application for accessing the analysis results are available at https://github.com/eporetsky/PanPPI.
Collapse
Affiliation(s)
- Elly Poretsky
- Crop Improvement and Genetics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Halise Busra Cagirici
- Crop Improvement and Genetics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan St., Albany, CA 94710, USA
- Department of Bioengineering, University of California, 306 Stanley Hall, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Jiao D, Zhao H, Sun H, Zhang J, Zhang H, Gong G, Anees M, Zhu H, Liu W, Xu Y. Identification of allelic relationship and translocation region among chromosomal translocation lines that leads to less-seed watermelon. HORTICULTURE RESEARCH 2024; 11:uhae087. [PMID: 38799123 PMCID: PMC11116901 DOI: 10.1093/hr/uhae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Less-seed and seedless traits are desirable characteristics in watermelon (Citrullus lanatus). Hybridization between watermelon chromosomal translocated lines and wild lines significantly reduced seed counts in the hybrid fruits, approaching even seedless. However, the allelic relationships and the chromosomal translocation breakpoints from different sources are unclear, which limits their utility in breeding practices. This study focused on three groups of chromosomal translocation materials from different sources and conducted inheritance and allelic relationship analysis of translocation points. The results from third-generation genome sequencing and fluorescence in situ hybridization (FISH) revealed that the specific translocations in the naturally mutated material MT-a involved reciprocal translocations between Chr6 and Chr10. The Co60γ radiation-induced mutant material MT-b involved reciprocal translocations between Chr1 and Chr5, Chr4 and Chr8. The Co60γ radiation-induced mutant material MT-c involved complex translocations among Chr1, Chr5, and Chr11. Cytological observation showed that heterozygous translocation hybrids showed chromosomal synapsis abnormalities during meiotic diakinesis. Further, dominant and codominant molecular markers were developed on both sides of the translocation breakpoints, which could facilitate rapid and efficient identification of chromosome translocation lines. This study provides technical guidance for utilizing chromosomal translocation materials in the development of less-seed watermelon varieties.
Collapse
Affiliation(s)
- Di Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agriculture Sciences, Jinjing Road, Xiqing District, Tianjin 300192, China
| | - Hong Zhao
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Honghe Sun
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, USA
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York 14853, USA
| | - Jie Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Haiying Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Guoyi Gong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Muhammad Anees
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Hongju Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Wenge Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| |
Collapse
|
18
|
Zhu Y, Wang Z, Zhou Z, Liu Y, Gao X, Guo W, Shi J. HEMU: An integrated comparative genomics database and analysis platform for Andropogoneae grasses. PLANT COMMUNICATIONS 2024; 5:100786. [PMID: 38155575 PMCID: PMC11009152 DOI: 10.1016/j.xplc.2023.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
This study reports an online database and analysis platform HEMU, which integrates 75 genome assemblies from 20 unique species, large amounts of multi-omics data, and six sophisticated analysis toolkits. HEMU will facilitate comparative genomics analysis within the tribe Andropogoneae.
Collapse
Affiliation(s)
- Yuzhi Zhu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zanchen Zhou
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Liu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Gao
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Junpeng Shi
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
19
|
Dong NQ, Lin HX. An abundant valuable resource for salt-tolerance allele hunting in rice. PLANT COMMUNICATIONS 2024; 5:100853. [PMID: 38414239 PMCID: PMC11009360 DOI: 10.1016/j.xplc.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
20
|
Li J, Zhao Y, Wu Z, Wang X. Editorial: Crop improvement by omics and bioinformatics. FRONTIERS IN PLANT SCIENCE 2024; 15:1391334. [PMID: 38633453 PMCID: PMC11022161 DOI: 10.3389/fpls.2024.1391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Jun Li
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhichao Wu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueqiang Wang
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| |
Collapse
|
21
|
Xie L, Gong X, Yang K, Huang Y, Zhang S, Shen L, Sun Y, Wu D, Ye C, Zhu QH, Fan L. Technology-enabled great leap in deciphering plant genomes. NATURE PLANTS 2024; 10:551-566. [PMID: 38509222 DOI: 10.1038/s41477-024-01655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Xiaojiao Gong
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Kun Yang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shiyu Zhang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Leti Shen
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Yanqing Sun
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China.
| |
Collapse
|
22
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Cao S, Sawettalake N, Shen L. Gapless genome assembly and epigenetic profiles reveal gene regulation of whole-genome triplication in lettuce. Gigascience 2024; 13:giae043. [PMID: 38991853 PMCID: PMC11238431 DOI: 10.1093/gigascience/giae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Lettuce, an important member of the Asteraceae family, is a globally cultivated cash vegetable crop. With a highly complex genome (∼2.5 Gb; 2n = 18) rich in repeat sequences, current lettuce reference genomes exhibit thousands of gaps, impeding a comprehensive understanding of the lettuce genome. FINDINGS Here, we present a near-complete gapless reference genome for cutting lettuce with high transformability, using long-read PacBio HiFi and Nanopore sequencing data. In comparison to stem lettuce genome, we identify 127,681 structural variations (SVs, present in 0.41 Gb of sequence), reflecting the divergence of leafy and stem lettuce. Interestingly, these SVs are related to transposons and DNA methylation states. Furthermore, we identify 4,612 whole-genome triplication genes exhibiting high expression levels associated with low DNA methylation levels and high N6-methyladenosine RNA modifications. DNA methylation changes are also associated with activation of genes involved in callus formation. CONCLUSIONS Our gapless lettuce genome assembly, an unprecedented achievement in the Asteraceae family, establishes a solid foundation for functional genomics, epigenomics, and crop breeding and sheds new light on understanding the complexity of gene regulation associated with the dynamics of DNA and RNA epigenetics in genome evolution.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Nunchanoke Sawettalake
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
24
|
Deng CH, Naithani S, Kumari S, Cobo-Simón I, Quezada-Rodríguez EH, Skrabisova M, Gladman N, Correll MJ, Sikiru AB, Afuwape OO, Marrano A, Rebollo I, Zhang W, Jung S. Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences. Database (Oxford) 2023; 2023:baad088. [PMID: 38079567 PMCID: PMC10712715 DOI: 10.1093/database/baad088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.
Collapse
Affiliation(s)
- Cecilia H Deng
- Molecular and Digital Breeding, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
| | - Irene Cobo-Simón
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute of Forest Science (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Elsa H Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria Skrabisova
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Nick Gladman
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Melanie J Correll
- Agricultural and Biological Engineering Department, University of Florida, 1741 Museum Rd, Gainesville, FL 32611, USA
| | | | | | - Annarita Marrano
- Phoenix Bioinformatics, 39899 Balentine Drive, Suite 200, Newark, CA 94560, USA
| | | | - Wentao Zhang
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sook Jung
- Department of Horticulture, Washington State University, 303c Plant Sciences Building, Pullman, WA 99164-6414, USA
| |
Collapse
|
25
|
Pushkova EN, Borkhert EV, Novakovskiy RO, Dvorianinova EM, Rozhmina TA, Zhuchenko AA, Zhernova DA, Turba AA, Yablokov AG, Sigova EA, Krasnov GS, Bolsheva NL, Melnikova NV, Dmitriev AA. Selection of Flax Genotypes for Pan-Genomic Studies by Sequencing Tagmentation-Based Transcriptome Libraries. PLANTS (BASEL, SWITZERLAND) 2023; 12:3725. [PMID: 37960081 PMCID: PMC10650069 DOI: 10.3390/plants12213725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Flax (Linum usitatissimum L.) products are used in the food, pharmaceutical, textile, polymer, medical, and other industries. The creation of a pan-genome will be an important advance in flax research and breeding. The selection of flax genotypes that sufficiently cover the species diversity is a crucial step for the pan-genomic study. For this purpose, we have adapted a method based on Illumina sequencing of transcriptome libraries prepared using the Tn5 transposase (tagmentase). This approach reduces the cost of sample preparation compared to commercial kits and allows the generation of a large number of cDNA libraries in a short time. RNA-seq data were obtained for 192 flax plants (3-6 individual plants from 44 flax accessions of different morphology and geographical origin). Evaluation of the genetic relationship between flax plants based on the sequencing data revealed incorrect species identification for five accessions. Therefore, these accessions were excluded from the sample set for the pan-genomic study. For the remaining samples, typical genotypes were selected to provide the most comprehensive genetic diversity of flax for pan-genome construction. Thus, high-throughput sequencing of tagmentation-based transcriptome libraries showed high efficiency in assessing the genetic relationship of flax samples and allowed us to select genotypes for the flax pan-genomic analysis.
Collapse
Affiliation(s)
- Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Arthur G. Yablokov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| |
Collapse
|
26
|
Raza A, Bohra A, Garg V, Varshney RK. Back to wild relatives for future breeding through super-pangenome. MOLECULAR PLANT 2023; 16:1363-1365. [PMID: 37571822 DOI: 10.1016/j.molp.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Affiliation(s)
- Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
27
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
28
|
Raza A, Bohra A, Varshney RK. Pan-genome for pearl millet that beats the heat. TRENDS IN PLANT SCIENCE 2023; 28:857-860. [PMID: 37173271 DOI: 10.1016/j.tplants.2023.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
A better understanding of crop genomes reveals that structural variations (SVs) are crucial for genetic improvement. A graph-based pan-genome by Yan et al. uncovered 424 085 genomic SVs and provided novel insights into heat tolerance of pearl millet. We discuss how these SVs can fast-track pearl millet breeding under harsh environments.
Collapse
Affiliation(s)
- Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
29
|
Karikari B, Lemay MA, Belzile F. k-mer-Based Genome-Wide Association Studies in Plants: Advances, Challenges, and Perspectives. Genes (Basel) 2023; 14:1439. [PMID: 37510343 PMCID: PMC10379394 DOI: 10.3390/genes14071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Genome-wide association studies (GWAS) have allowed the discovery of marker-trait associations in crops over recent decades. However, their power is hampered by a number of limitations, with the key one among them being an overreliance on single-nucleotide polymorphisms (SNPs) as molecular markers. Indeed, SNPs represent only one type of genetic variation and are usually derived from alignment to a single genome assembly that may be poorly representative of the population under study. To overcome this, k-mer-based GWAS approaches have recently been developed. k-mer-based GWAS provide a universal way to assess variation due to SNPs, insertions/deletions, and structural variations without having to specifically detect and genotype these variants. In addition, k-mer-based analyses can be used in species that lack a reference genome. However, the use of k-mers for GWAS presents challenges such as data size and complexity, lack of standard tools, and potential detection of false associations. Nevertheless, efforts are being made to overcome these challenges and a general analysis workflow has started to emerge. We identify the priorities for k-mer-based GWAS in years to come, notably in the development of user-friendly programs for their analysis and approaches for linking significant k-mers to sequence variation.
Collapse
Affiliation(s)
- Benjamin Karikari
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale P.O. Box TL 1882, Ghana
| | - Marc-André Lemay
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
30
|
Kong Q, Li J, Wang S, Feng X, Shou H. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:1017. [PMID: 36903878 PMCID: PMC10005656 DOI: 10.3390/plants12051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The new gene-editing technology CRISPR/Cas system has been widely used for genome engineering in various organisms. Since the CRISPR/Cas gene-editing system has a certain possibility of low efficiency and the whole plant transformation of soybean is time-consuming and laborious, it is important to evaluate the editing efficiency of designed CRISPR constructs before the stable whole plant transformation process starts. Here, we provide a modified protocol for generating transgenic hairy soybean roots to assess the efficiency of guide RNA (gRNA) sequences of the CRISPR/Cas constructs within 14 days. The cost- and space-effective protocol was first tested in transgenic soybean harboring the GUS reporter gene for the efficiency of different gRNA sequences. Targeted DNA mutations were detected in 71.43-97.62% of the transgenic hairy roots analyzed as evident by GUS staining and DNA sequencing of the target region. Among the four designed gene-editing sites, the highest editing efficiency occurred at the 3' terminal of the GUS gene. In addition to the reporter gene, the protocol was tested for the gene-editing of 26 soybean genes. Among the gRNAs selected for stable transformation, the editing efficiency of hairy root transformation and stable transformation ranged from 5% to 88.8% and 2.7% to 80%, respectively. The editing efficiencies of stable transformation were positively correlated with those of hairy root transformation with a Pearson correlation coefficient (r) of 0.83. Our results demonstrated that soybean hairy root transformation could rapidly assess the efficiency of designed gRNA sequences on genome editing. This method can not only be directly applied to the functional study of root-specific genes, but more importantly, it can be applied to the pre-screening of gRNA in CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Qihui Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| | - Jie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shoudong Wang
- Zhejiang Lab, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianzhong Feng
- Zhejiang Lab, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| |
Collapse
|