1
|
Aggarwal R, Jain N, Dubey GP. Design, synthesis and characterization of tetra substituted 2,3-dihydrothiazole derivatives as DNA and BSA targeting agents: advantages of the visible-light-induced multicomponent approach. RSC Adv 2024; 14:23152-23176. [PMID: 39040709 PMCID: PMC11262567 DOI: 10.1039/d4ra02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
This report describes the visible-light-induced one-pot multicomponent regioselective synthesis of a series of 5-aroyl-3-((arylidene)amino)-2-((arylidene)hydrazono)-4-methyl-2,3-dihydrothiazoles as DNA and BSA targeting agents. The multicomponent condensation of thiocarbohydrazide and aldehydes with α-bromo-1,3-diketones, generated in situ by the bromination of unsymmetrical 1,3-diketones with NBS using white LED light as an environmental friendly source in the presence of EtOAc solvent furnished the titled 2,3-dihydrothiazole derivatives in excellent yields. The exact regioisomeric structure was identified unambiguously by employing multinuclear 2D-NMR spectroscopy [1H-13C] HMBC; [1H-13C] HMQC and [1H-15N] HMBC. Furthermore, the binding characteristics of the synthesized 2,3-dihydrothiazole derivatives were assessed with double-stranded calf-thymus DNA duplex (ct-DNA) and bovine serum albumin (BSA). Initial screening of all the synthesized 2,3-dihydrothiazole derivatives using various in silico techniques including molecular reactivity analysis, Lipinski rule and molecular docking, concluded 5-(4'-chlorobenzoyl)-3-((4''-methoxybenzylidene)amino)-2-(4'''-methoxybenzylidene)hydrazono)-4-methyl-2,3-dihydrothiazole derivative 6a as the most suitable compound for studying binding interaction with DNA and BSA. Additionally, to illustrate the ex vivo binding mode of 6a with DNA and BSA, several spectroscopic techniques viz. UV-visible, circular dichroism (CD), steady-state fluorescence and competitive displacement assays were carried out.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
- CSIR-National Institute of Science Communication and Policy Research New Delhi 110012 India +91-9896740740
| | - Naman Jain
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
| |
Collapse
|
2
|
Balaes T, Marandis CG, Mangalagiu V, Glod M, Mangalagiu II. New insides into chimeric and hybrid azines derivatives with antifungal activity. Future Med Chem 2024; 16:1163-1180. [PMID: 38916566 PMCID: PMC11216630 DOI: 10.1080/17568919.2024.2351288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 06/26/2024] Open
Abstract
During the last decades, five or six member rings azaheterocycles compounds appear to be an extremely valuable source of antifungal agents. Their use seems to be a very attractive solution in antifungal therapy and to overcome antifungal resistance in agriculture. The present review highlights the main results obtained in the field of hybrid and chimeric azine (especially pyridine, quinoline, phenanthroline, bypyridine, naphthyridine and their fused derivatives) derivatives presented in scientific literature from the last 10 years, with emphasis on antifungal activity of the mentioned compounds. A special attention was played to hybrid and chimeric azole-azine class, having in view the high antifungal potential of azoles.
Collapse
Affiliation(s)
- Tiberius Balaes
- Alexandru Ioan Cuza University of Iasi, Department of Biology, Faculty of Biology, 20A Carol 1st Bvd, Iasi, 700505, Romania
| | | | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research-CERNESIM center, 11 Carol I, Iasi700506, Romania
- Stefan Cel Mare University of Suceava, Faculty of Food Engineering, 13 Universitatii Str., Suceava720229, Romania
| | - Mihai Glod
- Grigore T. Popa University of Medicine & Pharmacy, Clinical Hospital CF Iasi, Universității 16 Str., Iasi700115, Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, 11 Carol 1st Bvd, Iasi700506, Romania
| |
Collapse
|
3
|
Sayed EM, Bakhite EA, Hassanien R, Farhan N, Aly HF, Morsy SG, Hassan NA. Novel tetrahydroisoquinolines as DHFR and CDK2 inhibitors: synthesis, characterization, anticancer activity and antioxidant properties. BMC Chem 2024; 18:34. [PMID: 38365746 PMCID: PMC10873978 DOI: 10.1186/s13065-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
In this study, we synthesized new 5,6,7,8-tetrahydroisoquinolines and 6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines based on 4-(N,N-dimethylamino)phenyl moiety as expected anticancer and/or antioxidant agents. The structure of all synthesized compounds were confirmed by spectral date (FT-IR, 1H NMR, 13C NMR) and elemental analysis. We evaluated the anticancer activity of these compounds toward two cell lines: A459 cell line (lung cancer cells) and MCF7 cell line (breast cancer cells). All tested compounds showed moderate to strong anti-cancer activity towards the two cell lines. Compound 7e exhibited the most potent cytotoxic activity against A549 cell line (IC50: 0.155 µM) while compound 8d showed the most potent one against MCF7 cell line (IC50: 0.170 µM) in comparison with doxorubicin. In addition, we examined the effect of compounds 7e and 8d regarding the growth of A549 and MCF7 cell lines, employing flow cytometry and Annexin V-FITC apoptotic assay. Our results showed that compound 7e caused cell cycle arrest at the G2/M phase with a 79-fold increase in apoptosis of A459 cell line. Moreover, compound 8d caused cell cycle arrest at the S phase with a 69-fold increase in apoptosis of MCF7 cell line. Furthermore, we studied the activity of these compounds as enzyme inhibitors against several enzymes. Our findings by docking and experimental studies that compound 7e is a potent CDK2 inhibitor with IC50 of 0.149 µM, compared to the Roscovitine control drug with IC50 of 0.380 µM. We also found that compound 8d is a significant DHFR inhibitor with an IC50 of 0.199 µM, compared to Methotrexate control drug with IC50 of 0.131 µM. Evaluation of the antioxidant properties of ten compounds was also studied in comparison with Vitamin C. Compounds 1, 3, 6, 7c and 8e have higher antioxidant activity than Vitamin C which mean that these compounds can used as potent antioxidant drugs.
Collapse
Affiliation(s)
- Eman M Sayed
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Etify A Bakhite
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Reda Hassanien
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Nasser Farhan
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre, El-Behooth St., Dokki, Cairo, 12622, Egypt
| | - Salma G Morsy
- Department of Cancer Biology, Cancer Immunology and Virology Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nivin A Hassan
- Department Cancer Biology, Pharmacology and Experimental Oncology Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Ungureanu D, Tiperciuc B, Nastasă C, Ionuț I, Marc G, Oniga I, Oniga O. An Overview of the Structure-Activity Relationship in Novel Antimicrobial Thiazoles Clubbed with Various Heterocycles (2017-2023). Pharmaceutics 2024; 16:89. [PMID: 38258100 PMCID: PMC10820536 DOI: 10.3390/pharmaceutics16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is an increasing problem for global public health. One of the strategies to combat this issue is the synthesis of novel antimicrobials through rational drug design based on extensive structure-activity relationship studies. The thiazole nucleus is a prominent feature in the structure of many authorized antimicrobials, being clubbed with different heterocycles. The purpose of this review is to study the structure-activity relationship in antimicrobial thiazoles clubbed with various heterocycles, as reported in the literature between 2017 and 2023, in order to offer an overview of the last years in terms of antimicrobial research and provide a helpful instrument for future research in the field.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Cristina Nastasă
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (C.N.); (I.I.); (G.M.); (O.O.)
| |
Collapse
|
5
|
Khalifa Z, Upadhyay R, Patel AB. Arylidene and amino spacer-linked rhodanine-quinoline hybrids as upgraded antimicrobial agents. Chem Biol Drug Des 2023; 102:1632-1642. [PMID: 37697906 DOI: 10.1111/cbdd.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Antibiotic resistance associated with various microorganisms such as Gram-positive, Gram-negative, fungal strains, and multidrug-resistant tuberculosis increases the risk of healthcare survival. Preliminary therapeutics becoming ineffective that might lead to noteworthy mortality presents a crucial challenge for the scientific community. Hence, there is an urgent need to develop hybrid compounds as antimicrobial agents by combining two or more bioactive heterocyclic moieties into a single molecular framework with fewer side effects and a unique mode of action. This review highlights the recent advances (2013-2023) in the pharmacology of rhodanine-linked quinoline hybrids as more effective antimicrobial agents. In the drug development process, linker hybrids acquire the top position due to their excellent π-stacking and Van der Waals interaction with the DNA active sites of pathogens. A molecular hybridization strategy has been optimized, indicating that combining these two bioactive moieties with an arylidene and an amino spacer linker increases the antimicrobial potential and reduces drug resistance. Moreover, the structure-activity relationship study is discussed to express the role of various functional groups in improving and decrementing antimicrobial activities for rational drug design. Also, a linker approach may accelerate the development of dynamic antimicrobial agents through molecular hybridization.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
6
|
Ayman R, Abusaif MS, Radwan AM, Elmetwally AM, Ragab A. Development of novel pyrazole, imidazo[1,2-b]pyrazole, and pyrazolo[1,5-a]pyrimidine derivatives as a new class of COX-2 inhibitors with immunomodulatory potential. Eur J Med Chem 2023; 249:115138. [PMID: 36696764 DOI: 10.1016/j.ejmech.2023.115138] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Searching for new compounds with anti-inflammatory properties is a significant target since inflammation is a major cause of pain. A series of pyrazole, imidazopyrazolone, and pyrazolopyrimidine derivatives were designed and synthesized by reaction of 3,5-diamino-1H-pyrazole derivative with cyclic and acyclic carbonyl reagents. The structure of the newly synthesized derivatives were fully characterized using different spectroscopic data and elemental analysis, and therefore, evaluated as COX-2 inhibitors. The in vitro COX-2 activity of the tested derivatives 2-13 displayed moderate to good potency with two derivatives 8 and 13 that exhibiting high potency to COX-2 with IC50 values of 5.68 ± 0.08 and 3.37 ± 0.07 μM compared with celecoxib (IC50 = 3.60 ± 0.07 μM) and meloxicam (IC50 = 7.58 ± 0.13 μM). Furthermore, the most active pyrazolo[1,5-a]pyrimidine derivatives 8 and 13 were evaluated to measure the levels of pro-inflammatory proteins such as TNF-α and IL-6 using qRT-PCR in RAW264.7 cells, and the results showed down-regulation of two immunomodulatory proteins. Surprisingly, these derivatives 8 and 13 revealed a decrease in IL-6 level with inhibition percentages of 65.8 and 70.3%, respectively, compared with celecoxib (% = 76.8). Further, compounds 8 and 13 can regulate and suppress the TNF-α with percentage inhibition of 63.1 and 59.2% to controls, while celecoxib displayed an inhibition percentage of 72.7. The Quantum chemical calculation was conducted, and data explained the structural features crucial to the activity. The molecular docking simulation and ADMET predictions revealed that the most active derivatives have good binding affinity, possess appropriate drug-likeness properties and low toxicity profiles. Finally, compounds 8 and 13 demonstrated COX-2 inhibitors with α-TNF and IL-6 suppression capabilities as a dual-action strategy to get more effective treatment.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science Girls, Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science Boys, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science Girls, Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | | | - Ahmed Ragab
- Department of Chemistry, Faculty of Science Boys, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
7
|
Development of new spiro[1,3]dithiine-4,11'-indeno[1,2-b]quinoxaline derivatives as S. aureus Sortase A inhibitors and radiosterilization with molecular modeling simulation. Bioorg Chem 2023; 131:106307. [PMID: 36481380 DOI: 10.1016/j.bioorg.2022.106307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Multi-drug resistant microbes have become a severe threat to human health and arise a worldwide concern. A total of fifteen spiro-1,3-dithiinoindenoquinoxaline derivatives 2-7 were synthesized and evaluated for their biological activities against five standard and MDRB pathogens. The MIC and MBC/MFC for the most active derivatives were determined in vitro via broth microdilution assay. These derivatives showed significant activity against the tested strains with microbicidal behavior, with compound 4b as the most active compound (MIC range between 0.06 and 0.25 µg/mL for bacteria strains and MIC = 0.25 µg/mL for C. albicans). The most active spiro-1,3-dithiinoindenoquinoxaline derivatives were able to inhibit the activity of SrtA with IC50 values ranging from 22.15 ± 0.4 µM to 37.12 ± 1.4 µM. In addition, the active spiro-1,3-dithiinoindenoquinoxaline attenuated the in vitro virulence-related phenotype of SrtA by weakening the adherence of S. aureus to fibrinogen and reducing the biofilm formation. Surprisingly, compound 4b revealed potent SrtA inhibitory activity with IC50 = 22.15 µM, inhibiting the adhesion of S. aureus with 39.22 ± 0.15 % compared with untreated 9.43 ± 1.52 %, and showed a reduction in the biofilm biomass of S. aureus with 32.27 ± 0.52 %. We further investigated the effect of gamma radiation as a sterilization method on the microbial load and found that a dose of 5 kGy was sufficient to eradicate the microbial load. The quantum chemical studies exhibited that the tested derivatives have a small energy band gap (ΔE = -2.95 to -3.61 eV) and therefore exert potent bioactivity by interacting with receptors more stabilizing.
Collapse
|
8
|
Ammar YA, Micky JA, Aboul-Magd DS, Abd El-Hafez SMA, Hessein SA, Ali AM, Ragab A. Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem Biol Drug Des 2023; 101:245-270. [PMID: 36305722 DOI: 10.1111/cbdd.14154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Jehan A Micky
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Sondos M A Abd El-Hafez
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sadia A Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abeer M Ali
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. In vitro enzymatic evaluation of some pyrazolo[1,5-a]pyrimidine derivatives: Design, synthesis, antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities with molecular modeling simulation. Drug Dev Res 2023; 84:3-24. [PMID: 36380556 DOI: 10.1002/ddr.22008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The strategy of utilizing nitrogen compounds in various biological applications has recently emerged as a powerful approach to exploring novel classes of therapeutics to face the challenge of diseases. A series of pyrazolo[1,5-a]pyrimidine-based compounds 3a-l and 5a-f were prepared by the direct cyclo-condensation reaction of 5-amino-1H-pyrazoles 1a, b with 2-(arylidene)malononitriles and 3-(dimethylamino)-1-aryl-prop-2-en-1-ones, respectively. The structures of the new pyrazolo[1,5-a]pyrimidine compounds were confirmed via spectroscopic techniques. The in vitro biological activities of all pyrazolo[1,5-a]pyrimidines 3a-l and 5a-f were evaluated by assaying total antioxidant capacity, iron-reducing power, the scavenging activity against 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, anti-diabetic, anti-Alzheimer, and anti-arthritic biological activities. All compounds displayed good to potent bioactivity, and three compounds 3g, 3h, and 3l displayed the most active derivatives. Among these derivatives, compound 3l exhibited the highest antioxidant (total antioxidant capacity [TAC] = 83.09 mg gallic acid/g; iron-reducing power [IRP] = 47.93 µg/ml) and free radicals scavenging activities with (DPPH = 18.77 µg/ml; ABTS = 40.44%) compared with ascorbic acid (DPPH = 4.28 µg/ml; ABTS = 38.84%). Furthermore, compound 3l demonstrated the strongest inhibition of α-amylase with a percent inhibition of 72.91 ± 0.14 compared to acarbose = 67.92 ± 0.09%. Similarly, it displayed acetylcholinesterase inhibition of 62.80 ± 0.06%. However, compound 3i showed a significantly higher inhibition percentage for protein denaturation and proteinase at 20.66 ± 0.00 and 26.42 ± 0.06%, respectively. Additionally, some in silico ADMET properties were predicted and studied. Finally, molecular docking simulation was performed inside the active site of α-amylase and acetylcholinesterase to study their interactions.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
10
|
Ayman R, Radwan AM, Elmetwally AM, Ammar YA, Ragab A. Discovery of novel pyrazole and pyrazolo[1,5-a]pyrimidine derivatives as cyclooxygenase inhibitors (COX-1 and COX-2) using molecular modeling simulation. Arch Pharm (Weinheim) 2023; 356:e2200395. [PMID: 36336646 DOI: 10.1002/ardp.202200395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
11
|
Synthesis, antimicrobial activity and molecular docking studies of spiroquinoline-indoline-dione and spiropyrazolo-indoline-dione derivatives. Sci Rep 2023; 13:1676. [PMID: 36717728 PMCID: PMC9885930 DOI: 10.1038/s41598-023-27777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Spiro[benzo[h]quinoline-7,3'-indoline]diones and spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]diones were efficiently synthesized via one-pot multi-component reactions under ultrasound-promoted conditions. Spiro[benzo[h]quinoline-7,3'-indoline]dione derivatives were successfully developed by the reaction of isatins, naphthalene-1-amine and 1,3-dicarbonyl compounds. The spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]dione derivatives were prepared by the reaction of isatins, 5-amino-1-methyl-3-pheylpyrazole, and 1,3-dicarbonyl compounds by using ( ±)-camphor-10-sulfonic acid as a catalyst in H2O/EtOH (3:1 v/v) solvent mixture. The antibacterial activity of the synthesized compounds was evaluated against, Enterococcus faecalis, Staphylococcus aureus and Candida albicans. Compounds 4b, 4h, and 6h showed the strongest antimicrobial activity toward both bacteria. The MIC values of these compounds ranged from 375-3000 µg/mL. The effect of these compounds (4b, 4h, 6h) as a function of applied dose and time was investigated by a kinetic study, and the interaction with these antimicrobial results was simulated by a molecular docking study. We also used the docking approach with Covid-19 since secondary bacterial infections. Docking showed that indoline-quinoline hybrid compounds 4b and 4h exerted the strongest docking binding value against the active sites of 6LU7. In addition, the synthesized compounds had a moderate to good free radical scavenging activity.
Collapse
|
12
|
Sabt A, Eldehna WM, Ibrahim TM, Bekhit AA, Batran RZ. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies. Eur J Med Chem 2023; 246:114959. [PMID: 36493614 DOI: 10.1016/j.ejmech.2022.114959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In a search for new drug candidates for one of the neglected tropical diseases, leishmaniasis, twenty quinoline-isatin hybrids were synthesized and tested for their in vitro antileishmanial activity against Leishmaniamajor strain. All the synthesized compounds showed promising in vitro activity against the promastigote form in a low micromolar range (IC50 = 0.5084-5.9486 μM) superior to the reference miltefosine (IC50 = 7.8976 μM). All the target compounds were then tested against the intracellular amastigote form and showed promising inhibition effects (IC50 = 0.60442-8.2948 μM versus 8.08 μM for miltefosine). Compounds 4e, 4b and 4f were shown to possess the highest antileishmanial activity against both promastigote and amastigote forms. The most active compounds were proven to exhibit their significant antileishmanial effects through antifolate mechanism, targeting DHFR-TS and PTR1. To evaluate the safety profile of the most active derivatives 4e, 4b and 4f, the in vitro cytotoxicity test was carried out and displayed higher selectivity indices than the reference miltefosine. Molecular docking within putative target protein PTR1 confirmed the high potentiality of the most active compounds 4e, 4b and 4f to block the catalytic activity of Lm-PTR1.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
13
|
Khattab ESAEH, Ragab A, Abol-Ftouh MA, Elhenawy AA. Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins. J Biomol Struct Dyn 2022; 40:13291-13309. [PMID: 34647855 PMCID: PMC8544674 DOI: 10.1080/07391102.2021.1989036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 is a pandemic virus that caused infections and deaths in many world countries, including the Middle East. The virus-infected human cells by binding via ACE-2 receptor through the Spike protein of the virus with Furin's help causing cell membrane fusion leading to Covid-19-cell entry. No registered drugs or vaccines are triggering this pandemic viral disease yet. Our present work is based on molecular docking and dynamics simulation that performed to spike protein-ACE-2 interface complex, ACE-2 receptor, Spike protein (RBD), and Furin as targets for new small molecules. These drugs target new potential therapies to show their probabilities toward the active sites of mentioned proteins, strongly causing inhibition and/or potential therapy for covid-19. All target proteins were estimated against new target compounds under clinical trials and repurposing drugs currently present. Possibilities of those molecules and potential therapeutics acting on a certain target were predicted. MD simulations over 200 ns with molecular mechanics-generalized Born surface area (MMGBSA) binding energy calculations were performed. The structural and energetic analyses demonstrated the stability of the ligands-MPros complex. Our present work will introduce new visions of some biologically active molecules for further studies in-vitro and in-vivo for Covid-19, repurposing of these molecules should be taking place under clinical works and offering different strategies for drugs repurposing against Covid-19 diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt,CONTACT Ahmed Ragab ; Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo11884, Egypt
| | - Mahmoud A. Abol-Ftouh
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt,Mahmoud A. Abol-Ftouh Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo11884, Egypt
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
14
|
Hybrid Azine Derivatives: A Useful Approach for Antimicrobial Therapy. Pharmaceutics 2022; 14:pharmaceutics14102026. [PMID: 36297461 PMCID: PMC9610418 DOI: 10.3390/pharmaceutics14102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, infectious diseases caused by microorganisms are a major threat to human health, mostly because of drug resistance, multi-drug resistance and extensive-drug-resistance phenomena to microbial pathogens. During the last few years, obtaining hybrid azaheterocyclic drugs represents a powerful and attractive approach in modern antimicrobial therapy with very promising results including overcoming microbial drug resistance. The emphasis of this review is to notify the scientific community about the latest recent advances from the last five years in the field of hybrid azine derivatives with antimicrobial activity. The review is divided according to the main series of six-member ring azaheterocycles with one nitrogen atom and their fused analogs. In each case, the main essential data concerning synthesis and antimicrobial activity are presented.
Collapse
|
15
|
Novel cyclohepta[b]thiophene derivative incorporating pyrimidine, pyridine, and chromene moiety as potential antimicrobial agents targeting DNA gyrase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Ragab A, Abusaif MS, Aboul-Magd DS, Wassel MMS, Elhagali GAM, Ammar YA. A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Dev Res 2022; 83:1305-1330. [PMID: 35716118 DOI: 10.1002/ddr.21960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt
| | - Gameel A M Elhagali
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Saadon KE, Taha NMH, Mahmoud NA, Elhagali GAM, Ragab A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractA new series of pyridine-2-one and pyrazole derivatives were designed and synthesized based on cyanoacrylamide derivatives containing 2,4-dichlro aniline and 6-methyl 2-amino pyridine as an aryl group. Condensation of cyanoacrylamide derivatives 3a–d with different active methylene (malononitrile, ethyl cyanoacetate cyanoacetamide, and ethyl acetoacetate) in the presence of piperidine as basic catalyst afforded the corresponding pyridinone derivatives 4a–c, 5, 9, and 13. Furthermore, the reaction of cyanoacrylamide derivatives 3a–d with bi-nucleophile as hydrazine hydrate and thiosemicarbazide afforded the corresponding pyrazole derivatives 14a,b and 16. The newly designed derivatives were confirmed and established based on the elemental analysis and spectra data (IR, 1H NMR, 13C NMR, and mass). The in vitro antibacterial activity was evaluated against four bacterial strains with weak to good antibacterial activity. Moreover, the results indicated that the most active derivatives 3a, 4a, 4b, 9, and 16 might lead to antibacterial agents, especially against B. subtilis and P. vulgaris. The DFT calculations were performed to estimate its geometric structure and electronic properties. In addition, the most active pyridinone and pyrazole derivatives were further evaluated for in silico physicochemical, drug-likeness, and toxicity prediction. These derivatives obeyed all Lipinski’s and Veber’s rules without any violation and displayed non-immunotoxin, non-mutagenic, and non-cytotoxic. Molecular docking simulation was performed inside the active site of Topoisomerase IV (PDB:3FV5). It displayed binding energy ranging from -14.97 kcal/mol to -18.86 kcal/mol with hydrogen bonding and arene–cation interaction. Therefore, these derivatives were suggested to be good antibacterial agents via topoisomerase IV inhibitor.
Graphical abstract
Collapse
|
18
|
Ragab A, Ammar YA, Ezzat A, Mahmoud AM, Mohamed MBI, El-Tabl AS, Farag RS. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput Biol Med 2022; 145:105473. [PMID: 35395516 DOI: 10.1016/j.compbiomed.2022.105473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 μg/mL) against bacterial strains and (MIC = 7.81 μg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 μg/mL) and (MFC = 13.58 μg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Ezzat
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ammar M Mahmoud
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Basseem I Mohamed
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
19
|
One-Pot Synthesis and Molecular Modeling Studies of New Bioactive Spiro-Oxindoles Based on Uracil Derivatives as SARS-CoV-2 Inhibitors Targeting RNA Polymerase and Spike Glycoprotein. Pharmaceuticals (Basel) 2022; 15:ph15030376. [PMID: 35337173 PMCID: PMC8954694 DOI: 10.3390/ph15030376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a–e and isatin derivatives 1a–c to synthesize spiro-oxindoles 3a–d, 4a–e, and 5a–e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5′-pyrido[2,3-d:6,5-d’]dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.
Collapse
|
20
|
Ezzat A, Mohamed MBI, Mahmoud AM, Farag RS, El-Tabl A, Ragab A. Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies of new Cu (II), Zn (II) thiosemicarbazone based on sulfonyl isatin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Ali Mohamed H, Ammar YA, A.M. Elhagali G, A. Eyada H, S. Aboul-Magd D, Ragab A. In Vitro Antimicrobial Evaluation, Single-Point Resistance Study, and Radiosterilization of Novel Pyrazole Incorporating Thiazol-4-one/Thiophene Derivatives as Dual DNA Gyrase and DHFR Inhibitors against MDR Pathogens. ACS OMEGA 2022; 7:4970-4990. [PMID: 35187315 PMCID: PMC8851638 DOI: 10.1021/acsomega.1c05801] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 05/05/2023]
Abstract
A series of thiazol-4-one/thiophene-bearing pyrazole derivatives as pharmacologically attractive cores were initially synthesized using a hybridization approach. All structures were confirmed using spectra analysis techniques (IR, 1H NMR, and 13C NMR). In vitro antimicrobial activities, including the minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill assay, were evaluated for the most active derivatives 4a, 5a, 7b, 10, and 13. These derivatives were significantly active against the tested pathogens, with compound 7b as the most active derivative (MIC values range from 0.22 to 0.25 μg/mL). In the MBC and MFC, the active target pyrazole derivatives showed -cidal activities toward the pathogenic isolates. Further, the inhibition of biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis was also carried out. Additionally, these derivatives displayed significant antibiofilm potential with a superior % reduction in the biofilm formation compared with Ciprofloxacin. The target derivatives behaved synergistically with Ciprofloxacin and Ketoconazole, reducing their MICs. Hemolytic results revealed that these derivatives were nontoxic with a significantly low hemolytic activity (%lysis range from 3.23 to 15.22%) compared with Triton X-100 and showed noncytotoxicity activity with IC50 values > 60 μM. In addition, these derivatives proved to be active DNA gyrase and DHFR inhibitors with IC50 ranging between 12.27-31.64 and 0.52-2.67 μM, respectively. Furthermore, compound 7b showed bactericidal activity at different concentrations in the time-kill assay. Moreover, a gamma radiation dose of 10.0 kGy was efficient for sterilizing compound 7b and enhancing its antimicrobial activity. Finally, molecular docking simulation of the most promising derivatives exhibited good binding energy with different interactions.
Collapse
Affiliation(s)
- Hazem Ali Mohamed
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Yousry A. Ammar
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- ;
| | - Gameel A.M. Elhagali
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Hassan A. Eyada
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Dina S. Aboul-Magd
- Drug
Radiation Research Department, National Center for Radiation
Research and Technology (NCRRT), Egyptian
Atomic Energy Authority, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- ; . Tel.: + 20201009341359
| |
Collapse
|
22
|
Potential bacterial biofilm, MRSA, and DHFR inhibitors based on new morpholine-linked chromene-thiazole hybrids: One-pot synthesis and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
24
|
Alzahrani AY, Ammar YA, Abu-Elghait M, Salem MA, Assiri MA, Ali TE, Ragab A. Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study. Bioorg Chem 2021; 119:105571. [PMID: 34959177 DOI: 10.1016/j.bioorg.2021.105571] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Nowadays, it's imperative to develop novel antimicrobial agents active against both drug-sensitive and drug-resistant bacterial infections with favorable profiles as high efficacy, low toxicity, and short therapy duration. Accordingly, a series of new thiazolo-indolin-2-one derivatives were synthesized based on acid and base catalyzed condensation or reaction of thiosemicarbazone 8 with different electrophilic reagents. The structure of the new compounds was confirmed based on elemental analysis and spectral data. Based on the MIC results, the most active thiazolo-indoline derivatives 2, 4, 7a, and 12 exhibited promising antibacterial activity against gram-positive and gram-negative bacteria with weak to moderate antifungal activities. Surprisingly, the N-(thiazol-2-yl)benzenesulfonamide derivative 4 was found to be most active on antibiofilm activity against both S. aureus (ATCC 29213) with BIC50 (1.95 ± 0.01 µg/mL), while 5-(2-oxoindolin-3-ylidene)-thiazol-4(5H)-one derivative 7a exhibited the strongest antibiofilm activity against P. aeruginosa pathogens with BIC50 (3.9 ± 0.16 µg/mL). Further, the thiazole derivatives 2, 4 and 12 exhibited a significant inhibition activity against the fsr system in a dose-dependent manner without affecting bacterial growth. The target derivatives behaved synergistic and additively effect against MDR p. aeruginosa, and thiazole derivative 12 exhibited a high synergistic effect with most tested antibiotics except Cefepime with FIC value ranging between 0.249 and 1.0, reducing their MICs. Interestingly, the 3-(2-(4-thiazol-2-yl)hydrazono)indolin-2-one derivative 12 displayed the highest selectivity to DHFR inhibitory with IC50 value 40.71 ± 1.86 nM superior to those of the reference Methotrexate. Finally, in silico molecular modeling simulation, some physicochemical properties and toxicity predictions were performed for the most active derivatives.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia; Department of Chemistry, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Chemistry, Faculty of Education, Ain Shams University, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| |
Collapse
|
25
|
Rizk HF, El-Borai MA, Ragab A, Ibrahim SA, Sadek ME. A Novel of Azo-Thiazole Moiety Alternative for Benzidine-Based Pigments: Design, Synthesis, Characterization, Biological Evaluation, and Molecular Docking Study. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hala F. Rizk
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Seham A. Ibrahim
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed E. Sadek
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Ibrahim MA, Emara AAA, Taha A, Adly OMI, Nabeel AI, Salah N. Novel metal complexes with pyrano[3,2‐
c
]quinoline‐3‐carboxaldehyde: Synthesis, spectroscopic, molecular modeling, QSAR, antimicrobial, and antitumor studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Adel A. A. Emara
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Ali Taha
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Omima M. I. Adly
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Asmaa I. Nabeel
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Nesma Salah
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
27
|
Alzahrani AY, Ammar YA, Salem MA, Abu-Elghait M, Ragab A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives as DNA gyrase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100266. [PMID: 34747519 DOI: 10.1002/ardp.202100266] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
28
|
Ibrahim SA, Fayed EA, Rizk HF, Desouky SE, Ragab A. Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA. Bioorg Chem 2021; 116:105339. [PMID: 34530234 DOI: 10.1016/j.bioorg.2021.105339] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023]
Abstract
Microbial resistance is a big concern worldwide, making the development of new antimicrobial drugs difficult. The thiazole and pyrazole rings are important heterocyclic compounds utilized to produce a variety of antimicrobial medications. As a result, a series of new bis-thiazolyl-pyrazole derivatives 3, 4a-c, 5a, b, and 6a-c was synthesized by reacting bis hydrazonoyl bromide with several active methylene reagents in a one-pot reaction. The assigned structure was characterized entirely based on elemental and spectral analyses. The antimicrobial activity represented by MIC was performed using a resazurin-based turbidimetric (TB) assay. The results exhibited good antimicrobial activity against gram-positive strains, especially S. aureus (ATCC6538) while showing poor to moderate activity against gram-negative and fungal strains. Furthermore, the most active derivatives 3, 4a, 4c, and 5b were evaluated for MIC, MBC, antibiofilm, hemolytic assay, and drug combination testing against two S. aureus (ATCC6538) and MRSA (ACL18) strains. Additionally, bis-thiazolyl pyrazole 3, 4c, and 5b exhibited more potent inhibitory activity for DHFR with IC50 values (6.34 ± 0.26, 7.49 ± 0.28, and 3.81 ± 0.16 µM), respectively, compared with Trimethoprim (8.34 ± 0.11 µM). The bis-1-(substituted-thiazol-2-yl)-1H-pyrazole-4-carbonitrile derivative 5b was the most active member with MIC values ranging from (0.12-0.25 µM) compared to Vancomycin (1-2 µM), and MBC values ranging from (0.5-1 µM) for S. aureus (ATCC6538) and MRSA (ACL18). Surprisingly, compound 5b displayed bactericidal behavior, synergistic effect with three commercial antibiotics, and inhibited DHFR with 2.1 folds higher than Trimethoprim. Finally, good findings were obtained from in silico investigations incorporating toxicity prediction and molecular docking simulation.
Collapse
Affiliation(s)
- Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Eman A Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Hala F Rizk
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Said E Desouky
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|