1
|
Ma D, Zhao Z, Wen Y, Zhou J, Zhou W, Mao J, Lv K, Cao Y, Jiang L. The synergistic gelation of novel Bletilla striata polysaccharide with hyaluronic acid: Characterization, rheology. Food Chem 2024; 467:142359. [PMID: 39657486 DOI: 10.1016/j.foodchem.2024.142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Bletilla striata polysaccharide (BSP) has attracted considerable interest due to its diverse biological activities. In this research, a novel low-molecular-weight water-soluble polysaccharide (BSP-182) was isolated and purified from Bletilla striata tubers, and its structure was characterized. The findings indicated that BSP-182 is predominantly composed of β-1,4-linked glucose (Glc) and β-1,4-linked mannose (Man) in a molar ratio of approximately 7.8:2.2. Additionally, hyaluronic acid (HA)/BSP-182 hydrogels were synthesized, and their physicochemical properties and structure were examined. Rheological analysis revealed that HA and BSP-182 form hydrogels via hydrogen bonding, with concentration-dependent enhancements in rheological properties, textural attributes, and thermal stability. The hydrogels displayed significant shear-thinning behavior and viscoelasticity, which are beneficial for food processing and texture modification, especially in the development of easy-to-swallow foods. This research offers valuable insights for the development of innovative BSP-based hydrogels for dysphagia management.
Collapse
Affiliation(s)
- Didi Ma
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Zhenzhen Zhao
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Yujing Wen
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Juan Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Wenhao Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jian Mao
- Yangtze River Delta Information Intelligence Innovation Research Institute, Wuhu 241000, Anhui, China
| | - Kun Lv
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China; Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China.
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Lan Jiang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China; Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China.
| |
Collapse
|
2
|
Bai G, Ye M, Yu L, Yang M, Wang Y, Chen S. Purification, characterization, simulated gastrointestinal digestion and gut microbiota fermentation of a Bifidobacterium-directed mannoglucan from Lilium brownii var. viridulum. Food Chem X 2024; 23:101671. [PMID: 39139491 PMCID: PMC11321392 DOI: 10.1016/j.fochx.2024.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Lilium brownii var. viridulum (Longya lily) is an edible vegetable and medicinal plant with the effects of moistening lungs, relieving coughs, and removing phlegm. In this study, a homogenous mannoglucan LLP11 was purified from Longya lily using membrane ultrafiltration followed by ion exchange chromatography. The M w of LLP11 was 12.0 kDa. LLP11 exhibited a backbone of →4)-α-D-Glcp-(1 → and →4)-β-D-Manp-(1 → with a branch of T-α-D-Glcp-(1 → substituted at C-6 of →4,6)-α-D-Glcp-(1→. During the simulated digestion, LLP11 remained indigestible to digestive enzymes. Furthermore, through its interaction with the gut microbiota, LLP11 was able to significantly boost Bifidobacterium and decrease the harmful bacteria Klebsiella, that was linked to pneumonia. Additionally, LLP11 promoted the growth of B. pseudocatenulatum and B. longum and was utilized to produce acetic acid. Our findings introduced an alternative approach for the investigation of microbiota-targeted polysaccharides and underscored the potential of LLP11 as a prebiotic for supplementary treatment in respiratory diseases.
Collapse
Affiliation(s)
- Guangjian Bai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miaoyun Ye
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Yu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yaqi Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
3
|
Chen Z, Wu J, Wang N, Li T, Wu H, Wu H, Xiang W. Isolation, Characterization, Moisturization and Anti-HepG2 Cell Activities of a Novel Polysaccharide from Cyanobacterium aponinum. Molecules 2024; 29:4556. [PMID: 39407483 PMCID: PMC11478272 DOI: 10.3390/molecules29194556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
Polysaccharides from cyanobacteria are extensively reported for their complex structures, good biocompatibility, and diverse bioactivities, but only a few cyanobacterial species have been exploited for the biotechnological production of polysaccharides. According to our previous study, the newly isolated marine cyanobacterium Cyanobacterium aponinum SCSIO-45682 was a good candidate for polysaccharide production. This work provided a systematic study of the extraction optimization, isolation, structural characterization, and bioactivity evaluation of polysaccharides from C. aponinum SCSIO-45682. Results showed that the crude polysaccharide yield of C. aponinum reached 17.02% by hot water extraction. The crude polysaccharides showed a porous and fibrous structure, as well as good moisture absorption and retention capacities comparable to that of sodium alginate. A homogeneous polysaccharide (Cyanobacterium aponinum polysaccharide, CAP) was obtained after cellulose DEAE-52 column and Sephadex G-100 column purification. CAP possessed a high molecular weight of 4596.64 kDa. It was mainly composed of fucose, galactose, and galacturonic acid, with a molar ratio of 15.27:11.39:8.64. The uronic acid content and sulfate content of CAP was 12.96% and 18.06%, respectively. Furthermore, CAP showed an in vitro growth inhibition effect on human hepatocellular carcinoma (HepG2) cells. The above results indicated the potential of polysaccharides from the marine cyanobacterium C. aponinum SCSIO-45682 as a moisturizer and anticancer addictive applied in cosmetical and pharmaceutical industries.
Collapse
Affiliation(s)
- Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Basic Medical Sciences, Heyang Medical School, University of South China, Hengyang 421001, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| |
Collapse
|
4
|
Lin P, Wang Q, Wang Q, Chen J, He L, Qin Z, Li S, Han J, Yao X, Yu Y, Yao Z. Evaluation of the anti-atherosclerotic effect for Allium macrostemon Bge. Polysaccharides and structural characterization of its a newly active fructan. Carbohydr Polym 2024; 340:122289. [PMID: 38858004 DOI: 10.1016/j.carbpol.2024.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-β-d-Fruf-(2→ and →1,6)-β-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-β-d-Fruf-(2→ and β-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiayun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Li C, Zhu Z, Cheng L, Zheng J, Liu W, Lin Y, Duan B. Extraction, purification, characteristics, bioactivities, prospects, and toxicity of Lilium spp. polysaccharides. Int J Biol Macromol 2024; 259:128532. [PMID: 38056732 DOI: 10.1016/j.ijbiomac.2023.128532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The genus Lilium has been widely used worldwide as a food and medicinal ingredient in East Asia for over 2000 years due to its higher nutritional and medicinal value. Polysaccharide is the most important bioactive ingredient in Lilium spp. and has various health benefits. Recently, Lilium spp. polysaccharides (LSPs) have attracted significant attention from industries and researchers due to their various biological properties, such as antioxidant, immunomodulatory, antitumor, antibacterial, hypoglycaemic, and anti-radiation. However, the development and utilization of LSP-based functional biomaterials and medicines are limited by a lack of comprehensive understanding regarding the structure-activity relationships (SARs), industrial applications, and safety of LSPs. This review provides an inclusive overview of the extraction, purification, structural features, bioactivities, and mechanisms of LSPs. SARs, applications, toxicities, and influences of structural modifications on bioactivities are also highlighted, and the potential development and future study direction are scrutinized. This article aims to offer a complete understanding of LSPs and provide a foundation for further research and application of LSPs as therapeutic agents and multifunctional biomaterials.
Collapse
Affiliation(s)
- Chaohai Li
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Weihong Liu
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Yuan Lin
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
6
|
Tang N, Cai Y, Ma JL, Ye H, Xiang ZY. Structural elucidation of hemicelluloses from oil-tea camellia fruit shell. Int J Biol Macromol 2023; 246:125643. [PMID: 37394216 DOI: 10.1016/j.ijbiomac.2023.125643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Oil-tea camellia fruit shell (CFS) is a very abundant waste lignocellulosic resource. The current treatments of CFS, i.e. composting and burning, pose a severe threat on environment. Up to 50 % of the dry mass of CFS is composed of hemicelluloses. However, chemical structures of the hemicelluloses in CFS have not been extensively studied, which limits their high-value utilization. In this study, different types of hemicelluloses were isolated from CFS through alkali fractionation with the assistance of Ba(OH)2 and H3BO3. Xylan, galacto-glucomannan and xyloglucan were found to be the major hemicelluloses in CFS. Through methylation, HSQC and HMBC analyses, we have found that the xylan in CFS is composed of →4)-β-D-Xylp-(1→ and →3,4)-β-D-Xylp-(1→ linked by (1→4)-β glycosidic bond as the main chain; the side chains are α-L-Fucp-(1→, →5)-α-L-Araf-(1→, β-D-Xylp-(1→, α-L-Rhap-(1→ and 4-O-Me-α-D-GlcpA-(1→, connected to the main chain through (1→3) glycosidic bond. The main chain of galacto-glucomannan in CFS consists of →6)-β-D-Glcp-(1→, →4)-β-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→ and →4)-β-D-Manp-(1→; the side chains are β-D-Glcp-(1→, →2)-β-D-Galp-(1→, β-D-Manp-(1→ and →6)-β-D-Galp-(1→ connected to the main chain through (1→6) glycosidic bonds. Moreover, galactose residues are connected by α-L-Fucp-(1→. The main chain of xyloglucan is composed of →4)-β-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→ and →6)-β-D-Glcp-(1→; the side groups, i.e. β-D-Xylp-(1→ and →4)-β-D-Xylp-(1→, are connected to the main chain by (1→6) glycosidic bond; →2)-β-D-Galp-(1→ and α-L-Fucp-(1→ can also connect to →4)-β-D-Xylp-(1→ forming di- or trisaccharide side chains.
Collapse
Affiliation(s)
- Ning Tang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning 530002, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ya Cai
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Jin-Lin Ma
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning 530002, China.
| | - Zhou-Yang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Jiang G, Wang B, Wang Y, Kong H, Wang Y, Gao P, Guo M, Li W, Zhang J, Wang Z, Niu J. Structural characteristics of a novel Bletilla striata polysaccharide and its activities for the alleviation of liver fibrosis. Carbohydr Polym 2023; 313:120781. [PMID: 37182941 DOI: 10.1016/j.carbpol.2023.120781] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Liver fibrosis has proven to be the main predisposing factor for liver cirrhosis and liver cancer; however, an effective treatment remains elusive. Polysaccharides, with low toxicity and a wide range of bioactivities, are strong potential candidates for anti-hepatic fibrosis applications. For this study, a new low molecular weight neutral polysaccharide (B. striata glucomannan (BSP)) was extracted and purified from Bletilla striata. The structure of BSP was characterized and its activities for alleviating liver fibrosis in vivo were further evaluated. The results revealed that the structural unit of BSP was likely →4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-2ace-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-3ace-Manp-(1→, with a molecular weight of only 58.5 kDa. Additionally, BSP was observed to attenuate the passive impacts of liver fibrosis in a manner closely related to TLR2/TLR4-MyD88-NF-κB signaling pathway conduction. In summary, the results of this study provide theoretical foundations for the potential applications of BSP as an anti-liver fibrosis platform.
Collapse
|
8
|
Liang X, Liu M, Guo S, Zhang F, Cui W, Zeng F, Xu M, Qian D, Duan J. Structural elucidation of a novel arabinogalactan LFP-80-W1 from Lycii fructus with potential immunostimulatory activity. Front Nutr 2023; 9:1067836. [PMID: 36687689 PMCID: PMC9846619 DOI: 10.3389/fnut.2022.1067836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Polysaccharides are the most important effective components of Lycii fructus, which has a variety of biological activities and broad application prospects in the fields of medicine and food. In this study, we reported a novel arabinogalactan LFP-80-W1 with potential immunostimulatory activity. LFP-80-W1 was a continuous symmetrical single-peak with an average molecular weight of 4.58 × 104 Da and was mainly composed of arabinose and galactose. Oligosaccharide sequencing analyses and NMR data showed that the LFP-80-W1 domain consists of a repeated 1,6-linked β-Galp main chain with branches arabinoglycan and arabinogalactan at position C-3. Importantly, we found that LFP-80-W1 could activate the MAPK pathway and promote the release of NO, IL-6, and TNF-α cytokines in vitro. Therefore, our findings suggest that the homogeneous arabinogalactan from Lycii fructus, can be used as a natural immunomodulator.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,*Correspondence: Sheng Guo,
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Wanchen Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Fei Zeng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mingming Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Ningxia Innovation Center of Goji R&D, Yinchuan, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Jinao Duan,
| |
Collapse
|
9
|
Rusinova-Videva S, Ognyanov M, Georgiev Y, Petrova A, Dimitrova P, Kambourova M. Chemical characterization and biological effect of exopolysaccharides synthesized by Antarctic yeasts Cystobasidium ongulense AL 101 and Leucosporidium yakuticum AL 102 on murine innate immune cells. World J Microbiol Biotechnol 2022; 39:39. [PMID: 36512173 DOI: 10.1007/s11274-022-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
The current study aimed to investigate exopolysaccharides (EPSs) produced by two Antarctic yeasts isolated from soil and penguin feathers samples collected on Livingston Island (Antarctica). The strains were identified as belonging to the species Leucosporidium yakuticum (LY) and Cystobasidium ongulense (CO) based on molecular genetic analysis. The EPS production was investigated using submerged cultivation. Different chemical, chromatographic, and spectral analyses were employed to characterize EPSs. LY accumulated 5.5 g/L biomass and 4.0 g/L EPS after 120 h of cultivation, while CO synthesized 2.1 g/L EPS at the end of cultivation, and the biomass amount reached 5.5 g/L. LY-EPS was characterized by a higher total carbohydrate content (80%) and a lower protein content (18%) by comparison with CO-EPS (62%, 30%). The LY-EPS mainly consisted of mannose (90 mol%), whereas CO-EPS had also glucose, galactose, and small amounts of uronic acids (8-5 mol%). Spectral analyses (FT-IR and 1D, 2D NMR) revealed that LY-EPS comprised a typical β-(1 → 4)-mannan. Branched (hetero)mannan, together with β/α-glucans constituted the majority of CO-EPS. Unlike LY-EPS, which had a high percentage of high molecular weight populations, CO-EPS displayed a large quantity of lower molecular weight fractions and a higher degree of heterogeneity. LY-EPS (100 ng/mL) elevated significantly interferon gamma (IFN-γ) production in splenic murine macrophages and natural killer (NK) cells. The results indicated that newly identified EPSs might affect IFN-γ signaling and in turn, might enhance anti-infectious responses. The data obtained also revealed the potential of EPSs and yeasts for practical application in biochemical engineering and biotechnology.
Collapse
Affiliation(s)
- Snezhana Rusinova-Videva
- Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Yordan Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ani Petrova
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Petya Dimitrova
- Department of Immunology, Laboratory of Experimental Immunotherapy, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Margarita Kambourova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
10
|
Bensaci N, Abdi A, Ben Aziza H, Aouadi S. Characterization and biological evaluation of Crataegus azarolus fruit polysaccharides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Separation and Structural Characterization of a Novel Exopolysaccharide from Rhizopus nigricans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227756. [PMID: 36431857 PMCID: PMC9696503 DOI: 10.3390/molecules27227756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The present study aims to analyze the structural characterization and antioxidant activity of a novel exopolysaccharide from Rhizopus nigricans (EPS2-1). For this purpose, EPS2-1 was purified through DEAE-52, Sephadex G-100, and Sephadex G-75 chromatography. The structural characterization of EPS2-1 was analyzed using high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), methylation analysis, nuclear magnetic resonance (NMR) spectra, transmission electron microscope (TEM), and atomic force microscope (AFM). The results revealed that EPS2-1 is composed of mannose (Man), galactose (Gal), glucose (Glc), arabinose (Ara), and Fucose (Fuc), and possesses a molecular weight of 32.803 kDa. The backbone of EPS2-1 comprised →2)-α-D-Manp-(1→ and →3)-β-D-Galp-(1→, linked with the O-6 position of (→2,6)-α-D-Manp-(1→) of the main chain is branch α-D-Manp-(1→6)-α-D-Manp-(1→, linked with the O-6 positions of (→3)-β-D-Galp-(1→) of the main chain are branches →4)-β-D-Glcp-(1→ and →3)-β-D-Galp-(1→, respectively. Finally, we demonstrated that EPS2-1 also shows free radical scavenging activity and iron ion reducing ability. At the same time, EPS2-1 could inhibit the proliferation of MFC cells and increase the cell viability of RAW264.7 cells. Our results suggested that EPS2-1 is a novel polysaccharide, and EPS2-1 has antioxidant activity. In addition, EPS2-1 may possess potential immunomodulatory and antitumor activities. This study promoted the application of EPS2-1 as the functional ingredients in the pharmaceutical and food industries.
Collapse
|
12
|
Hojjati M, Noshad M, Sorourian R, Askari H, Feghhi S. Effect of gamma irradiation on structure, physicochemical and functional properties of bitter vetch (Vicia ervilia) seeds polysaccharides. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Huojiaaihemaiti H, Mutaillifu P, Omer A, Nuerxiati R, Duan X, Xin X, Yili A. Isolation, Structural Characterization, and Biological Activity of the Two Acidic Polysaccharides from the Fruits of the Elaeagnus angustifolia Linnaeus. Molecules 2022; 27:molecules27196415. [PMID: 36234953 PMCID: PMC9571751 DOI: 10.3390/molecules27196415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Elaeagnus angustifolia Linnaeus is a medicinal plant and its fruit has pharmacological activity such as antiinflammatory, antiedema, antinociceptive, and muscle relaxant functions, etc. Two acidic homogeneous polysaccharides (EAP-H-a1 and EAP-H-a2) were isolated from the fruits of Elaeagnus angustifolia L. through DEAE-52 and Sephadex G-75 column chromatography, and the physicochemical, structural properties, and biological activities of the polysaccharides were investigated. Both EAP-H-a1 and EAP-H-a2 were composed of Rha, Ara, Xyl, Glc, and Gal with the molar ratios of 13.7:20.5:23.3:8.8:33.4 and 24.8:19.7:8.2:8.4:38.6, respectively, and with the molecular weights of 705.796 kDa and 439.852 kDa, respectively. The results obtained from Fourier transform infrared spectroscopy (FTIR) confirmed the polysaccharide nature of the isolated substances. Congo red assay confirmed the existence of a triple-helix structure. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis revealed that EAP-H-a1 and EAP-H-a2 had irregular fibrous, filament-like surfaces; and both had crystalline and amorphous structures. Bioactivity analysis showed that the crude polysaccharide, EAP-H-a1, and EAP-H-a2 had clear DPPH and ABTS free radical scavenging activity, and could promote the secretion of NO and the phagocytic activities of RAW 264.7 and THP cells, which showed clear antioxidant and immuno-regulatory activity. These results indicated that Elaeagnus angustifolia L fruit acidic polysaccharides may have potential value in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Haibaier Huojiaaihemaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Paiheerding Mutaillifu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Adil Omer
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rehebati Nuerxiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
| | - Xiaomei Duan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and the Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China
- Correspondence: ; Tel.: +86-383-82-77
| |
Collapse
|
14
|
Potential Applications of Lilium Plants in Cosmetics: A Comprehensive Review Based on Research Papers and Patents. Antioxidants (Basel) 2022; 11:antiox11081458. [PMID: 35892660 PMCID: PMC9332866 DOI: 10.3390/antiox11081458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
The application of cosmetics is indispensable in our current society. In recent years, with an increasing awareness of the long-term health benefits of naturally sourced ingredients, plant-based cosmetic products have gained increasing attention. Lilium belongs to the Liliaceae family, which is one of the main plant families used in cosmetics for skin care treatment. A large number of studies have shown that Lilium plants are rich in components such as phenolic acids, flavonoids, and polysaccharides, with high potential for cosmetic applications. However, the application of lilies in cosmetics has not been systematically reported. This knowledge gap can easily lead to the neglect of its application in cosmetics because lilies are most familiar as ornamental plants. Integrating academic papers and patent publications, we analyzed the potential cosmetic application ingredients in lily, as well as their applications in cosmetics and related efficacy. Patent analysis showed that applications for lily-related cosmetic patents are mainly concentrated in East Asia, including China, Korea, and Japan. The application of lilies involves all aspects of cosmetics, such as sunscreens, facial cleansers, facial masks, conditioners, and so on. Its functions are also rich and diverse, including antiaging, radiation protective, whitening, moisturizing, freckle removal, acne treatment, and hair regeneration promotion. In addition, lilies are compatible with the application of other herbs. Moreover, with a change in people’s consumption concepts and the consideration of long-term health benefits, lily-based food and medicine innovation with health care and beautification effects may be a promising direction.
Collapse
|