1
|
Dalbanjan NP, Praveen Kumar SK. A Chronicle Review of In-Silico Approaches for Discovering Novel Antimicrobial Agents to Combat Antimicrobial Resistance. Indian J Microbiol 2024; 64:879-893. [PMID: 39282180 PMCID: PMC11399514 DOI: 10.1007/s12088-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of in-silico techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. In-silico techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating in-silico approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in in-silico techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01355-x.
Collapse
Affiliation(s)
| | - S K Praveen Kumar
- Protein Biology Lab, Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
2
|
Singh K, Singh VK, Mishra R, Sharma A, Pandey A, Srivastava SK, Chaurasia H. Design, Synthesis, DFT, docking Studies, and antimicrobial evaluation of novel benzimidazole containing sulphonamide derivatives. Bioorg Chem 2024; 149:107473. [PMID: 38820940 DOI: 10.1016/j.bioorg.2024.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
In silico approaches have been employed to design a new series of benzimidazole-containing sulphonamide derivatives and qualified compounds have been synthesized to analyze their potential as antimicrobial agents. Antibacterial screening of all synthesized compounds was done using the broth microdilution method against several human pathogenic bacteria, viz. Gram-positive bacteria [B. cerus (NCIN-2156), B. subtilis (ATCC-6051), S. aureus (NCIM-2079)] and Gram-negative bacteria [P. aeruginosa (NCIM-2036), E. coli (NCIM-2065), and a drug-resistant strain of E. coli (U-621)], and the compounds presented admirable MIC values, ranging between 100-1.56 µg/mL. The combinatorial analysis showed the magnificent inhibitory efficiency of the tested compounds, acquired equipotent to ten-fold more potency compared to original MIC values. An immense synergistic effect was exhibited by the compounds during combination studies with reference drugs chloramphenicol and sulfamethoxazole was presented as fractional inhibitory concentration (∑FIC). Enzyme inhibition studies of all synthesized compounds were done by using peptidyl transferase and dihydropteroate synthase enzymes isolated from E. coli and S. aureus and each of the compound presented the admirable IC50 values, where the lead compound 3 bound to peptidyl transferase (of S. aureus with IC50 363.51 ± 2.54 µM and E. coli IC50 1.04 ± 0.08 µM) & dihydropteroate synthase (of S. aureus IC50 3.51 ± 0.82 µM and E. coli IC50 2.77 ± 0.65 µM), might account for the antimicrobial effect, exhibited excellent inhibition potential. Antifungal screening was also performed employing food poisoning methods against several pathogenic fungal species, viz A. flavus, F. oxysporum, A. niger, and A. brassicae. The obtained result indicated that few compounds can prove to be a potent drug regimen against dreaded MDR strains of microbes. Structural activity relationship (SAR) analysis and docking studies reveal that the presence of electron-withdrawing, polar, and more lipophilic substituents positively favor the antibacterial activity, whereas, electron-withdrawing, more polar, and hydrophilic substituents favor the antifungal activities. A robust coherence has been found in in-silico and in-vitro biological screening results of the compounds.
Collapse
Affiliation(s)
- Kajal Singh
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Vishal K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Mishra
- Bio-organic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Ashwani Sharma
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Archana Pandey
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Santosh K Srivastava
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Himani Chaurasia
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India.
| |
Collapse
|
3
|
Singh VK, Kumari P, Som A, Rai S, Mishra R, Singh RK. Design, synthesis and antimicrobial activity of novel quinoline derivatives: an in silico and in vitro study. J Biomol Struct Dyn 2024; 42:6904-6924. [PMID: 37477261 DOI: 10.1080/07391102.2023.2236716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
A series of new quinoline derivatives has been designed, synthesized and evaluated as antibacterial and antifungal agents functioning as peptide deformylase enzyme (PDF) inhibitors and fungal cell wall disruptors on the basis of computational and experimental methods. The molecular docking and ADMET assessment aided in the synthesis of quinoline derivatives starting from 6-amino-4-methyl-1H-quinoline-2-one substituted with different types of sulfonyl/benzoyl/propargyl moieties. These newly synthesized compounds were evaluated for their in vitro antibacterial and antifungal activity. Antibacterial screening of all compounds showed excellent MIC value (MIC, 50 - 3.12 µg/mL) against bacterial strains, viz. Bacillus cerus, Staphylococcus, Pseudomonas and Escherichia coli. Compounds 2 and 6 showed better activity. Fractional inhibitory concentration (FIC) values of compounds were lowered by 1/2 to 1/128 of the original MIC values when a combinatorial screening with reference drugs was performed. Further, antifungal screening against fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans also showed that all compounds were potentially active and compound 6 being the most potent. Further, the cytotoxicity experiments revealed that compound 6 was the least toxic molecule. The molecular dynamics (MD) simulation investigations elucidated the conformational stability of compound 6-PDF complex with flexible binding pocket residues. The highest number of stable hydrogen bonds with the PDF residues during the entire simulation time illustrated strong binding affinity of compound 6 with PDF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Priyanka Kumari
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Shivangi Rai
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
4
|
Gonfa T, Temesgen A, Erba O, Mengesha ET, Sivasubramanian M. Phytochemicals Analysis, In Vitro Antibacterial Activities of Extracts, and Molecular Docking Studies of the Isolated Compounds from Melhania zavattarii Cufod Leaves. J Trop Med 2023; 2023:8820543. [PMID: 37305212 PMCID: PMC10250093 DOI: 10.1155/2023/8820543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Melhania zavattarii Cufod is an endemic plant species to Ethiopia and is used to treat ailments related to kidney infection. The phytochemical composition and biological activity of M. zavattarii have been not reported yet. Therefore, the present work aimed to investigate phytochemical constituents and evaluate the antibacterial activity of different solvents' leaf extracts and analyze the molecular binding capacity of isolated compounds from the chloroform leaf extract of M. zavattarii. Accordingly, preliminary phytochemical screening was tested by using standard procedures and the result indicated that phytosterols and terpenoids as major and others like alkaloids, saponins, flavonoids, tannins, phlobatannin, and coumarins were detected as minor in extracts. Antibacterial activity of the extracts was evaluated using the disk diffusion agar method, and the activities revealed that chloroform extract showed the highest inhibition zones, 12.08 ± 0.38, 14.00 ± 0.50, and 15.58 ± 0.63 mm against Escherichia coli at 50, 75, and 125 mg/mL concentrations, respectively, compared to that of n-hexane and methanol extracts at respective concentrations. Methanol extract showed the highest zone of inhibition 16.42 + 0.52 against Staphylococcus aureus at 125 mg/mL concentration compared to that of n-hexane and chloroform extracts. Two compounds, namely, β-amyrin palmitate (1) and lutein (2) were isolated and identified for the first time from the chloroform leaf extract of M. zavattarii, and structural elucidations of these compounds were accomplished by using spectroscopic methods (IR, UV, and NMR). For the molecular docking study, 1G2A, which is a protein of E. coli and chloramphenicol standard target, was selected. Binding energies of -9.09, -7.05, and -6.87 kcal/mol were calculated for β-amyrin palmitate, lutein, and chloramphenicol, respectively. The drug-likeness property result indicated that both β-amyrin palmitate and lutein violated two rules of Lipinski's rule of five with molecular weight (g/mol) > 500 and LogP > 4.15. In the near future, further phytochemical investigation and biological activity evaluation should be conducted on this plant.
Collapse
Affiliation(s)
- Teshome Gonfa
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Ayalew Temesgen
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Olyad Erba
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Ephriem T. Mengesha
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Muthusaravanan Sivasubramanian
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| |
Collapse
|
5
|
Kashyap P, Verma S, Gupta P, Narang R, Lal S, Devgun M. Recent insights into antibacterial potential of benzothiazole derivatives. Med Chem Res 2023; 32:1-31. [PMID: 37362317 PMCID: PMC10226039 DOI: 10.1007/s00044-023-03077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Antimicrobial resistance (AMR) is a worldwide concern among infectious diseases due to increased mortality, morbidity and treatment cost. According to WHO 2019 report, among the 32 antibiotics in the clinical trials, only six were classified as innovative and containing novel moiety. The remaining antibiotics from this list contain previously known moiety (WHO AMR 2019). Therefore, the development of novel antibiotics to control resistance problems is crucial. Benzothiazole derivatives are of great interest due to their wide range of biological activities and medicinal applications. Reported data indicated that benzothiazole derivatives displayed antibacterial activity by inhibiting the dihydroorotase, DNA gyrase, uridine diphosphate-n-acetyl enol pyruvyl glucosamine reductase (MurB), peptide deformylase, aldose reductase, casdihydrofolate reductase, enoyl acyl carrier protein reductase, dialkylglycine decarboxylase, dehydrosqualene synthase, dihydropteroate synthase and tyrosine kinase. The present review analyzed the synthesis, structure-activity relationship (SAR) and mechanism of action studies of benzothiazole derivatives as antibacterial agents reported by various research groups in the last five years (2018-2022). Different patents on the antimicrobial activity of benzothiazole derivatives have also been summarized. The finding of the present review will be beneficial for the researchers in the development of novel antibacterial molecules based on benzothiazole moiety. Graphical Abstract
Collapse
Affiliation(s)
- Priyanka Kashyap
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Sangeeta Verma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Pankaj Gupta
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| |
Collapse
|
6
|
Singh VK, Chaurasia H, Kumari P, Som A, Mishra R, Srivastava R, Naaz F, Singh A, Singh RK. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10519-10542. [PMID: 34253149 DOI: 10.1080/07391102.2021.1946716] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new series of quinoline derivatives has been designed and synthesized as probable protease inhibitors (PIs) against severe acute respiratory syndrome coronavirus 2. In silico studies using DS v20.1.0.19295 software have shown that these compounds behaved as PIs while interacting at the allosteric site of target Mpro enzyme (6LU7). The designed compounds have shown promising docking results, which revealed that all compounds formed hydrogen bonds with His41, His164, Glu166, Tyr54, Asp187, and showed π-interaction with His41, the highly conserved amino acids in the target protein. Toxicity Prediction by Komputer Assisted Technology results confirmed that the compounds were found to be less toxic than the reference drug. Further, molecular dynamics simulations were performed on compound 5 and remdesivir with protease enzyme. Analysis of conformational stability, residue flexibility, compactness, hydrogen bonding, solvent accessible surface area (SASA), and binding free energy revealed comparable stability of protease:5 complex to the protease: remdesivir complex. The result of hydrogen bonding showed a large number of intermolecular hydrogen bonds formed between protein residues (Glu166 and Gln189) and ligand 5, indicating strong interaction, which validated the docking result. Further, compactness analysis, SASA and interactions like hydrogen-bonding demonstrated inhibitory properties of compound 5 similar to the existing reference drug. Thus, the designed compound 5 might act as a potential inhibitor against the protease enzyme.Communicated by Ramaswamy H. SarmaHighlightsQuinoline derivatives have been designed as protease inhibitors against SARS-CoV-2.The compounds were docked at the allosteric site of SARS-CoV-2-Mpro enzyme (PDB ID: 6LU7) to study the stability of protein-ligand complex.Docking studies indicated the stable ligand-protein complexes for all designed compounds.The Toxicity Prediction by Komputer Assisted Technology protocol in DS v20.1.0.19295 software was used to evaluate the toxicity of the designed quinoline derivatives.Molecular dynamics studies indicated the formation of stable ligand-Mpro complexes.
Collapse
Affiliation(s)
- Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Himani Chaurasia
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Priyanka Kumari
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Anuradha Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
7
|
Synthesis, DFT calculations, In silico studies, and biological evaluation of pyrano[2,3-c]pyrazole and pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Molecular modelling, DFT, molecular dynamics simulations, synthesis and antimicrobial potential studies of heterocyclic nucleoside mimetics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Synthesis, in-vitro biological evaluation, and molecular docking study of novel spiro-β-lactam-isatin hybrids. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02898-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Seliem IA, Panda SS, Girgis AS, Tran QL, Said MF, Bekheit MS, Abdelnaser A, Nasr S, Fayad W, Soliman AAF, Sakhuja R, Ibrahim TS, Abdel-Samii Z, Al-Mahmoudy AMM. Development of isatin-based Schiff bases targeting VEGFR2 inhibition: Synthesis, characterization, antiproliferative properties, and QSAR studies. ChemMedChem 2022; 17:e202200164. [PMID: 35511203 DOI: 10.1002/cmdc.202200164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Indexed: 11/11/2022]
Abstract
Three sets of isatin-based Schiff bases were synthesized utilizing the molecular hybridization approach. Some of the synthesized Schiff bases show significant to moderate antiproliferative properties against MCF7 (breast), HCT116 (colon), and PaCa2 (pancreatic) cancer cell line with potency compared to reference drugs 5-fluorouracil (5-FU) and sunitinib. Among all, compound 17f (3-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)-1-((1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylindolin-2-one) exhibits promising antiproliferative properties against the MCF7 cancer cell line with 2.1-fold more potency than sunitinib. However, among all the synthesized compounds three (5-methylisatin derivatives) were the most effective against HCT116 in comparison to 5-FU. Compound 17f exhibited the highest anti-angiogenic effect on the vasculature as it significantly reduced BV from 43 mm to 2 mm in comparison to 5.7 mm for Sunitinib and flow cytometry supports the arrest of the cell cycle at G1/S phases. In addition, compound 17f also showed high VEGFR-2 inhibition properties against breast cancer cell lines. Robust 2D-QSAR studies supported the biological data.
Collapse
Affiliation(s)
- Israa A Seliem
- Zagazig University Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, EGYPT
| | - Siva S Panda
- Augusta University, Chemistry & Physics, 1120 15th Street, 30912, Augusta, UNITED STATES
| | - Adel S Girgis
- National Dental Centre, Department of Pesticide Chemistry, EGYPT
| | - Queen L Tran
- Augusta University, Department of Chemistry and Physics, UNITED STATES
| | - Mona F Said
- Cairo University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, EGYPT
| | | | - Anwar Abdelnaser
- The American University in Cairo, Institute of Global Health and Human Ecology, EGYPT
| | - Soad Nasr
- The American University in Cairo, Institute of Global Health and Human Ecology, EGYPT
| | - Walid Fayad
- National Research Centre, Pharmacognosy Department, EGYPT
| | | | - Rajeev Sakhuja
- BITS: Birla Institute of Technology & Science Pilani, Department of Chemistry, INDIA
| | - Tarek S Ibrahim
- King Abdulaziz University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, SAUDI ARABIA
| | - Zakaria Abdel-Samii
- Zagazig University Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, EGYPT
| | - Amany M M Al-Mahmoudy
- Zagazig University Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, EGYPT
| |
Collapse
|
11
|
Singh VK, Mishra R, Kumari P, Som A, Yadav AK, Ram NK, Kumar P, Schols D, Singh RK. In Silico Design, Synthesis and Anti-HIV Activity of Quinoline Derivatives as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)r. Comput Biol Chem 2022; 98:107675. [DOI: 10.1016/j.compbiolchem.2022.107675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022]
|
12
|
Singh VK, Chaurasia H, Mishra R, Srivastava R, Naaz F, Kumar P, Singh RK. Docking, ADMET prediction, DFT analysis, synthesis, cytotoxicity, antibacterial screening and QSAR analysis of diarylpyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Chaurasia H, Singh VK, Mishra R, Yadav AK, Ram NK, Singh P, Singh RK. Molecular modelling, synthesis and antimicrobial evaluation of benzimidazole nucleoside mimetics. Bioorg Chem 2021; 115:105227. [PMID: 34399320 DOI: 10.1016/j.bioorg.2021.105227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023]
Abstract
A series of new N-1-(β-d-ribofuranosyl) benzimidazole derivatives has been designed using in silico methods and synthesized as probable antimicrobial agents. Further, the compounds were assessed for their antibacterial and antifungal activity. Antibacterial screening was done by employing broth micro-dilution method and compounds exhibited excellent inhibitory activity (MIC, 50-1.56 µg/mL) against different human pathogenic bacteria, viz. B. cerus, B. subtilis, S. aureus, E. coli and P. aeruginosa and drug resistant strain (DRS) of E. coli. A great synergistic effect was observed during evaluation of ∑FIC, where a combination study was performed using standard references, viz. chloramphenicol and kanamycin. The MIC data obtained from different methods of combination approach revealed 4-128 fold more potency compared to compounds tested alone. The results clearly indicated the possibility of these compounds as active ingredients of drug regimen used against MDR strains. Antifungal screening were also performed employing two different methods, viz. serial dilution method and zone inhibition method, clearly indicated that compounds were also potentially active against several species of pathogenic fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans. The assessment of structure activity relationship (SAR) clearly revealed that presence of less polar and more hydrophobic substituents positively favours the antibacterial activity, conversely, more polar and hydrophilic substituents favours the antifungal activities. Thus, the results positively endorsed the compounds as potent antibacterial and antifungal agents which could be developed as possible drug regimens.
Collapse
Affiliation(s)
- Himani Chaurasia
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Nand K Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Prashant Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|