1
|
Li P, Wang Y, Wang X, Li R, Wang K, Jiang Y, Zhang M, Huang C, Ma Q, Sun J, Quan J. Preparation of a Novel Oat β-Glucan-Chromium(III) Complex and Its Hypoglycemic Effect and Mechanism. Molecules 2024; 29:1998. [PMID: 38731488 PMCID: PMC11085915 DOI: 10.3390/molecules29091998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
This study synthesized a novel oat β-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.
Collapse
Affiliation(s)
- Pengshou Li
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Yunlu Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Xiaoting Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Rui Li
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Kaihui Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Yu Jiang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Mingyuan Zhang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Chuhan Huang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (P.L.); (Y.W.); (X.W.); (R.L.); (K.W.); (Y.J.); (M.Z.); (C.H.)
| | - Qixiang Ma
- Cancer Institute, Fudan University Cancer Hospital and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Jian Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianye Quan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Rajapandi P, Viruthagiri G. Probing analysis of Cu-doping on the structural, optical, morphological and magnetic properties of hematite nanoparticles and their antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123471. [PMID: 37839211 DOI: 10.1016/j.saa.2023.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
The present study describes the synthesis of pure and Cu doped α-Fe2O3nanoparticles (with various concentrations of Copper 1, 3, 6, and 9 wt%) by conventional chemical precipitation technique and examines their structural, morphological, optical, magnetic, and antibacterial capabilities. The XRD pattern of pure and Cu-doped α-Fe2O3 nanoparticles exhibit rhombohedral structure and the estimated crystalline sizes were ranged from 39 to 58 nm. It is discovered that the estimated density dislocations linked to the agglomeration/cluster formations diminish when interstitial vacancies are filled with copper. The obtained bandgap from Tauc's plot, 2.07 eV of pure α-Fe2O3 is found to less than Cu doped α-Fe2O3 nanoparticles (2.9-3.4 eV), due to the structural changes and the tailing of localised states into deep bandgap energy levels. The intense blue emission bands (410-490 nm) arised due to the movement of trapped electrons from the donor level to the valance band and broad green emission bands (522-560 nm) are due to deep level CuO defect to the Fe2O3. The fundamental stretching of Fe-O vibrations and the presence of Cu in prepared samples were identified in FTIR and Raman spectra. SEM micrograph shows the uniform distribution of spherical nanoparticles with size ranged from 39 to 61 nm, which is in good accord with XRD studies. Further, the magnetic characteristics of the pure and Cu-doped α-Fe2O3 samples were assessed using a vibrating sample magnetometer (VSM); the ensuing hysteresis loop of the Cu-doped α-Fe2O3 displays weaker ferromagnetic behaviour. In the present investigations, the disc diffusion technique has been used to examine the antibacterial activity. Thus, the results of antibacterial activities demonstrated that at concentrations of 200 and 500 μg/ml of pure and Cu-doped α-Fe2O3 NPs, the highest zone of inhibition was found against gram (+ve) positive bacteria and was followed by the gram (-ve) negative bacteria's.
Collapse
Affiliation(s)
- P Rajapandi
- Department of Physics, Annamalai University, Annamalai Nagar -608002, Chidambaram, Tamil Nadu, India
| | - G Viruthagiri
- Department of Physics, Annamalai University, Annamalai Nagar -608002, Chidambaram, Tamil Nadu, India.
| |
Collapse
|
3
|
Sarfraz M, Ibrahim MK, Ejaz SA, Attaullah HM, Aziz M, Arafat M, Shamim T, Elhadi M, Ruby T, Mahmood HK. An Integrated Computational Approaches for Designing of Potential Piperidine based Inhibitors of Alzheimer Disease by Targeting Cholinesterase and Monoamine Oxidases Isoenzymes. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04815-0. [PMID: 38165591 DOI: 10.1007/s12010-023-04815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
The study aimed to evaluate the potential of piperidine-based 2H chromen-2-one derivatives against targeted enzymes, i.e., cholinesterase's and monoamine oxidase enzymes. The compounds were divided into three groups, i.e., 4a-m ((3,4-dimethyl-7-((1-methylpiperidin-4-yl)oxy)-2H-chromen-2-one derivatives), 5a-e (3,4-dimethyl-7-((1-methypipridin-3-yl)methoxy)-2H-chromen-2-one derivatives), and 7a-b (7-(3-(3,4-dihydroisoquinolin-2(1H)-yl)propoxy)-3,4-dimethyl-2H-chromen-2-one derivatives) with slight difference in the basic structure. The comprehensive computational investigations were conducted including density functional theories studies (DFTs), 2D-QSAR studies, molecular docking, and molecular dynamics simulations. The QSAR equation revealed that the activity of selected chromen-2-one-based piperidine derivatives is being affected by the six descriptors, i.e., Nitrogens Count, SdssCcount, SssOE-Index, T-2-2-7, ChiV6chain, and SssCH2E-Index. These descriptor values were further used for the preparation of chromen-2-one based piperidine derivatives. Based on this, 83 new derivatives were created from 7 selected parent compounds. The QSAR model predicted their IC50 values, with compound 4 k and 4kk as the most potent multi-targeted derivative. Molecular docking results exhibited these compounds as the best inhibitors; however, 4kk exhibited greater activity than the parent compounds. The results were further validated by molecular dynamic simulation studies along with the suitable physicochemical properties. These results prove to be an essential guide for the further design and development of new piperidine based chromen-2-one derivatives having better activity against neurodegenerative disorder.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, 64141, Al Ain, United Arab Emirates.
- AU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates.
| | | | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, 64141, Al Ain, United Arab Emirates
| | - Tahira Shamim
- Faculty of Medicine and Allied Health Sciences, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muawya Elhadi
- Department of Physics, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, P.O.Box 1040, Shaqra, Saudi Arabia
| | - Tahira Ruby
- Institute of Zoology, Bahaudin Zakariya University Multan, Multan, 60800, Pakistan
| | - Hafiz Kashif Mahmood
- Institute of Zoology, Bahaudin Zakariya University Multan, Multan, 60800, Pakistan
| |
Collapse
|
4
|
Pandya SB, Socha BN, Dubey RP, Patel UH, Patel RH, Bhatt BS, Thakor P, Bhakhar S, Vekariya N, Valand J. Visible light-driven photocatalysts, quantum chemical calculations, ADMET-SAR parameters, and DNA binding studies of nickel complex of sulfadiazine. Sci Rep 2023; 13:15275. [PMID: 37714951 PMCID: PMC10504334 DOI: 10.1038/s41598-023-42668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
A 3D-supramolecular nickel integrated Ni-SDZ complex was synthesized using sodium salt of sulfadiazine as the ligand and nickel(II) acetate as the metal salt using a condensation process and slow evaporation approach to growing the single crystal. The metal complex was characterized for its composition, functional groups, surface morphology as well as complex 3D structure, by resorting to various analytical techniques. The interacting surface and stability as well as reactivity of the complex were carried out using the DFT platform. From ADMET parameters, human Intestinal Absorbance data revealed that the compound has the potential to be well absorbed, and also Ni-SDZ complex cannot cross the blood-brain barrier (BBB). Additionally, the complex's DNA binding affinity and in-vivo and in-vitro cytotoxic studies were explored utilizing UV-Vis absorbance titration, viscosity measurements, and S. pombe cells and brine shrimp lethality tests. In visible light radiation, the Ni-SDZ complex displayed exceptional photo-degradation characteristics of approximately 70.19% within 70 min against methylene blue (MB).
Collapse
Affiliation(s)
- Sachin B Pandya
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India.
- Vivekanand P.G. College, Govind Guru Tribal University, Banswara, Rajasthan, India.
| | - Bhavesh N Socha
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India.
- Department of Materials Science, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India.
| | - Rahul P Dubey
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Urmila H Patel
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - R H Patel
- Department of Materials Science, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, India
| | - Sanjay Bhakhar
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Nikhil Vekariya
- Department of Materials Science, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Jignesh Valand
- Department of Materials Science, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| |
Collapse
|
5
|
Rajapandi P, Viruthagiri G, Shanmugam N. Influence of Ni doping on hematite nanoparticles for enhanced structural, optical, magnetic properties and antibacterial analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Nayab S, Alam A, Ahmad N, Khan SW, Khan W, Shams DF, Shah MI, Ateeq M, Shah SK, Lee H. Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS OMEGA 2023; 8:17620-17633. [PMID: 37251197 PMCID: PMC10210233 DOI: 10.1021/acsomega.2c08266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Novel thiophene-derived Schiff base ligand DE, where DE is (E)-N1,N1-diethyl-N2-(thiophen-2-ylmethylene)ethane-1,2-diamine, and the corresponding M(II) complexes, [M(DE)X2] (M = Cu or Zn, X = Cl; M = Cd, X = Br), were prepared and structurally characterized. X-ray diffraction studies revealed that the geometry around the center of the M(II) complexes, [Zn(DE)Cl2] and [Cd(DE)Br2], could be best described as a distorted tetrahedral. In vitro antimicrobial screening of DE and its corresponding M(II) complexes, [M(DE)X2], was performed. The complexes were more potent and showed higher activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, fungi Candida albicans, and protozoa Leishmania major compared to the ligand. Among the studied complexes, [Cd(DE)Br2] exhibited the most promising antimicrobial activity against all the tested microbes compared to its analogs. These results were further supported by molecular docking studies. We believe that these complexes may significantly contribute to the efficient designing of metal-derived agents to treat microbial infections.
Collapse
Affiliation(s)
- Saira Nayab
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Aftab Alam
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Nasir Ahmad
- Department
of Chemistry Islamia College University
Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Waliullah Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Dilawar Farhan Shams
- Department
of Environmental Sciences, Abdul Wali Khan
University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ishaq
Ali Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ateeq
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Said Karim Shah
- Department
of Physics, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
7
|
Aljohani FS, Omran OA, Ahmed EA, Al-Farraj ES, Elkady EF, Alharbi A, El-Metwaly NM, Omar Barnawi I, Abu-Dief AM. Design, structural inspection of new bis(1H-benzo[d]imidazol-2-yl)methanone complexes: Biomedical applications and theoretical implementations via DFT and docking approaches. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Recent Overview of Potent Antioxidant Activity of Coordination Compounds. Antioxidants (Basel) 2023; 12:antiox12020213. [PMID: 36829772 PMCID: PMC9952845 DOI: 10.3390/antiox12020213] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds.
Collapse
|
9
|
Al-Gaber MAI, Abd El-Lateef HM, Khalaf MM, Shaaban S, Shawky M, Mohamed GG, Abdou A, Gouda M, Abu-Dief AM. Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:897. [PMID: 36769903 PMCID: PMC9917733 DOI: 10.3390/ma16030897] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated using elemental analyses, FT-IR, 1H-NMR, mass, magnetic moment, diffused reflectance spectral and thermal analysis (TG-DTG), and molar conductivity measurement. According to the FT-IR study, the azo dye ligand exhibited neutral tri-dentate behavior, binding to the metal ions with the azo N, carbonyl O, and protonated phenolic OH. The 1H-NMR spectral study of the Zn(II) complex supported the coordination of the zo dye ligand without proton displacement of the phenolic OH. Diffused reflectance and magnetic moment studies revealed the octahedral geometry of the complexes, as well as their good electrolytic nature, excepting the Zn(II) and Cd(II) complexes, which were nonelectrolytes, as deduced from the molar conductivity study. The theoretical calculations of optimized HOMO-LUMO energies, geometrical parameters, electronic spectra, natural atomic charges, 3D-plots of MEP, and vibrational wavenumbers were computed and elucidated using LANL2DZ and 6-311G (d, p) basis sets of density functional theory (DFT) with the approach of B3LYP DFT and TD-DFT methods. The ligand and complexes have been assayed for their antimicrobial activity and compared with the standard drugs. Most of the complexes have manifested excellent antimicrobial activity against various microbial strains. A molecular docking investigation was also performed, to acquire more information about the binding mode and energy of the ligand and its metal complexes to the Escherichia coli receptor using molecular docking. Altogether, the newly created ligand and complexes showed positive antibacterial effects and are worth future study.
Collapse
Affiliation(s)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Shawky
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria 21934, Egypt
| | - Aly Abdou
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed M. Abu-Dief
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Chemistry Department, College of Science, Taibah University, Medinah 42344, Saudi Arabia
| |
Collapse
|
10
|
Moxifloxacin Metal Complexes: Synthesis, Characterisation, Antimicrobial and Antidiabetic Activities with Docking Studies. Bioinorg Chem Appl 2023. [DOI: 10.1155/2023/3754561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Six new metal complexes of Fe(III), Cu(II), and Hg(II) were synthesised, i.e., three (2, 4, and 5) with moxifloxacin (mono-ligand) and the other three (1, 3 and 6) with moxifloxacin and hydrazine (biligand). These were characterised through UV-Vis, FT-IR, elemental analysis (CHN), atomic absorption spectroscopy, TGA, scanning electron microscopy (SEM), and powder XRD studies. Further, all of these compounds were screened for their antimicrobial, cytotoxic, and antidiabetic potential. The study revealed that the synthesised metal complexes possess an excellent ability to become antifungal agents compared to moxifloxacin. Additionally, the cytotoxicity of compounds 1, 3, and 4 was in the acceptable range with much better antidiabetic potential as compared to the ligand moxifloxacin. Interestingly, the α-amylase inhibition activity of complexes 1 and 3 was found very close to the standard drug acarbose. Furthermore, the computational studies also authenticate the results of the antidiabetic potential of complexes 1, 3, and 4 by presenting the necessary interactions of these compounds with their respective binding sites. The overall results indicate that the antifungal and antidiabetic ability of moxifloxacin is enhanced significantly by complexation with the given metals and the secondary ligand, thereby making it a suitable lead compound for yet another avenue of an antifungal and antidiabetic agent in the field of drug discovery and development.
Collapse
|
11
|
Synthesis and Structural investigation of o-Vanillin scaffold Schiff base metal complexes: Biomolecular interaction and molecular docking studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Tailoring of some novel bis-hydrazone metal chelates, spectral based characterization and DFT calculations for pharmaceutical applications and in-silico treatments for verification. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Alaysuy O, Abumelha HM, Alsoliemy A, Alharbi A, Alatawi NM, Osman HE, Zaky R, El-Metwaly NM. Elucidating of new hydrazide-based complexes derived from Pd(II), Cu(II) and Cd(II) ions: studies concerning spectral, DFT, Hirshfeld-crystal, biological screening beside Swiss-ADME verification. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
M.Abu-Dief A, Alotaibi NH, S.Al-Farraj E, Qasem HA, Alzahrani S, Mahfouz MK, Abdou A. Fabrication, Structural elucidation, DFT calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Abu-Dief AM, Abdel-Rahman LH, Sayed MAA, Zikry MM, Khalifa ME, El-Metwaly NM. Optimization strategy for green synthesis of silver nanoparticles (AgNPs) as catalyst for the reduction of 2,4-dinitrophenol via supported mechanism. APPLIED PHYSICS A 2022; 128:595. [DOI: 10.1007/s00339-022-05704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 09/02/2023]
|
16
|
Chistyakov E, Yudaev P, Nelyubina Y. Crystallization of Nano-Sized Macromolecules by the Example of Hexakis-[4-{(N-Allylimino)methyl}phenoxy]cyclotriphosphazene. NANOMATERIALS 2022; 12:nano12132268. [PMID: 35808103 PMCID: PMC9268015 DOI: 10.3390/nano12132268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
The synthesized compound was characterized by 31P, 13C, and 1H NMR spectroscopy and MALDI-TOF mass spectroscopy. According to DSC data, the compound was initially crystalline, but the crystal structure was defective. The crystals suitable for X-ray diffraction study were prepared by slow precipitation of the compound from a solution by a vapor of another solvent. A study of the single crystal obtained in this way demonstrated that the phosphazene ring has a flattened chair conformation. It was found that the sphere circumscribed around the compound molecule has a diameter of 2.382 nm.
Collapse
Affiliation(s)
- Evgeniy Chistyakov
- Department of Chemical Technology of Polymers, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia;
- Correspondence:
| | - Pavel Yudaev
- Department of Chemical Technology of Polymers, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia;
| | - Yulia Nelyubina
- Center for Molecular Composition Studies, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 28 Vavilov Str., 119334 Moscow, Russia;
| |
Collapse
|
17
|
Soares EA, Téllez C, Fortes SA, Coelho A, Versiane O, Ferreira GB, Mondragón MA, TéllezS CA. Fourier transform infrared and Raman spectra of the complex cation diethyldithiocarbamate Cr(III) Di-hydrate, [Cr(DDTC)2(OH2)2]+. UV-Vis spectrum, DFT:B3LYP/6-311G(d, p) structural determination, vibrational and natural bond orbital analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Waheeb AS, Kadhim Kyhoiesh HA, Salman AW, Al-Adilee KJ, Kadhim MM. Metal complexes of a new azo ligand 2-[2′-(5-nitrothiazolyl) azo]-4-methoxyphenol (NTAMP): Synthesis, spectral characterization, and theoretical calculation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Mansour AM, Radacki K, Shehab OR. Role of the ancillary ligand in determining the antimicrobial activity of Pd(II) complexes with N^N^N-tridentate Coligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Pd(II)-Schiff base complexes: Synthesis, characterization, Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions, enzyme inhibition and antioxidant activities. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Deswal Y, Asija S, Dubey A, Deswal L, Kumar D, Kumar Jindal D, Devi J. Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of thiadiazole based Schiff base ligands: Synthesis, structural characterization, DFT, antidiabetic and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Liu L, Liu M, Zhang Y, Sun W, Li J, Feng Y, Geng Y, Cheng G, Gong Y, Guo Y, Wu L, Wang C, Liu Y. Improving Solubility and Avoiding Hygroscopicity of Gatifloxacin by Forming Pharmaceutical Salt of Gatifloxacin‐2,3‐Dihydroxybenzoic Acid Based on Charge‐Assisted Hydrogen Bonds. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lixin Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Moqi Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yunan Zhang
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Weitong Sun
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Jinjing Li
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yanru Feng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yiding Geng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | | | - Yixia Gong
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yingxue Guo
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Lili Wu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Chaoxing Wang
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yingli Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| |
Collapse
|
23
|
Synthesis and elucidation of binuclear thiazole-based complexes from Co(II) and Cu(II) ions: Conductometry, cytotoxicity and computational implementations for various verifications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
A couple of antitumor Pd(II) complexes make DNA-refolding and HSA-unfolding: Experimental and docking studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Effect of oxy-vanadium (IV) and oxy-zirconium (IV) ions in O,N-bidentate arylhydrazone complexes on their catalytic and biological potentials that supported via computerized usages. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Jyothi M, Banumathi, Zabiulla, Sherapura A, Khamees HA, Prabhakar B, Khanum SA. Synthesis, structure analysis, DFT calculations and energy frameworks of new coumarin appended oxadiazoles, to regress ascites malignancy by targeting VEGF mediated angiogenesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Jose PA, Sankarganesh M, Raja JD, Sakthivel A, Annaraj J, Jeyaveeramadhavi S, Girija A. Spectrophotometric and fluorometric detection of DNA/BSA interaction, antimicrobial, anticancer, antioxidant and catalytic activities of biologically active methoxy substituted pyrimidine-ligand capped copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120454. [PMID: 34666266 DOI: 10.1016/j.saa.2021.120454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
New Schiff base ligand (DPMN) was synthesized from the condensation of 2-hydroxy-5-nitrobenzaldehyde and 2-amino-4,6-dimethoxypyrimidine which was confirmed by spectroscopic and analytical methods. Solid air stable copper nanoparticles (DPMN-CuNPs) were synthesized from its copper chloride salt and it is stabilized by the prepared Schiff base ligand by phase transfer assisted synthesis which is a modified Brust-Schiffrin technique. The formation of ligand stabilized copper nanoparticles was confirmed by UV-Visible and FT-IR spectroscopic techniques. The size, surface morphology and quality of DPMN-CuNPs were analyzed by SEM and TEM techniques. Antioxidant activities of DPMN and DPMN-CuNPs with DPPH, SOD, peroxide and nitrous oxide were analyzed by electronic absorption spectroscopy. DNA interaction between DPMN and DPMN-CuNPs with CT-DNA was carried out using electronic absorption, fluorescence, viscometric measurements and cyclic voltammetric techniques. Interaction between BSA and the synthesized compounds analyzed by electronic absorption spectroscopy, Antimicrobial studies confirmed that the synthesized DPMN-CuNPs possess significant biological activities than DPMN. Anticancer results suggest that prepared DPMN-CuNPs have significant anticancer activity against different cancer cell lines and least toxic effect against the normal (NHDF) cell line. Other than the positive response in biological evaluation, our DPMN-CuNPs possess good catalytic activity in methyl orange reduction, methylene blue degradation and nitro phenol reduction.
Collapse
Affiliation(s)
- P Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College (Autonomous), Nagapattinum, Tamil Nadu 611 002, India
| | - M Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu 626 005, India
| | - J Annaraj
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - S Jeyaveeramadhavi
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India
| | - A Girija
- Department of Chemistry, Velumanokaran Arts and Science College for Women, Ramanathapuram, Tamil Nadu 623 504, India
| |
Collapse
|
28
|
Solvent free synthesis, characterization, DFT, cyclic voltammetry and biological assay of Cu(II), Hg(II) and UO2(II) – Schiff base complexes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Uruş S. Microwave assisted catalytic oxidation of cyclohexene, cyclohexane, cyclooctane and styrene with metal complexes of bis( azo-imine) ligands supported on mesoporous silica. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2031196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Serhan Uruş
- Faculty of Science and Letters, Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
30
|
El‐Bindary MA, El‐Bindary AA. Synthesis, characterization, DNA binding, and biological action of dimedone arylhydrazone chelates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed A. El‐Bindary
- Basic Science Department Higher Institute of Engineering and Technology Damietta Egypt
| | | |
Collapse
|
31
|
Beus M, Persoons L, Daelemans D, Schols D, Savijoki K, Varmanen P, Yli-Kauhaluoma J, Pavić K, Zorc B. Anthranilamides with quinoline and β-carboline scaffolds: design, synthesis, and biological activity. Mol Divers 2022; 26:2595-2612. [PMID: 34997441 PMCID: PMC8741576 DOI: 10.1007/s11030-021-10347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022]
Abstract
In the present study, we report the design and synthesis of novel amide-type hybrid molecules based on anthranilic acid and quinoline or β-carboline heterocyclic scaffolds. Three types of biological screenings were performed: (i) in vitro antiproliferative screening against a panel of solid tumor and leukemia cell lines, (ii) antiviral screening against several RNA viruses, and (iii) anti-quorum sensing screening using gram-negative Chromobacterium violaceum as the reporter strain. Antiproliferative screening revealed a high activity of several compounds. Anthranilamides 12 and 13 with chloroquine core and halogenated anthranilic acid were the most active agents toward diverse cancer cell lines such as glioblastoma, pancreatic adenocarcinoma, colorectal carcinoma, lung carcinoma, acute lymphoblastic, acute myeloid, chronic myeloid leukemia, and non-Hodgkin lymphoma, but also against noncancerous cell lines. Boc-protected analogs 2 and 3 showed moderate activities against the tested cancer cells without toxic effects against noncancerous cells. A nonhalogenated quinoline derivative 10 with N-benzylanthranilic acid residue was equally active as 12 and 13 and selective toward tumor cells. Chloroquine and quinoline anthranilamides 10-13 exerted pronounced antiviral effect against human coronaviruses 229E and OC43, whereas 12 and 13 against coronavirus OC43 (EC50 values in low micromolar range; selectivity indices from 4.6 to > 10.4). Anthranilamides 14 and 16 with PQ core inhibited HIV-1 with EC50 values of 9.3 and 14.1 µM, respectively. Compound 13 displayed significant anti-quorum/biofilm effect against the quorum sensing reporter strain (IC50 of 3.7 μM) with no apparent bactericidal effect.
Collapse
Affiliation(s)
- Maja Beus
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, 00014, Helsinki, Finland.,Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014, Helsinki, Finland
| | - Kristina Pavić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Branka Zorc
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia.
| |
Collapse
|
32
|
Alharbi A, Alsoliemy A, Alzahrani SO, Alkhamis K, Almehmadi SJ, Khalifa ME, Zaky R, El-Metwaly NM. Green synthesis approach for new Schiff's-base complexes; theoretical and spectral based characterization with in-vitro and in-silico screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Mansour AM. Pd(ii) and Pt(ii) complexes of tridentate ligands with selective toxicity against Cryptococcus neoformans and Candida albicans. RSC Adv 2021; 11:39748-39757. [PMID: 35494132 PMCID: PMC9044551 DOI: 10.1039/d1ra06559a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Novel Pd(ii) and Pt(ii) complexes of the tridentate 2,6-bis(1-ethyl-benzimidazol-2'-yl)pyridine (LBZ), and 4'-(2-pyridyl)-2,2':6',2''-terpyridine (LPY) ligands were synthesized, characterized using a variety of analytical and spectroscopic tools, and screened for their potential antimicrobial properties against some bacterial and fungal strains as well as cytotoxicity against healthy human embryonic kidney (HEK293) cells. The electronic structures of the complexes were investigated by time-dependent density functional theory calculations. The free ligand LPY and benzimidazole complexes exhibited selective toxicity against Cryptococcus neoformans and Candida albicans, while displaying no cytotoxicity against HEK293. In the case of Cryptococcus neoformans, the antifungal activities of the benzimidazole-based complexes (MIC = 1.58-2.62 μM) are higher than those of the reference drug fluconazole (26.1 μM).
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street Giza Cairo 12613 Egypt
| |
Collapse
|
34
|
Transition metal complexes of triazole-based bioactive ligands: synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [PMCID: PMC8608565 DOI: 10.1007/s11164-021-04621-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present research work, four new heterocyclic Schiff base ligands (1–4) were synthesized by the condensation of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)phenol with salicylaldehyde derivatives in 1:1 molar ratio. The synthesized Schiff base ligands were allowed for complexation with Co(II), Ni(II), Cu(II), Zn(II) metal ions. The structure of the newly synthesized compounds (1–20) was elucidated with the help of various spectral and physicochemical techniques. Spectroscopic data confirm the tridentate nature of ligands which coordinate to the metal via deprotonated oxygen, azomethine nitrogen and thiol sulphur. Conductivity data showed the non-electrolytic nature of complexes. Furthermore, the synthesized compounds were evaluated for their in-vitro antimicrobial activity against four pathogenic bacterial strains and two pathogenic fungal strains. The observed results of microbial activity reveals that compound 3 and its complexes (13–16) were found most potent against the pathogenic strains. In addition, the anticancer activity of all the synthesized compounds was evaluated against human carcinoma cell lines i.e. HCT-116, DU145 and A549 using MTT assay. Among the tested compounds 12, 19, and 20 were found to show promising potency against the cancer cell lines. To rationalize the preferred modes of interaction of most potent compounds with the active site of human EGFR protein (PDB id: 5XGM), molecular docking studies were performed.
Collapse
|
35
|
Jaisingh J R, Nancy S G, Kumar M D, Jaccob M, Baskar A JA, Kannappan V. Ultrasonic investigation of molecular interaction of thyroxine and anti-tuberculosis drugs and DFT studies. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|