1
|
Yasmeen Z, Khan MA, Ahmad I, Ullah F, Awan B, Akram MT, Khan MR. Molecular docking, derivatization, characterization and biological assays of amantadine. Future Med Chem 2024; 16:1853-1863. [PMID: 39119743 PMCID: PMC11486214 DOI: 10.1080/17568919.2024.2385294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Derivatization has been tremendously utilized in the field of drug discovery for optimizing the pharmacological properties and improving safety, efficacy and selectivity.Methodology: Schiff's bases (AD1-AD11) are synthesized through amantadine condensation with different aldehydes and ketones. Fourier transform infrared, 1H NMR, 13C NMR, TLC, liquid chromatography mass spectrometry analysis, in silico studies, molecular docking and antiviral activity through hemagglutinin test were performed for evaluation of new compounds.Results: AD2, 3 and 9-11 showed greater antiviral activity than the parent drug. Among all derivatives, AD2 and AD3 exhibited good potential against α-amylase while AD7 and AD10 showed stronger inhibition against α-glucosidase.Conclusion: So, it is concluded that the most potent derivatives can be used as lead compounds in novel drug design of antiviral antidiabetic agents.
Collapse
Affiliation(s)
- Zarmeena Yasmeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Irshad Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Breena Awan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Toseef Akram
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
2
|
Roy S, Choudhury P, Biswas B. Chelation therapy-inspired design of a water-stable fluorescent probe for the effectual monitoring of copper(II) ions in real water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5003-5011. [PMID: 38979725 DOI: 10.1039/d4ay00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This work introduces a thought-provoking design to develop a water-soluble chemical probe, sodium 4-hydroxy-3-((E)-((E)-((2-hydroxynaphthalen-1yl)methylene)hydrazono)methyl) benzenesulfonate (SW2) and its analytical characterization for the efficient detection and monitoring of Cu2+ ions in a matrix of s-, d-, and f-metal ions in pure water. The water-stable molecular probe, SW2, in the presence of Cu2+ salts in pure water exhibits a fluorescence turn-off characteristic with a high detection limit, 3.8 μM, and irresistibly holds 4-cycle reversibility in the presence of sulphide ions without any significant loss of its chemosensing efficiency. Spectroscopic and computational studies ensure 1 : 1 complexation between SW2 and Cu2+ ions, leading to the formation of SW2-Cu2+ chelate, thus inducing dynamic quenching of SW2 emission, which subsequently reverts on the addition of S2- ions in water. Additionally, the SW2-Cu2+ chelate was isolated in microcrystalline powder and the complexation was studied with mass spectrometry and EPR analysis. Computational analysis reveals the remarkable reduction in the S0-S1 energy level of the SW2-Cu2+ complex, which is attributed to the drastic quenching of the fluorescence intensity. Furthermore, SW2 was successfully applied to the detection of Cu2+ ions in tap and pond water. Interestingly, the probe is also effective for the determination of Cu2+ ions in the aqueous solution of a Cu-based fungicide (copper oxychloride), commercially available as Blitox in India, thus evaluating the effectiveness of SW2 in real sample analysis.
Collapse
Affiliation(s)
- Suvojit Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| | - Prosenjit Choudhury
- Department of Physics, Dr Meghnad Saha College, Uttar Dinajpur 733128, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| |
Collapse
|
3
|
Al-Salmi IK, Shongwe MS. Ternary Phenolate-Based Thiosemicarbazone Complexes of Copper(II): Magnetostructural Properties, Spectroscopic Features and Marked Selective Antiproliferative Activity against Cancer Cells. Molecules 2024; 29:431. [PMID: 38257344 PMCID: PMC10819714 DOI: 10.3390/molecules29020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The new diprotic ligand 3,5-di-tert-butylsalicylaldehyde 4-ethyl-3-thiosemicarbazone, abbreviated H2(3,5-t-Bu2)-sal4eT, exists as the thio-keto tautomer and adopts the E-configuration with respect to the imine double bond, as evidenced by single-crystal X-ray analysis and corroborated by spectroscopic characterisation. Upon treatment with Cu(OAc)2·H2O in the presence of either 2,9-dimethyl-1,10-phenanthroline (2,9-Me2-phen) or 1,10-phenanthroline (phen) as a co-ligand in MeOH, this thiosemicarbazone undergoes conformational transformation (relative donor-atom orientations: syn,anti → syn,syn) concomitantly with tautomerisation and double deprotonation to afford the ternary copper(II) complexes [Cu{(3,5-t-Bu2)-sal4eT}(2,9-Me2-phen)] (1) and [Cu2{3,5-t-Bu2)-sal4eT}2(phen)] (2). Crystallographic elucidation has revealed that complex 1 is a centrosymmetric dimer of mononuclear copper(II) complex molecules brought about by intermolecular H-bonding. The coordination geometry at the copper(II) centre is best described as distorted square pyramidal in accordance with the trigonality index (τ = 0.14). The co-ligand adopts an axial-equatorial coordination mode; hence, there is a disparity between its two Cu-N coordinate bonds arising from weakening of the apical one as a consequence of the tetragonal distortion. The axial X-band ESR spectrum of complex 1 is consistent with retention of this structure in solution. Complex 2 is a centrosymmetric dimer of dinuclear copper(II) complex molecules exhibiting intermolecular H-bonding and π-π-stacking interactions. The two copper(II) centres, which are 4.8067(18) Å apart and bridged by the thio-enolate nitrogen of the quadridentate thiosemicarbazonate ligand, display two different coordination geometries, one distorted square planar (τ4 = 0.082) and the other distorted square pyramidal (τ5 = 0.33). Such dinuclear copper(II) thiosemicarbazone complexes, which are crystallographically characterised, are extremely rare. In vitro, complexes 1 and 2 outperform cisplatin as antiproliferative agents in terms of potency and selectivity towards HeLa and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
| | - Musa S. Shongwe
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Muscat, Oman
| |
Collapse
|
4
|
Michael S, Jeyaraman P, Marimuthu B, Rajamanikam R, Thanasamy R, Arunsunai Kumar K, Mitu L, Raman N. Pharmaceutical manifestation of Knoevenagel condensed metal (II) complexes through virtual, in vitro and in vivo assessments. J Biomol Struct Dyn 2024:1-15. [PMID: 38189286 DOI: 10.1080/07391102.2023.2301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Sulphur containing compounds possess a great deal of interest due to wide range of beneficial activities towards biotic species. This work also deals with the study of biological examination of newly synthesized sulphur containing Cu(II) and Zn(II) complexes derived from (E)-4-(phenylimino)-3-((E)-1-(phenylimino)ethyl)pent-2-ene-1-thiol Schiff bases. Moreover, the DNA nuclease efficiency of the synthesized metal complexes is studied by UV absorption studies, Fluorescence studies, Viscosity and CV titrations which confirm the intercalative mode of binding. Pharmacokinetic studies and drug like activity of these compounds are screened with the help of SWISS ADME online freeware. Their morphological nature is corroborated by various spectral techniques. Optimized geometry and biologically accessible nature of the synthesized compounds are investigated by Gaussian 09 W software. Interestingly, molecular docking studies are carried out against cancer DNA and 6J10 cancer cell. Anti-inflammatory and in vitro antioxidant activities have been studied to validate the theoretical prediction. Based on these preliminary pharmacological activities, the in vitro cytotoxicity and in vivo antitumor activities are examined using MCF-7, HeLa, Hep-2, HepG-2 and Ehrlich ascites carcinoma (EAC) cell lines. All the above examinations reveal that the nitro substituted transition metal complexes possess higher biological bustle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samuel Michael
- Research Department of Chemistry, VHNSN College, Virudhungar, India
- Department of Chemistry, PSR Engineering College, Sivakasi, India
| | - Porkodi Jeyaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | | | | | - Radha Thanasamy
- Department of Chemistry, Saiva Bhanu Kshatriya College, Aruppukottai, India
| | | | - Liviu Mitu
- Department of Chemistry, University of Pitesti, Pitesti, Romania
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhungar, India
| |
Collapse
|
5
|
Sankarganesh M, Jose PA, Raja JD, Revathi N, Sakthivel A, Rajesh J, Gurusamy S, Solomon RV. Spectroscopic and theoretical approach of DNA interaction and anticancer studies of bio-pharmaceutically active pyrimidine derived Cu(II) and Zn(II) complexes. Int J Biol Macromol 2023; 249:126095. [PMID: 37536408 DOI: 10.1016/j.ijbiomac.2023.126095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
New metal(II) complexes (CuL2 and ZnL2) with pyrimidine appended Schiff base ligand (HL) were synthesized and characterized by diverse spectroscopic methods, reveals the proposed structure of metal(II) complexes possess square planar geometry. DNA interaction ability of isolated compounds was studied by UV-Visible, fluorescence, viscometric and electrochemical methods and the results showed that isolated compounds intercalated with calf thymus DNA (CT-DNA). In addition, anticancer activities of HL, CuL2, and ZnL2 have been evaluated by MTT assay, signifying moderate cytotoxic activity on selected cancer cell lines and less toxicity on NHDF normal cell line due to the specific targeting of pyrimidine analogues. Moreover, antioxidant activities of isolated compounds towards diverse free radicals have been studied by spectrophotometric methods. These results showed that CuL2 has better antioxidant ability than HL and ZnL2. Finally, antimicrobial activities of isolated compounds against selected antimicrobial pathogens exposed that CuL2 has better antimicrobial activity on E. coli and C. albicans than other antimicrobial pathogens. The DFT calculations have been done to get the optimized geometry of the ligand and the metal complexes. In order to get a broad understanding of the interactions of these synthesized metal complexes, a detailed molecular docking analysis is taken up.
Collapse
Affiliation(s)
- Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | - Paulraj Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College, Nagapattinum, Tamil Nadu 611 002, India
| | - Jeyaraj Dhaveethu Raja
- PG & Research Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Rajapalayam, Virudhunagar 626117, Tamil Nadu, India
| | - Arumugam Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
| | - Jegathalaprathaban Rajesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | | | | |
Collapse
|
6
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
7
|
Gannouni A, Tahri W, Roisnel T, Al-Resayes SI, Azam M, Kefi R. Single Crystal Investigations, Hirshfeld Surface Analysis, DFT Studies, Molecular Docking, Physico-Chemical Characterization, and Biological Activity of a Novel Non-Centrosymmetric Compound with a Copper Transition Metal Precursor. ACS OMEGA 2023; 8:7738-7748. [PMID: 36873014 PMCID: PMC9979233 DOI: 10.1021/acsomega.2c07389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A novel organic-inorganic hybrid non-centrosymmetric superconductor material [2-ethylpiperazine tetrachlorocuprate(II)] has been synthesized and investigated by means of Fourier transform infrared spectroscopy, single-crystal X-ray crystallography, thermal analyses, and density functional theory (DFT) studies. The single-crystal X-ray analysis indicates that the studied compound crystallizes in the P212121 orthorhombic space group. Hirshfeld surface analyses have been used to investigate non-covalent interactions. Organic cations [C6H16N2]2+ and inorganic moieties [CuCl4]2- alternatively connect N-H···Cl and C-H···Cl hydrogen bonds. In addition, the energies of the frontier orbitals, highest occupied molecular orbital, lowest unoccupied molecular orbital, the reduced density gradient analyses and quantum theory of atoms in molecules analyses, and the natural bonding orbital are also studied. Furthermore, the optical absorption and photoluminescence properties were also explored. However, time-dependent/DFT computations were utilized to examine the photoluminescence and UV-vis absorption characteristics. Two different methods, 2, 2-diphenyl-1-picryhydrazyl radical and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical scavenging, were used to evaluate the antioxidant activity of the studied material. Furthermore, the title material was docked to the SARS-CoV-2 variant (B.1.1.529) in silico to study the non-covalent interaction of the cuprate(II) complex with active amino acids in the spike protein.
Collapse
Affiliation(s)
- Afef Gannouni
- Laboratoire
de Chimie des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage Faculté des Sciences
de Bizerte, 7021 Zarzouna, Tunisie
| | - Wiem Tahri
- Laboratory
of Biochemistry and Molecular Biology, Faculty of Sciences, Risks
Related to Environmental Stress, Struggle and Prevention (UR17ES20), University of Carthage, Te Ministry of Higher Education
and Scientific Research, Zarzouna, 7003 Bizerte, Tunisia
| | - Thierry Roisnel
- Université
Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) −
UMR 6226, F-35000 Rennes, France
| | - Saud I. Al-Resayes
- Department
of Chemistry, College of Science, King Saud
University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam
- Department
of Chemistry, College of Science, King Saud
University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Riadh Kefi
- Laboratoire
de Chimie des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage Faculté des Sciences
de Bizerte, 7021 Zarzouna, Tunisie
| |
Collapse
|
8
|
Kumar S, Choudhary M. Structural and theoretical investigations, Hirshfeld surface analysis and anti-SARS CoV-2 of nickel (II) coordination complex. J Biomol Struct Dyn 2023; 41:402-422. [PMID: 34842499 DOI: 10.1080/07391102.2021.2006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A nickel(II) Schiff base complex, [Ni(L)(DMF)](1), was synthesized by treating NiCl2.6H2O with an ONS-donor Schiff base ligand(H2L) derived from the condensation 3,5-Dichlorosalicylaldehyde and 4,4-Dimethyl-3-thiosemicarbazide in DMF. The geometry around the center metal ion in [Ni(L)(DMF)](1) was square planar as revealed by the data collection from diffraction studies. DFT calculations were performed on the complex to get a structure-property relationship. Hirshfeld surface analysis was also carried out in the crystal structure of nickel (II) Schiff base complex. Additionally, inspiring from recent developments to find a potential inhibitor for SARS-CoV-2 virus, we have also performed molecular docking study of [Ni(L)(DMF)](1) to see if our novel complex show affinity for main protease (Mpro) of SARS-CoV-2 Mpro (PDB ID: 6LZE). Interestingly, the results are found quite encouraging where the binding affinity and inhibition constant was found to be -6.6 kcal/mol and 2.358 µM, respectively, for the best docked confirmation of complex [Ni(L)(DMF)](1) with Mpro protein. This binding affinity is reasonably well as compared to recently known antiviral drugs. For instance, the binding affinity of complex [Ni(L)(DMF)](1) is found to be better than that of recently docking results of anti-SARS-CoV-2 drugs like chloroquine (-6.293 kcal/mol), hydroxychloroquine (-5.573 kcal/mol) and remdesivir (-6.352 kcal/mol) when targeted to the active-site of SARS-CoV-2 Mpro. Besides this, molecular docking against G25K GTP-nucleotide binding protein (PDB ID: 1A4R) was also studied. We believe that current results can intrigue not only for the biomedical community but also for the materials chemists who are engaged to explore the application coordination complexes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
9
|
Thiosemicarbazonecopper/Halido Systems: Structure and DFT Analysis of the Magnetic Coupling. INORGANICS 2023. [DOI: 10.3390/inorganics11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Experimental magnetic studies performed on the [{CuLX}2] system (HL = pyridine-2-carbaldehyde thiosemicarbazone, X = Cl−, Br−, I−) point to the larger electronegativity in X, the lower magnitude of the antiferromagnetic interactions. In order to confirm this and other trends observed and to dip into them, computational studies on the [{CuLX}2] (X = Cl− (1), I− (2)) compounds are here reported. The chemical and structural comparisons have been extended to the compounds obtained in acid medium. In this regard, chlorido ligands yield the [Cu(HL)Cl2]∙H2O (3) complex, whose crystal structure shows that thiosemicarbazone links as a tridentate chelate ligand to square pyramidal Cu(II) ions. On the other hand, iodido ligands provoke the formation of the [{Cu(H2L)I2}2] (4) derivative, which contains pyridine-protonated cationic H2L+ as a S-donor monodentate ligand bonded to Cu(I) ions. Crystallographic, infrared and electron paramagnetic resonance spectroscopic results are discussed. Computational calculations predict a greater stability for the chlorido species, containing both the neutral (HL) and anionic (L−) ligand. The theoretical magnetic studies considering isolated dimeric entities reproduce the sign and magnitude of the antiferromagnetism in 1, but no good agreement is found for compound 2. The sensitivity to the basis set and the presence of interdimer magnetic interactions are debated.
Collapse
|
10
|
Kumar S, Choudhary M. New nickel( ii) Schiff base complexes as potential tools against SARS-CoV-2 Omicron target proteins: an in silico approach. NEW J CHEM 2023. [DOI: 10.1039/d2nj05136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report the in silico design and synthesis of two new nickel(ii) coordination complexes, based on Schiff bases derived from the 2-hydroxy-1-naphthaldehyde moiety.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| |
Collapse
|
11
|
Michael S, Jeyaraman P, Marimuthu B, Rajasekar R, Thanasamy R, Kumar KA, Raman N. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Uluçam G, Bagcı U, Şuekinci Yılmaz A, Yentürk B. Schiff-base ligands containing phenanthroline terminals: Synthesis, characterization, biological activities and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121429. [PMID: 35653808 DOI: 10.1016/j.saa.2022.121429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Three new phenanthroline-derived ligands were synthesized by the Schiff base condensation method. The first ligand was the result of 1,10-phenanthroline-2-carboxyaldehyde reaction with 1,4-diaminobutane (L1). The other ligands were obtained 1,6-diaminohexane (L2) and 1,8-diaminooctane (L3) with the phenanthroline aldehyde in separate reactions. The structures of all ligands were elucidated using spectral techniques such as FT-IR, 13C NMR, 1H NMR and LC ESI/MS. The geometric properties of ligands such as bond lengths, bond angles, dihedral angles, electronic properties, HOMO and LUMO energies were calculated by using the Gaussian 09w programme. Ligands were optimized with B3LYP and 6-311++G(2d,p) basis set and NMR and FT-IR spectra were calculated. Experimental and theoretical spectrum data were compared. All of the ligands showed antibacterial activity against Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778. The anticancer activities of the ligands were also determined against human breast cancer (MCF7) and prostate cancer (DU145) cell lines. In addition, which conformation of the ligands was determined by the theoretical calculations. Docking studies of ligands with bovine serum albumin (BSA) were performed using Autock Tools 1.5.6 programme.
Collapse
Affiliation(s)
- Gühergül Uluçam
- Chemistry Department, Faculty of Science, Trakya University, 22030 Edirne, Turkey.
| | - Ufuk Bagcı
- Food Engineering Department, Faculty of Engineering, Trakya University, 22030 Edirne, Turkey
| | | | - Büşra Yentürk
- Chemistry Department, Institute of Science, Trakya University, 22030 Edirne, Turkey
| |
Collapse
|
13
|
Adam MSS, Shaaban S, El‐Metwaly NM. Two ionic oxo‐vanadate and dioxo‐molybdate complexes of dinitro‐aroylhydazone derivative: effective catalysts towards epoxidation reactions, biological activity,
ct
DNA binding, DFT and
silico
investigations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Saad Shaaban
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
- Department of Chemistry, Faculty of Applied Science Umm Al Qura University Makkah Saudi Arabia
| |
Collapse
|
14
|
Kumar S, Choudhary M. Copper(II) Schiff base complex derived from salen ligand: structural investigation, Hirshfeld surface analysis, anticancer and anti-SARS-CoV-2. J Biomol Struct Dyn 2022:1-24. [DOI: 10.1080/07391102.2022.2076155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
15
|
Ghasemi L, Behzad M, Khaleghian A, Abbasi A, Abedi A. Synthesis and characterization of two new mixed-ligand Cu(II) complexes of a tridentate NN'O type Schiff base ligand and N-donor heterocyclic co-ligands: In vitro anticancer assay, DNA/human leukemia/COVID-19 molecular docking studies, and pharmacophore modeling. Appl Organomet Chem 2022; 36:e6639. [PMID: 35538931 PMCID: PMC9073997 DOI: 10.1002/aoc.6639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Two new mixed-ligand complexes with general formula [Cu(SB)(L')]ClO4 (1 and 2) were synthesized and characterized by different spectroscopic and analytical techniques including Fourier transform infrared (FT-IR) and UV-Vis spectroscopy and elemental analyses. The SB ligand is an unsymmetrical tridentate NN'O type Schiff base ligand that was derived from the condensation of 1,2-ethylenediamine and 5-bromo-2-hydroxy-3-nitrobenzaldehyde. The L' ligand is pyridine in (1) and 2,2'-dimethyl-4,4'-bithiazole (BTZ) in (2). Crystal structure of (2) was also obtained. The two complexes were used as anticancer agents against leukemia cancer cell line HL-60 and showed considerable anticancer activity. The anticancer activity of these complexes was comparable with the standard drug 5-fluorouracil (5-FU). Molecular docking and pharmacophore studies were also performed on DNA (PDB:1BNA) and leukemia inhibitor factor (LIF) (PDB:1EMR) to further investigate the anticancer and anti-COVID activity of these complexes. The molecular docking results against DNA revealed that (1) preferentially binds to the major groove of DNA receptor whereas (2) binds to the minor groove. Complex (2) performed better with 1EMR. The experimental and theoretical results showed good correlation. Molecular docking and pharmacophore studies were also applied to study the interactions between the synthesized complexes and SARS-CoV-2 virus receptor protein (PDB ID:6LU7). The results revealed that complex (2) had better interaction than (1), the free ligands (SB and BTZ), and the standard drug favipiravir.
Collapse
Affiliation(s)
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Abbasi
- School of Chemistry, College of ScienceUniversity of TehranTehranIran
| | - Anita Abedi
- Department of Chemistry, North Tehran BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
16
|
Aprajita, Choudhary M. Structural and Computational Studies of Cobalt(II) and Copper(II) Complexes with Aromatic Heterocyclic Ligand. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aprajita
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
17
|
Qurban J, Al-Qahtani SD, Alsoliemy A, Alharbi A, Alkhamis K, Al-nami SY, Zaky R, El-Metwaly NM. Tailoring of new Ni(II), Hg(II) and UO2(II)- hydrazide complexes: characterization, studies in-vitro and in-silico as well as the hartree-fock modeling. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Novel isatin-based complexes of Mn(II) and Cu(II) ions: Characterization, homogeneous catalysts for sulfides oxidation, bioactivity screening and theoretical implementations via DFT and pharmacokinetic studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Synthesis and crystal structures of new mixed-ligand Schiff base complexes containing N-donor heterocyclic co-ligands: molecular docking and pharmacophore modeling studies on the main proteases of SARS-CoV-2 virus (COVID-19 disease). Polyhedron 2022; 220:115825. [PMID: 35399322 PMCID: PMC8978451 DOI: 10.1016/j.poly.2022.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Three new mixed-ligand copper(II) complexes (1–3) with NN'O type unsymmetrical tridentate Schiff base ligands (SB) and N-donor heterocyclic co-ligands, with general formula [Cu(SB)(L)]ClO4, were synthesized and characterized using single crystal x-ray diffraction (SCXRD), FT-IR and UV–Vis spectroscopy and elemental analyses. The SB ligand is the half-unit form of the condensation of 1,3-propanediamine with 5-methoxysalicylaldehyde and the co-ligands (L) are pyridine (py in (1)), 2,2′-bipyridine (bpy in (2)) and 1,10-phenanthroline (phen in (3)). Crystal structures of (2) and (3) were obtained by SCXRD. Molecular docking and pharmacophore studies were performed to study the interactions between the synthesized complexes and SARS-CoV-2 virus main proteases (PDB IDs: 6LU7, 6WQF and 6W9C). Results revealed that complex (3) with phen co-ligand showed better docking scores with the three receptors, i.e. 6LU7 (−8.05 kcal.mol−1), 6W9C (−7.70 kcal.mol−1) and 6WQF (−7.75 kcal.mol−1). The order of the binding best energies for (3) was also as follows: 6LU7 > 6WQF > 6W9C. All of the studied complexes showed considerable performance, comparable to the standard drug, Favipiravir.
Collapse
|
20
|
Zhang G, Zhang Y, Zhang H, Wen Y. Performance Comparison of [ONS]‐Type and [ONO]‐Type Schiff Bases in the Acylphosphonylation of Aldehyde. ChemistrySelect 2022. [DOI: 10.1002/slct.202104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guangwei Zhang
- School of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Yuanyuan Zhang
- School of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Han Zhang
- School of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Yeqian Wen
- School of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
21
|
Kumar S, Choudhary M. Structure-based design and synthesis of copper( ii) complexes as antivirus drug candidates targeting SARS CoV-2 and HIV. NEW J CHEM 2022. [DOI: 10.1039/d2nj00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the structure-based design and synthesis of two novel square-planar trans-N2O2 Cu(ii) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) of 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol (L1H) and 2-((Z)-(2,4-dibromophenylimino)methyl)-4-bromophenol (L2H) as potential inhibitors against the main protease of the SARS-CoV-2 and HIV viruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| |
Collapse
|
22
|
Kumar S, Choudhary M. Synthesis and characterization of novel copper(ii) complexes as potential drug candidates against SARS-CoV-2 main protease. NEW J CHEM 2022. [DOI: 10.1039/d2nj00283c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two novel copper(ii) Schiff base complexes, [Cu(L1)2] (1) and [Cu(L2)(CH3OH)(Cl)] (2) of [(Z)-(5-chloro-2-((3,5-dichloro-2-hydroxybenzylidene)amino)phenyl)(phenyl)methanone (L1H) and (Z)-(2((5-bromo-2-hydroxybenzylidene)amino-5-chlorophenyl)(phenyl)methanone)(L2H)], have been designed, synthesized and characterized.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar), India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar), India
| |
Collapse
|