1
|
Gao X, Wang C, Jiang Y, Zhang S, Zhang M, Liu L, Gao S. Evaluation of inhibition effect and interaction mechanism of antiviral drugs on main protease of novel coronavirus: Molecular docking and molecular dynamics studies. J Mol Graph Model 2024; 133:108873. [PMID: 39326254 DOI: 10.1016/j.jmgm.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The outbreak of pneumonia caused by the novel coronavirus (SARS-CoV-2) has presented a challenge to public health. The identification and development of effective antiviral drugs is essential. The main protease (3CLpro) plays an important role in the viral replication of SARS-CoV-2 and is considered to be an effective therapeutic target. In this study, according to the principle of drug repurposing, a variety of antiviral drugs commonly used were studied by molecular docking and molecular dynamics (MD) simulations to obtain potential inhibitors of main proteases. 24 antiviral drugs were docked with 5 potential action sites of 3CLpro, and the drugs with high binding strength were further simulated by MD and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. The results showed that the drugs with high flexibility could bind to 3CLpro better than those with low flexibility. The interaction mechanism between antiviral drugs and main protease was analyzed in detail by calculating the root mean square displacement (RMSD), root mean square fluctuation (RMSF) and interaction residues properties. The results showed that the six drugs with high flexibility (Remdesivir, Simnotrelvir, Sofosbuvir, Ledipasvir, Indinavir and Raltegravir) had strong binding strength with 3CLpro, and the last four antiviral drugs can be used as potential candidates for main protease inhibitors.
Collapse
Affiliation(s)
- Xin Gao
- School of Science, Tianjin Chengjian University, Tianjin, China
| | - Cuihong Wang
- School of Science, Tianjin Chengjian University, Tianjin, China.
| | - Yue Jiang
- School of Science, Tianjin Chengjian University, Tianjin, China
| | - Shouchao Zhang
- School of Science, Tianjin Chengjian University, Tianjin, China.
| | - Meiling Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Lijuan Liu
- School of Science, Tianjin Chengjian University, Tianjin, China
| | - Sendan Gao
- School of Science, Tianjin Chengjian University, Tianjin, China
| |
Collapse
|
2
|
Fesatidou M, Petrou A, Geronikaki A. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of New Thiazolidinone Derivatives as NNRTIs and SARS-CoV-2 Main Protease Inhibitors. Chem Biodivers 2024:e202401697. [PMID: 39442074 DOI: 10.1002/cbdv.202401697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024]
Abstract
HIV-1 remains a major health problem worldwide since the virus has developed drug-resistant strains, so, the need for novel agents is urgent. The protein reverse transcriptase plays fundamental role in the viruses' replication cycle. FDA approved Delavirdine bearing a sulfonamide moiety, while thiazolidinone has demonstrated significant anti-HIV activity as a core heterocycle or derivative of substituted heterocycles. In this study, thirty new thiazolidinone derivatives (series A, B and C) bearing sulfonamide group were designed, synthesized and evaluated for their HIV-1 RT inhibition activity predicted by computer program PASS taking into account the best features of available NNRTIs as well as against SARS-COV-2 main protease. Seven compounds showed good anti-HIV inhibitory activity, with two of them, C1 and C2 being better (IC50 0.18 μΜ & 0.12 μΜ respectively) than the reference drug nevirapine (IC50 0.31 μΜ). The evaluation of molecules to inhibit the main protease revealed that 6 of the synthesized compounds exhibited excellent to moderate activity with two of them (B4 and B10) having better IC50 values (0.15 & 0.19 μΜ respectively) than the reference inhibitor GC376 (IC50 0.439 μΜ). The docking studies is coincides with experimental results, showing good binding mode to both enzymes.
Collapse
Affiliation(s)
- Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
3
|
Nabi SA, Ramzan F, Lone MS, Nainwal LM, Hamid A, Batool F, Husain M, Samim M, Shafi S, Sharma K, Bano S, Javed K. Halogen substituted aurones as potential apoptotic agents: synthesis, anticancer evaluation, molecular docking, ADMET and DFT study. J Biomol Struct Dyn 2024; 42:7610-7627. [PMID: 37517055 DOI: 10.1080/07391102.2023.2240897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
A series of halogen-substituted aurone derivatives (2a-k) were synthesized and evaluated for an anti-proliferative study against NCI 60 cancer cell line panel and showed that most of the compounds predominantly exhibited promising activity against MCF-7. Compound 2e exhibited promising anticancer activity against the MCF-7 cancer cell line with 84.98% percentage growth inhibition in a single dose assay of 10 μM with an IC50 value of 8.157 ± 0.713 μM. In apoptotic assay, the effect of compound 2e on the cell cycle progression indicated that exposure of MCF-7 cells to compound 2e induced a significant disruption in the cell cycle profile including a time-dependent decrease in the cell population at G0/G1 and G2/M phase and arrests the cell cycle at the S phase. In silico, molecular docking ADME and toxicity studies of all compounds were also carried out. The docking study revealed that all the aurone derivatives displayed good docking scores ranging from -7.066 to -8.573. The results of Molecular Electrostatic Potential Mapping (MESP) and Density Functional Theory (DFT) studies of the most active compound 2e and least active compound 2k also favoured the experimental results.
Collapse
Affiliation(s)
- Syed Ayaz Nabi
- Department of Chemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Farhat Ramzan
- Department of Chemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Mehak Saba Lone
- Department of Chemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
- Department of Pharmacy, School of Medical & Allied Sciences, G. D. Goenka University, Gurugram, Haryana, India
| | - Aabid Hamid
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameena Bano
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Kalim Javed
- Department of Chemistry, School of Chemical and Life Sciences, New Delhi, India
| |
Collapse
|
4
|
Majumdar D, Chatterjee A, Feizi-Dehnayebi M, Kiran NS, Tuzun B, Mishra D. 8-Aminoquinoline derived two Schiff base platforms: Synthesis, characterization, DFT insights, corrosion inhibitor, molecular docking, and pH-dependent antibacterial study. Heliyon 2024; 10:e35591. [PMID: 39170410 PMCID: PMC11336723 DOI: 10.1016/j.heliyon.2024.e35591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The current research divulges the synthesis of two new Schiff base (SB) (L NAPH /L O-VAN ) derived from 8-aminoquinoline (8-AMQ) in the presence of 2-hydroxy naphthaldehyde (NAPH) and ortho-vanillin (O-VAN) in CH3OH solvent. They are structurally characterized by spectroscopic methods (IR/Raman/UV-vis/DRS/NMR) and SEM-EDX. SB compounds have a biologically active avenue of azomethine/imine group (H-C=N) that can donate N e's to Mn + ions, showing coordinating flexibility. The -OH and imine (H-C=N) groups are stable in air, light, and alkalis but undergo acidic environments hydrolysis, separating -NH2 and carbonyl compounds. Moreover, buffer solutions with a pH range of 4-6 release aldehyde. Molecular electrostatic potential (MEP), Frontier molecular orbitals (FMO), Fukui function, and Non-linear optical (NLO) were conducted to elucidate SBs chemical potency, optoelectronic significance, and corrosion inhibitor. Accordingly, the calculated ΔE of FMO for L NAPH and L O-VAN is 3.82 and 4.08 eV, ensuring potent biological function. DFT supported the experimental and theoretical IR spectral correlation to enrich better structural insights. NLO-based polarizability (α) and hyperpolarizability (β) factors successfully explore the potential optoelectronic significance. Molecular docking experiments were simulated against DNA, anti-COVID-19, and E. coli. The potential microbiological activity was screened against the bacterial strains E. coli, Klebsiella, Bacillus, and Pseudomonas sp. based on zone of inhibition and MIC values. These experiments also explored the fact that L NAPH and L O-VAN discourage microbial cell biofilms and corrosion. We extensively covered the as-prepared compounds' pH-dependent bacterial effects.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka, India, 560064
| | | | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka, India, 560064
| | - Burak Tuzun
- Sivas Cumhuriyet University, Sivas Vocational School, Department of Plant and Animal Production, TR-58140, Sivas, Turkey
| | - Dipankar Mishra
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| |
Collapse
|
5
|
Elangovan N, Arumugam N, Almansour AI, Mathew S, Djearamane S, Wong LS, Kayarohanam S. Synthesis, solvent role, absorption and emission studies of cytosine derivative. Heliyon 2024; 10:e28623. [PMID: 38590870 PMCID: PMC11000011 DOI: 10.1016/j.heliyon.2024.e28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino) pyrimidin-2(1H)-one (C5NV) was synthesized from cytosine and 5-nitrovanilline by simple straightforward condensation reaction. The structural characteristics of the compound was determined and optimized by WB97XD/cc-pVDZ basis set. The vibrational frequencies were computed and subsequently compared to the experimental frequencies. We investiated the electronic properties of the synthesized compound in gas and solvent phases using the time-dependent density functional theory (TD-DFT) approach, and compared them to experimental values. The fluorescence study showed three different wavelengths indicating the nature of the optical material properties. Frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) analyses were conducted for the title compound, and electron localized functions (ELF) and localized orbital locators (LOL) were used to identify the orbital positions of localized and delocalized atoms. Non-covalent interactions (H-bond interactions) were investigated using reduced density gradients (RDGs). The objective of the study was to determine the physical, chemical, and biological properties of the C5NV. The molecular docking study was conducted between C5NV and 2XNF protein, its lowest binding energy score is -7.92 kcal/mol.
Collapse
Affiliation(s)
- N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Anjalam, 621208, Musiri, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shanty Mathew
- Department of Chemistry, St. Joseph's College Research Center, Shanthinagar, 560027, Bangalore, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
6
|
Guezane-Lakoud S, Ferrah M, Merabet-Khelassi M, Touil N, Toffano M, Aribi-Zouioueche L. 2-Hydroxymethyl-18-crown-6 as an efficient organocatalyst for α -aminophosphonates synthesized under eco-friendly conditions, DFT, molecular docking and ADME/T studies. J Biomol Struct Dyn 2024; 42:3332-3348. [PMID: 37184142 DOI: 10.1080/07391102.2023.2213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Eco-friendly and simple procedure has been developed for the synthesis of α-aminophosphonates that act as topoisomerase II α-inhibiting anticancer agent, using 2-hydroxymethyl-18-crown-6 as an unexpected homogeneous organocatalyst in multicomponents reaction of aromatic aldehyde, aniline and diethylphosphite in one pot via Kabachnik-Fields reaction. This efficient method proceeds with catalytic amount, transition metal-free, at room temperature within short reaction time, giving the α-aminophosphonates derivatives (4a-r) in high chemical yields (up to 80%). Theoretical DFT calculations of three compounds (4p, 4q and 4r) were carried out in a gas phase at CAM-B3LYP 6-31G (d,p) basis set to predict the molecular geometries and chemical reactivity descriptors. The frontier orbital energies (HOMO/LUMO) were described the charge transfer and used to predict structure-activity relationship study. Molecular electrostatic potential (MEP) has also been analyzed. Molecular docking studies are implemented to analyze the binding energy and compared with Adriamycin against 1ZXM receptor which to be considered as antitumor candidates. In silico pharmacological ADMET properties as Drug likeness and oral activity have been carried out based on Lipinski's rule of five.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samia Guezane-Lakoud
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Meriem Ferrah
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Mounia Merabet-Khelassi
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Nourhane Touil
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Martial Toffano
- Equipe de Catalyse Moléculaire-ICMMO Bât 420. Université Paris-Saclay, Paris, France
| | - Louisa Aribi-Zouioueche
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| |
Collapse
|
7
|
Mathada BS, Basha NJ, Javeed M, Karunakar P, Venkatesulu A, Erappa K, Varsha A. Novel pyrimidines as COX-2 selective inhibitors: synthesis, DFT analysis, molecular docking and dynamic simulation studies. J Biomol Struct Dyn 2024; 42:1751-1764. [PMID: 37102863 DOI: 10.1080/07391102.2023.2202248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Pyrimidine and its derivatives are associated with varieties of biological properties. Therefore, we herein reported the synthesis of four novel pyrimidines (2, 3, and 4a, b) derivatives. The structure of these molecules is confirmed by spectroscopic methods such as IR, NMR, and Mass analysis. The electronic behavior of synthesized compounds 4a, b and in silico drug design 4 c, d was explained by Density Functional Theory estimations at the DFT/B3LYP level via 6-31 G++ (d, p) replicates the structure and geometry. All the synthesized compounds were screened for their in vitro COX-1 and COX-2 inhibitory activity compared to standards Celecoxib and Ibuprofen. Compounds 3 and 4a afforded excellent COX-1 and COX-2 inhibitory activities at IC50 = 5.50 and 5.05 μM against COX-1, 0.85 and 0.65 μM against COX-2, respectively. The standard drugs Celecoxib and Ibuprofen showed inhibitory activity at IC50 = 6.34 and 3.1 μM against COX-1, 0.56 and 1.2 μM against COX-2, respectively. Further, these compounds showed high potential docking with SARS-CoV-2 Omicron protease & COX-2 and predicted drug-likeness for the pyrimidine analogs by using Molinspiration. The protein stability, fluctuations of APO-protein, protein-ligand complexes were investigated through Molecular Dynamics simulations studies using Desmond Maestro 11.3 and potential lead molecules were identified.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - Mohammad Javeed
- P. G. Department and Research Studies in Chemistry, Nrupatunga University, Bengaluru, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Adavala Venkatesulu
- Department of Post Graduate Studies & Research Centre in Physics, Govt. First Grade College, Hoskote, Karnataka, India
| | - Krishnakanth Erappa
- Department of Post Graduate Studies & Research Centre in Physics, Govt. First Grade College, Hoskote, Karnataka, India
| | - A Varsha
- Department of Biotechnology, PES University, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Azzouzi M, Ouafi ZE, Azougagh O, Daoudi W, Ghazal H, Barkany SE, Abderrazak R, Mazières S, Aatiaoui AE, Oussaid A. Design, synthesis, and computational studies of novel imidazo[1,2- a]pyrimidine derivatives as potential dual inhibitors of hACE2 and spike protein for blocking SARS-CoV-2 cell entry. J Mol Struct 2023; 1285:135525. [PMID: 37057139 PMCID: PMC10080474 DOI: 10.1016/j.molstruc.2023.135525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
In the present work, a new series of imidazo[1,2-a]pyrimidine Schiff base derivatives have been obtained using an easy and conventional synthetic route. The synthesized compounds were spectroscopically characterized using 1H, 13C NMR, LC-MS(ESI), and FT-IR techniques. Green metric calculations indicate adherence to several green chemistry principles. The energy of Frontier Molecular Orbitals (FMO), Molecular Electrostatic Potential (MEP), Quantum Theory of Atoms in Molecules (QTAIM), and Reduced Density Gradient (RDG) were determined by the Density Functional Theory (DFT) method at B3LYP/6-31 G (d, p) as the basis set. Moreover, molecular docking studies targeting the human ACE2 and the spike, key entrance proteins of the severe acute respiratory syndrome coronavirus-2 were carried out along with hACE2 natural ligand Angiotensin II, the MLN-4760 inhibitor as well as the Cannabidiolic Acid CBDA which has been demonstrated to bind to the spike protein and block cell entry. The molecular modeling results showed auspicious results in terms of binding affinity as the top-scoring compound exhibited a remarkable affinity (-9.1 and -7.3 kcal/mol) to the ACE2 and spike protein respectively compared to CBDA (-5.7 kcal/mol), the MLN-4760 inhibitor (-7.3 kcal/mol), and angiotensin II (-9.2 kcal/mol). These findings suggest that the synthesized compounds may potentially act as effective entrance inhibitors, preventing the SARS-CoV-2 infection of human cells. Furthermore, in silico, ADMET, and drug-likeness prediction expressed promising drug-like characteristics.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Zainab El Ouafi
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences Casablanca, Casablanca, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Walid Daoudi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Hassan Ghazal
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences Casablanca, Casablanca, Morocco
- Electronic Systems, Sensors and Nanobiotechnologies (E2SN), École Nationale Supérieure des Arts et Métiers (ENSAM), Mohammed V University, Rabat, Morocco
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Rfaki Abderrazak
- National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
| | - Stéphane Mazières
- Laboratory of IMRCP, University Paul Sabatier, CNRS UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
9
|
Synthesis, biological activities, molecular docking, theoretical calculations of some 1,3,4-oxadiazoles, 1,2,4-triazoles, and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Kanagavalli A, Jayachitra R, Thilagavathi G, Elangovan N, Sowrirajan S, Thomas R. Synthesis, characterization, computational, excited state properties, wave function, and molecular docking studies of (E)-4-((2-hydroxybenzylidene)amino)N-(thiazol-2-yl) benzenesulfonamide. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|