1
|
Tamizh Selvan G, Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J Genet Eng Biotechnol 2024; 22:100409. [PMCID: PMC11381789 DOI: 10.1016/j.jgeb.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
2
|
Santos LVDS, Galvão BVD, Souza L, Fernandes ADS, Araujo-Lima CF, Felzenszwalb I. Heterocyclic phytometabolites formononetin and arbutin prevent in vitro oxidative and alkylation-induced mutagenicity. Toxicol Rep 2024; 13:101753. [PMID: 39434863 PMCID: PMC11492619 DOI: 10.1016/j.toxrep.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Phenolic phytometabolites are promising bioactive compounds for management of genomic instability related diseases. Formononetin (FMN) and arbutin (ARB) are found in several plant sources. Our goal was to investigate the safety and efficacy of FMN and ARB using in vitro both standardized and alternative toxicogenetic methods. FMN and ARB were evaluated through the OECD'S guidelines No. 471 (Bacterial Reverse Mutation Test -Salmonella/microsome) and No. 487 (In vitro Mammalian Micronucleus Test - CBMN assay), accordingly to the mentioned recommendations. Also, antimutagenicity of FMN and ARB was assessed in S. Typhimurium strains TA98, TA100 and TA1535, following pre-, co- and post- treatment protocols. Liver human lineages HepG2 and F C3H were assayed for cytotoxicity after exposure to FMN and ARB (24, 48 and 72 h) using in vitro WST-1 test. ARB showed no mutagenicity in the Salmonella/microsome test under both metabolic conditions (in presence or absence of 4 % S9 mix), but FMN was cytotoxic to the TA97 and TA100 strains after metabolic activation. Under this same condition, FMN induced an increase in the mutagenic index of strain TA1535 at two of the highest tested concentrations. Even so, ARB and FMN exhibited protection against the induced alkylation of DNA in multiple action modes. In the antimutagenicity assay, FMN reached the maximum of 80 % of oxidative-provoked mutagenicity reduction in TA98 strain in co-treatment with known mutagen, besides 69 % of reduction in TA100 in the same exposure condition. ARB showed up to reduce induced mutagenicity in strains TA100 and TA1535, reaching percentages from 55 % to 100 % of antimutagenicity in all of the tested exposure models against alkylating agent. In the CBMN assay, no increase in micronuclei formation was observed. The results suggest that FMN and ARB prevent DNA from mutation using multi-targeted antimutagenic roles. Finally, our data suggests that FMN and ARB are not genotoxic and presented encouraging antimutagenicity action in vitro, being promising compounds for use in genomic instability-related diseases therapeutics.
Collapse
Affiliation(s)
| | | | - Lays Souza
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Carlos Fernando Araujo-Lima
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Fenech M, Holland N, Zeiger E, Chang PW, Kirsch-Volders M, Bolognesi C, Stopper H, Knudsen LE, Knasmueller S, Nersesyan A, Thomas P, Dhillon V, Deo P, Franzke B, Andreassi MG, Laffon B, Wagner KH, Norppa H, da Silva J, Volpi EV, Wilkins R, Bonassi S. Objectives and achievements of the HUMN project on its 26th anniversary. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108511. [PMID: 39233049 DOI: 10.1016/j.mrrev.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.
Collapse
Affiliation(s)
- Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, CA, USA.
| | | | - Peter Wushou Chang
- Show Chwan Memorial Hospital, Changhwa, Taiwan; TUFTS University Medical School, Boston, USA.
| | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg 97080, Germany.
| | - Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark.
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia.
| | - Varinderpal Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Bernhard Franzke
- Department of Nutritional Sciences, University of Vienna, Austria.
| | | | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, and Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS 92010-000, Brazil; PPGBM, Federal University of Brazil (UFRGS), Porto Alegre 91501-970, Brazil.
| | - Emanuela V Volpi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W6UW, UK.
| | - Ruth Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada.
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome 00166, Italy.
| |
Collapse
|
4
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
5
|
Singh S, Gautam K, Mir SS, Anbumani S. Genotoxicity and cytotoxicity assessment of 'forever chemicals' in zebrafish (Danio rerio). MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503788. [PMID: 39054005 DOI: 10.1016/j.mrgentox.2024.503788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) comprise many chemicals with strong carbon-carbon and carbon-fluorine bonds and have extensive industrial applications in manufacturing several consumer products. The solid covalent bonding makes them more persistent in the environment and stays away from all types of degradation, naming them 'forever chemicals.' Zebrafish (Danio rerio) was used to evaluate the genotoxic and cytotoxic effects of legacy PFAS, Perfluorooctane sulfonate (PFOS), and its alternatives, such as Perfluoro-2-methyl-3-oxahexanoic acid ammonium (GenX) and 7H-Perfluoro-3,6-dioxa-4-methyl-octane-1-sulfonic acid (Nafion by-product 2 [NBP2]) upon single and combined exposure at an environmental concentration of 10 µg/L for 48-h. Erythrocyte micronucleus cytome assay (EMNCA) revealed an increased frequency of micronuclei (MN) in fish erythrocytes with a significant increase in NBP2-treated fish. The order of genotoxicity noticed was NBP2 > PFOS > Mixture > GenX in D. rerio. Fish exposed to PFOS and its alternatives in single and combined experiments did not cause any significant difference in nuclear abnormalities. However, PFOS and combined exposure positively inhibit cytokinesis, resulting in an 8.16 and 7.44-fold-change increase of binucleated cells. Besides, statistically, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) content indicate oxidative stress in D. rerio. In addition, 'forever chemicals' resulted in cytotoxicity, as evident through changes in nucleus width to the erythrocyte length in NBP2 and mixture exposure groups. The findings revealed that PFAS alternative NBP2 is more toxic than PFOS in inducing DNA damage and cytotoxicity. In addition, all three tested 'forever chemicals' induced ROS and lipid peroxidation after individual and combined exposure. The present work is the first to concern the genotoxicity and cytotoxicity of 'forever chemicals' in the aquatic vertebrate D. rerio.
Collapse
Affiliation(s)
- Shaloo Singh
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226008, India; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Krishna Gautam
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Ladeira C. The use of effect biomarkers in chemical mixtures risk assessment - Are they still important? MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503768. [PMID: 38821670 DOI: 10.1016/j.mrgentox.2024.503768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Human epidemiological studies with biomarkers of effect play an invaluable role in identifying health effects with chemical exposures and in disease prevention. Effect biomarkers that measure genetic damage are potent tools to address the carcinogenic and/or mutagenic potential of chemical exposures, increasing confidence in regulatory risk assessment decision-making processes. The micronucleus (MN) test is recognized as one of the most successful and reliable assays to assess genotoxic events, which are associated with exposures that may cause cancer. To move towards the next generation risk assessment is crucial to establish bridges between standard approaches, new approach methodologies (NAMs) and tools for increase the mechanistically-based biological plausibility in human studies, such as the adverse outcome pathways (AOPs) framework. This paper aims to highlight the still active role of MN as biomarker of effect in the evolution and applicability of new methods and approaches in human risk assessment, with the positive consequence, that the new methods provide a deeper knowledge of the mechanistically-based biology of these endpoints.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC, Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon 1990-096, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Lisbon, Portugal.
| |
Collapse
|
7
|
Sommaggio LRD, Mazzeo DEC, Malvestiti JA, Dantas RF, Marin-Morales MA. Influence of ozonation and UV/H 2O 2 on the genotoxicity of secondary wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170883. [PMID: 38354810 DOI: 10.1016/j.scitotenv.2024.170883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The implementation of novel wastewater treatment technologies, including Advanced Oxidation Processes (AOPs) such as ozonation and ultraviolet radiation (UV) combined with hydrogen peroxide (H2O2), can be a promising strategy for enhancing the quality of these effluents. However, during effluent oxidation AOPs may produce toxic compounds that can compromise the water reuse and the receiving water body. Given this possibility, the aim of this study was to evaluate the genotoxic potential of secondary effluents from two different Wastewater Treatment Plants (WWTP) that were subjected to ozonation or UV/H2O2 for periods of 20 (T1) and 40 (T2) minutes. The genotoxic potential was carried out with the Comet assay (for clastogenic damage) and the Micronucleus assay (for clastogenic and aneugenic damage) in HepG2/C3A cell culture (metabolizing cell line). The results of the comet assay revealed a significant increase in tail intensity in the Municipal WWTP (dry period) effluents treated with UV/H2O2 (T1 and T2). MN occurrence was noted across all treatments in both Pilot and Municipal WWTP (dry period) effluents, whereas nuclear buds (NBs) were noted for all Pilot WWTP treatments and UV/H2O2 treatments of Municipal WWTP (dry period). Moreover, the UV/H2O2 (T1) treatment of Municipal WWTP (dry period) exhibited a noteworthy incidence of multiple alterations per cell (MN + NBs). These findings imply that UV/H2O2 treatment demonstrates higher genotoxic potential compared to ozonation. Furthermore, seasonal variations can have an impact on the genotoxicity of the samples. Results of the study emphasize the importance of conducting genotoxicological tests using human cell cultures, such as HepG2/C3A, to assess the final effluent quality from WWTP before its discharge or reuse. This precaution is essential to safeguard the integrity of the receiving water body and, by extension, the biotic components it contains.
Collapse
Affiliation(s)
- Laís Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Universidade Federal de São Carlos (UFSCar), Araras, SP, Brazil.
| | - Jacqueline Aparecida Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
| | - Renato Falcão Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
8
|
Gajski G, Kašuba V, Milić M, Gerić M, Matković K, Delić L, Nikolić M, Pavičić M, Rozgaj R, Garaj-Vrhovac V, Kopjar N. Exploring cytokinesis block micronucleus assay in Croatia: A journey through the past, present, and future in biomonitoring of the general population. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503749. [PMID: 38575251 DOI: 10.1016/j.mrgentox.2024.503749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
In this study, we used the cytokinesis-block micronucleus (CBMN) assay to evaluate the background frequency of cytogenetic damage in peripheral blood lymphocytes of the general population concerning different anthropometric data and lifestyle factors. The background frequency of CBMN assay parameters was analysed in 850 healthy, occupationally non-exposed male and female subjects (average age, 38±11 years) gathered from the general Croatian population from 2000 to 2023. The mean background values for micronuclei (MNi) in the whole population were 5.3±4.3 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 0.7±1.3 and of nuclear buds (NBUDs) 3.1±3.2. The cut-off value, which corresponds to the 95th percentile of the distribution of 850 individual values, was 14 MNi, 3 NPBs, and 9 NBUDs. Results from our database also showed an association of the tested genomic instability parameters with age and sex but also with other lifestyle factors. These findings underscore the importance of considering several anthropometric and lifestyle factors when conducting biomonitoring studies. Overall, the normal and cut-off values attained here present normal values for the general population that can later serve as baseline values for further human biomonitoring studies either in Croatia or worldwide.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Katarina Matković
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Luka Delić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Maja Nikolić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Martina Pavičić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Ružica Rozgaj
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Raj SG, Rajitha V. Assessment of genotoxic instability markers in peripheral blood lymphocytes of breast cancer patients: a case control study. J Biomol Struct Dyn 2024; 42:1559-1563. [PMID: 37222673 DOI: 10.1080/07391102.2023.2214226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Changes in genetic constitution of an individual leads to uncontrollable cell growth and tumour formation. The acquisition of genomic instability predisposes cells to accumulate stable genome mutations causing carcinogenesis. The cytokinesis-block micronucleus cytome assay (CBMN), a well-established marker assay for chromosomal mutagen sensitivity, was applied in this study enrolling breast cancer patients and age and sex-matched controls. This work aimed to assess the predictive value of the frequency of genotoxic markers in peripheral blood lymphocytes for the risk/susceptibility of breast cancer. Samples from a hundred untreated breast cancer patients and age and sex matched controls were enrolled in the study from Government Medical College, Alappuzha. The genomic instability was assessed using cytokinesis block micronucleus assay where cytome events were marked. The results showed a significant increase in the frequency of micronucleus, nucleoplasmic bridge, and buds in the binucleated cells of breast cancer patients compared to the control samples. The variability was assessed by CBMN Cyt assay. The frequency of Micronuclei and Nucleoplasmic buds was significantly higher in the patient groups than in the controls (p < 0.0001). In Breast cancer patients, the median (IQR) range of MNi was 12(6), the Nucleoplasmic bridge 3(3) and the Nuclear buds were 2(1) and, in the controls, it was 6(5), 1(2) and 1(1) respectively. A larger difference in the frequency of genetic markers in cancer patients over control cases support a significant role of these markers in the population screening of individuals at high risk of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Smitha G Raj
- Department of Anatomy, GTDMC, Alappuzha, India
- Vinayaka Mission Kirupananda Variyar Medical College, Salem, India
| | - V Rajitha
- Department of Anatomy, Vinayaka Mission Kirupananda Variyar Medical College, Salem, India
| |
Collapse
|
10
|
Çobanoğlu H, Çayır A. Occupational exposure to radiation among health workers: Genome integrity and predictors of exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503726. [PMID: 38272632 DOI: 10.1016/j.mrgentox.2024.503726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The current study aimed to investigate genomic instabilities in healthcare workers who may experience varying levels of radiation exposure through various radiological procedures. It also sought to determine if factors related to the work environment and dosimeter reading could effectively explain the observed genomic instabilities. Utilizing the cytokinesis-block micronucleus assay (CBMN) on peripheral blood lymphocytes, we assessed a spectrum of genomic aberrations, including nucleoplasmic bridge (NPB), nuclear budding (NBUD), micronucleus (MN) formation, and total DNA damage (TDD). The study uncovered a statistically significant increase in the occurrence of distinct DNA anomalies among radiology workers (with a significance level of P < 0.0001 for all measurements). Notably, parameters such as total working hours, average work duration, and time spent in projection radiography exhibited significant correlations with MN and TDD levels in these workers. The dosimeter readings demonstrated a positive correlation with the frequency of NPB and NBUD, indicating a substantial association between radiation exposure and these two genomic anomalies. Our multivariable models identified the time spent in projection radiography as a promising parameter for explaining the overall genomic instability observed in these professionals. Thus, while dosimeters alone may not fully explain elevated total DNA damage, intrinsic work environment factors hold potential in indicating exposure levels for these individuals, providing a complementary approach to monitoring.
Collapse
Affiliation(s)
- Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
| |
Collapse
|
11
|
Eker-Kartal E, Avuloglu-Yilmaz E. Determination of the genotoxic effects of sweeteners, mannitol and lactitol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:135-149. [PMID: 38060281 DOI: 10.1080/26896583.2023.2275984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The changes in dietary habit around the world have led to an increased use of additives in the food. The safety of food additives has been a main focus of research for many years due to the ongoing debate on their potential effects on health. In this study, the in vitro genotoxic effects of mannitol and lactitol, polyols used as sweetener food additives, were evaluated using chromosomal aberrations (CAs) and micronucleus (MN) assays in human peripheral lymphocytes. Additionally, the effects of these sweeteners on the mitotic index (MI) and nuclear division index (NDI) were investigated. Concentrations of 500, 1000, 2000, 4000, and 8000 μg/mL for mannitol and 250, 500, 1000, 2000, and 4000 μg/mL for lactitol were used. The results indicated that both polyols did not affect CA and MN frequency, and did not cause a significant change in NDI at all treatment concentratoins. However, mannitol (except at concentrations of 500 and 1000 μg/mL) and lactitol (except at 250 μg/mL) significantly decreased the MI compared to the control at almost all concentrations and treatment times. In conclusion, it was observed that mannitol and lactitol did not have a significant genotoxic effect at the concentrations used in human lymphocytes in vitro.
Collapse
Affiliation(s)
- Ebru Eker-Kartal
- Department of Biotechnology, Institute of Natural Sciences, Amasya University, Amasya, Turkey
| | - Ece Avuloglu-Yilmaz
- Department of Health Information Systems, School of Technical Sciences, Amasya University, Amasya, Turkey
| |
Collapse
|
12
|
Montero-Montoya R, Suárez-Larios K, Serrano-García L. Paraoxon and glyphosate induce DNA double-strand breaks but are not type II topoisomerase poisons. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503657. [PMID: 37567644 DOI: 10.1016/j.mrgentox.2023.503657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured. Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.
Collapse
Affiliation(s)
- Regina Montero-Montoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico.
| | - Karen Suárez-Larios
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico
| | - Luis Serrano-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico
| |
Collapse
|
13
|
Cimci M, Batar B, Bostanci M, Durmaz E, Karayel B, Raimoglou D, Guven M, Karadag B. The Long-Term Impact of Ionizing Radiation on DNA Damage in Patients Undergoing Multiple Cardiac Catheterizations. Cardiovasc Toxicol 2023; 23:278-283. [PMID: 37458898 DOI: 10.1007/s12012-023-09801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/18/2023]
Abstract
Ionizing radiation (IR) exposures have increased exponentially in recent years due to the rise in diagnostic and therapeutic interventions. A number of small-scale studies investigated the long-term effect of IR on health workers or immediate effects of IR on patients undergoing catheterization procedures; however, the long-term impact of multiple cardiac catheterizations on DNA damage on a patient population is not known. In this study, the effects of IR on DNA damage, based on micronuclei (MN) frequency and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as markers in peripheral lymphocytes, were evaluated in patients who previously underwent multiple cardiac catheterization procedures. Moreover, genetic polymorphisms in genes PARP1 Val762Ala, OGG1 Ser326Cys, and APE1 Asn148Glu as a measure of sensitivity to radiation exposure were also investigated in the same patient population. The patients who underwent ≥ 3 cardiac catheterization procedures revealed higher DNA injury in comparison to the patients who underwent ≤ 2 procedures, documented with the presence of higher level of MN frequency (6.4 ± 4.8 vs. 9.1 ± 4.3, p = 0.002) and elevated serum 8-OHdG levels (33.7 ± 3.8 ng/mL vs. 17.4 ± 1.9 ng/mL, p = 0.001). Besides, OGG1 Ser326Cys and APE1 Asn148Glu heterozygous and homozygous polymorphic types, which are related with DNA repair mechanisms, were significantly associated with MN frequency levels (p = 0.006 for heterozygous and p = 0.001 for homozygous with respect to OGG1 Ser326Cys, p = 0.007 for heterozygous and p = 0.001 for homozygous with respect to APE1 Asn148Glu). There was no significant difference in terms of PARP1 Val762Ala gene polymorphism between two groups.
Collapse
Affiliation(s)
- Murat Cimci
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Bahadir Batar
- Department of Medical Biology, Tekirdag Namik Kemal University School of Medicine, Tekirdaǧ, Turkey
| | - Merve Bostanci
- Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eser Durmaz
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Karayel
- Department of Internal Medicine, Health Science University, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Damla Raimoglou
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Guven
- Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bilgehan Karadag
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
14
|
Rossnerova A, Elzeinova F, Chvojkova I, Honkova K, Sima M, Milcova A, Pastorkova A, Schmuczerova J, Rossner P, Topinka J, Sram RJ. Effects of various environments on epigenetic settings and chromosomal damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121290. [PMID: 36804881 DOI: 10.1016/j.envpol.2023.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic; Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jana Schmuczerova
- Department of Medical Genetics, L. Pasteur University Hospital, Trieda SNP 1, 040 11, Kosice, Slovakia.
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Radim J Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
15
|
Mancini M, Cerny MEV, Cardoso NS, Verissimo G, Maluf SW. Grape Seed Components as Protectors of Inflammation, DNA Damage, and Cancer. Curr Nutr Rep 2023; 12:141-150. [PMID: 36692807 DOI: 10.1007/s13668-023-00460-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW Oxidative stress is related to the pathogenesis of several chronic diseases, including inflammatory processes. Free radicals excess increase not only oxidative stress but also genomic instability. Polyphenols are non-enzymatic antioxidants that act as a defense barrier against free radicals and non-radical oxidants. The purpose of this article was to review published articles relating dietary polyphenols contained in grape seed proanthocyanidin extracts with its potential for reversing DNA damage. RECENT FINDINGS Proanthocyanidin components exert pleiotropic actions having several biological, biochemical, and significant pharmacological effects and showed the ability to reduce cytotoxicity and genotoxicity. Grape seed proanthocyanidin extracts showed the ability to reduce cytotoxicity and genotoxicity through the comet assay and the micronucleus technique.
Collapse
Affiliation(s)
- Melissa Mancini
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maria Eduarda Vieira Cerny
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Natali Silva Cardoso
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Sharbel Weidner Maluf
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
16
|
Rubus rosifolius (Rosaceae) stem extract induces cell injury and apoptosis in human hepatoma cell line. Toxicol In Vitro 2023; 86:105485. [DOI: 10.1016/j.tiv.2022.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
17
|
Constante JS, Khateeb JEA, Souza APDE, Conter FU, Lehmann M, Yunes JS, Dihl RR. In vitro and in silico assessment of cytotoxicity and chromosome instability induced by saxitoxin in human derived neural cell line. AN ACAD BRAS CIENC 2022; 94:e20220029. [PMID: 36477823 DOI: 10.1590/0001-3765202220220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
In freshwater, saxitoxins (STX) are produced by different cyanobacteria genera, including Raphidiopsis. Data regarding cytogenotoxicity effects of STX on human cells are scarse, this merit further studies of its toxicology. This study assessed the cytotoxicity and the chromosome instability of STX on SHSY-5Y human cell line. The CBMN assay allows the detection of chromosome breaks and abnormal chromosomal segregation. Additionally, in silico systems biology approach, used to search for known and predicted interaction networks, was applied to study the interactions between STX and SHSY-5Y cellular components. The results of the CBMN assay demonstrated that STX concentrations of 2.5 - 10 µg/L induced cytostasis and chromosome instability in a dose-response relationship. Apoptosis was detected after exposure of SHSY-5Y cultured cells to STX concentration of 10 µg/L. The results of the systems biology analysis revealed the interaction of STX with proteins related with acetylcoline pathway, cell cycle regulation and apoptosis. Furthermore, combining the in vitro and in silico approachs, it was possible to suggest a mechanism of action of STX in SHSY-5Y cells. Overall, the data demonstrated the cytotoxicity and mutagenicity of environmentally relevant concentrations of STX. These results should be considered when setting up guidelines for monitoring STX in water supply.
Collapse
Affiliation(s)
- Juliany S Constante
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Laboratório de Análise Tóxico-Genética Celular, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - Juliana E Al Khateeb
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Laboratório de Análise Tóxico-Genética Celular, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - Ana Paula DE Souza
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Laboratório de Análise Tóxico-Genética Celular, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - Felipe U Conter
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Laboratório de Biologia do Câncer, Av. Farroupilha, 8001, Prédio 22, 5° andar, 92425-900 Canoas, RS, Brazil
| | - Maurício Lehmann
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Laboratório de Análise Tóxico-Genética Celular, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - João S Yunes
- Universidade Federal do Rio Grande (FURG), Instituto de Oceanografia, Laboratório de Cianobactérias e Ficotoxinas, Av. Itália, Km 8, 96203-900 Rio Grande, RS, Brazil
| | - Rafael R Dihl
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Laboratório de Análise Tóxico-Genética Celular, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil.,Programa de Pós-Graduação em Odontologia, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, 92425-900 Canoas, RS, Brazil
| |
Collapse
|
18
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
19
|
Liu G. Revision of cytogenetic dosimetry in the IAEA manual 2011 based on data about radio-sensitivity and dose-rate findings contributing. FASEB J 2022; 36:e22621. [PMID: 36260291 DOI: 10.1096/fj.202200769rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
In order to achieve the goal of rapid response, effective controland protection of life inlarge-scale radiation events, the IAEA Manual 2011 has been revised based on the data of radio-sensitivity, dose-rate findings. Analyze individual differences in radiation sensitivity using 60 Co radiation (0.27 Gy/min). Chromosomal aberrations with different irradiation dose rates were used to establish the biological dose curve and analyze the excess of the "dicentric + ring" caused by the dose rate at each dose point; DAPI-images and Metafer 4 were used to capture metaphase images and make further analysis. The data were collected in 2020, Dicentric + ring/100 Cells was 17.5-43.8, the average value was28.32 ± 6.98. The mean value of Dicentric + ring/100 Cells was 31.37 in males while 25.27 in females, there are significant differences (p < .01). The irradiation dose is dominant, At each dose point, the value of"(dicentric chromosome + centric rings)/cell" is proportional to "dose rate", that is, Y = kx + b, within the dose range of 1-5 Gy, "(dicentric chromosome + centric rings)/Cell" holds a quadratic linear relationship with dose rate, that is, y = ax2 + bx + c; The DAPI-images might give you more hints than those of conventional Giemsa-stain. The authors recommend that the IAEA Manual 2011 could be revised based on data of radio-sensitivity and dose-rate, which may contribute to the establishment of a unified dose-response calibration curve and stimulation of potential for automation in cytogenetic biodosimetry. (1) Individual differences of radiosensitivity are very large. (2) At each dose point, "(dicentric chromosome + centric rings)/cell" is proportional to "dose rate", that is, Y = kx + b. (3) "(dicentric chromosome + centric rings)/Cell" is a quadratic linear relationship with dose rate, that is, y = ax2 + bx + c. (4) We created a "Unity Standard Curve of Biological Dose Estimation". Creating a Unity Standard Curve of Biological Dose, under these circumstances, we can form a joint and rapid response to a nuclear and radiological accident.
Collapse
Affiliation(s)
- Gang Liu
- Gansu Provincial Center for Disease Control and Prevention, Joint Laboratory of Institute of Radiology, Chinese Academy of Medical Sciences, Lanzhou, China
| |
Collapse
|
20
|
Carrão Dantas EK, Araújo-Lima CF, Ferreira CLS, Goldstein ADC, Aiub CAF, Coelho MGP, Felzenszwalb I. Toxicogenetic assessment of a pre-workout supplement: In vitro mutagenicity, cytotoxicity, genotoxicity and glutathione determination in liver cell lines and in silico ADMET approaches. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503517. [PMID: 35914863 DOI: 10.1016/j.mrgentox.2022.503517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The benefits of practicing physical activity, such as weight loss and control, are commonly associated with caloric restriction diets and may be improved by the ingestion of thermogenic and ergogenic supplements. However, there is a lack of safety data on commonly marketed nutritional supplements. Therefore, this investigation aims to evaluate a pre-workout supplement for mutagenicity using the Ames test, hepatocytoxicity in HepG2 and F C3H cells after 24 h, 48 h and 72 h, genotoxicity using the CBMN assay, determination of gluthatione activity and computational prediction of the three major isolated compounds present in the supplement. The mutagenicity test showed a mutagenic response in TA98 His+ revertants of 5 mg/plate in the presence of metabolic activation, cytotoxicity in TA98 of 5 mg/plate in the absence of metabolic conditions, and in TA102 of 0.5 mg/plate both in the presence and absence of metabolic activation. In our in vitro eukaryotic cell viability, WST-1, LDH and alkaline phosphatase assays, the supplement showed hepatocytotoxicity both dose-dependently and time-dependently. In the cytokinesis blocking micronuclei assay, the supplement induced micronuclei, nuclear buds, nucleoplasmatic, bridge formation, and a decreased in nuclear division. In addition, the supplement decreased intra and extracellular GSH. Computational analysis showed that the three isolated compounds most present in the supplement have the potential to cause hepatotoxicity. In the present investigation, the pre-workout supplement induced mutagenic, genotoxic, and cytotoxic responses and GSH decrease. Thus, considering food safety and public health sanitary vigilance, the consumption of this pre-workout supplement may harm the health of its consumers.
Collapse
Affiliation(s)
- Eduardo Kennedy Carrão Dantas
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Caroline Lopes Simões Ferreira
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Alana da Cunha Goldstein
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Cláudia Alessandra Fortes Aiub
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Kornilova AA, Zhapbasov RZ, Zhomartov AM, Sibataev AK, Begimbetova DA, Bekmanov BO. Genotoxic Effect of Unused and Banned Pesticides on the Body of Cattle Kept on the Territory of South Kazakhstan. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12091432. [PMID: 35564141 PMCID: PMC9104944 DOI: 10.3390/nano12091432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.
Collapse
|
23
|
Elgorashi EE, Eldeen IMS, Makhafola TJ, Eloff JN, Verschaeve L. Genotoxic effects of Dukhan: A smoke bath from the wood of Acacia seyal used traditionally by Sudanese women. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114868. [PMID: 34826541 DOI: 10.1016/j.jep.2021.114868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Smoke from the wood of Acacia seyal Delile has been used by Sudanese women for making a smoke bath locally called Dukhan. The ritual is performed to relieve rheumatic pain, smooth skin, heal wounds and achieve general body relaxation. AIM OF THE STUDY The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays. MATERIAL AND METHODS The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects. RESULTS The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay. CONCLUSIONS The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.
Collapse
Affiliation(s)
- Esam E Elgorashi
- Toxicology and Ethnoveterinary Medicine, ARC-Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Ibrahim M S Eldeen
- Institute of Marine Biotechnology, University of Malaysia Terengganu, 21030, Terengganu, Malaysia; Faculty of Forestry, University of Khartoum, Shambat, 13314, Sudan.
| | - Tshepiso J Makhafola
- Centre for Quality of Health and Living, Central University of Technology, Faculty of Health and Environmental Sciences, Private Bag X20539, Bloemfontein, 20539, South Africa.
| | - Jacobus N Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Luc Verschaeve
- Sciensano (Formerly Scientific Institute of Public Health), Risk and Health Impact Assessment, Juliette Wytsmanstreet 14, Brussels, 1050, Belgium.
| |
Collapse
|
24
|
Solmaz U, Keskin E, Gumus I, Cevik PK, Binzet G, Arslan H. PLATINUM(II) COMPLEX CONTAINING N-(BIS (-2,4-DIMETHOXY-BENZYL)CARBAMOTHIOYL)- 4-METHYLBENZAMIDE LIGAND: SYNTHESIS, CRYSTAL STRUCTURE, HIRSHFELD SURFACE ANALYSIS, AND ANTIMICROBIAL ACTIVITY. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Chemotherapeutic and Safety Profile of a Fraction from Mimosa caesalpiniifolia Stem Bark. JOURNAL OF ONCOLOGY 2021; 2021:9031975. [PMID: 34917149 PMCID: PMC8670915 DOI: 10.1155/2021/9031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
Mimosa caesalpiniifolia (Fabaceae) is used by Brazilian people to treat hypertension, bronchitis, and skin infections. Herein, we evaluated the antiproliferative action of the dichloromethane fraction from M. caesalpiniifolia (DFMC) stem bark on murine tumor cells and the in vivo toxicogenetic profile. Initially, the cytotoxic activity of DFMC on primary cultures of Sarcoma 180 (S180) cells by Alamar Blue, trypan, and cytokinesis block micronucleus (CBMN) assays was assessed after 72 h of exposure, followed by the treatment of S180-bearing Swiss mice for 7 days, physiological investigations, and DNA/chromosomal damage. DFMC and betulinic acid revealed similar in vitro antiproliferative action on S180 cells and induced a reduction in viable cells, induced a reduction in viable cells and caused the emergence of bridges, buds, and morphological features of apoptosis and necrosis. S180-transplanted mice treated with DFMC (50 and 100 mg/kg/day), a betulinic acid-rich dichloromethane, showed for the first time in vivo tumor growth reduction (64.8 and 80.0%) and poorer peri- and intratumor quantities of vessels. Such antiproliferative action was associated with detectible side effects (loss of weight, reduction of spleen, lymphocytopenia, and neutrophilia and increasing of GOT and micronucleus in bone marrow), but preclinical general anticancer properties of the DFMC were not threatened by toxicological effects, and these biomedical discoveries validate the ethnopharmacological reputation of Mimosa species as emerging phytotherapy sources of lead molecules.
Collapse
|
26
|
Rekena A, Livkisa D, Kamolins E, Vanags J, Loca D. Biopharmaceutical-Type Chinese Hamster Ovary Cell Cultivation Under Static Magnetic Field Exposure: A Study of Genotoxic Effect. Front Bioeng Biotechnol 2021; 9:751538. [PMID: 34900956 PMCID: PMC8656418 DOI: 10.3389/fbioe.2021.751538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
The lack of a sufficient research base is the reason for the ongoing discussion regarding the genotoxic effect of magnetic field (MF) exposure on mammalian cell cultures. Chinese hamster ovary (CHO) suspension-type cells, which are widely used for biopharmaceutical production, are potentially subjected to an increased MF when cultivated in bioreactors equipped with bottom-placed magnetically coupled stirring mechanisms. The main challenge for conducting research in this field remains the availability of a suitable experimental setup that generates an appropriate MF for the raised research question. In the present study, a simple and cost-effective experimental setup was developed that generated a static MF, similar to what has been modeled in large-scale bioreactors and, at the same time, was suitable for experimental cell cultivation in laboratory conditions. The measured maximum magnetic flux density to which the cells were exposed was 0.66 T. To assess the possible genotoxic effect, cells were continuously subcultivated in laboratory petri dishes for a period of 14 days, corresponding to a typical duration of a biopharmaceutical production process in a conventional fed-batch regime. The genotoxic effect was assessed using the cytokinesis-block micronucleus assay with fluorescent staining. Results showed that a 0.66-T static MF exposure had no significant long-term effect on cell viability and chromosomal damage but demonstrated a short-term effect on cell apoptosis. Significant increase in nuclear bud formation was observed. These findings may encourage other researchers in future studies investigating cellular responses to MF exposure and contribute relevant data for comparison.
Collapse
Affiliation(s)
- Alina Rekena
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
| | - Dora Livkisa
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Edmunds Kamolins
- Institute of Physical Energetics, Riga, Latvia.,Institute of Industrial Electronics and Electrical Engineering, Riga Technical University, Riga, Latvia
| | - Juris Vanags
- Bioengineering Laboratory, Latvian State Institute of Wood Chemistry, Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia.,Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
27
|
Canedo A, de Jesus LWO, Bailão EFLC, Rocha TL. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118019. [PMID: 34670334 DOI: 10.1016/j.envpol.2021.118019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
28
|
Radović Jakovljević M, Stanković M, Vuković N, Vukić M, Grujičić D, Milošević-Djordjević O. Comparative study of the genotoxic activity of Artemisia vulgaris L. and Artemisia alba Turra extracts in vitro. Drug Chem Toxicol 2021; 45:1915-1922. [PMID: 34844486 DOI: 10.1080/01480545.2021.2007025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, the genotoxic activity of acetone and aqueous extracts of two species of genus Artemisia (Artemisia vulgaris L. and Artemisia alba Turra), and possible role of their polyphenolic composition in the observed activities were investigated. Polyphenolic contents were evaluated by high-performance liquid chromatography (HPLC-PDA), while the genotoxic activity was tested using cytokinesis block micronucleus (CBMN) assay on human peripheral blood lymphocytes (PBLs) in vitro. HPLC-PDA showed that both A. alba extracts were richer in polyphenolic contents than A. vulgaris extracts. The acetone A. alba extract was the richest of polyphenolic content where we detected six phenolic acids and two flavonoids. CBMN assay showed that aqueous extract of A. vulgaris significantly increased micronucleus (MN) frequency in the PBLs treated with all tested concentrations (10, 50, 100, and 250 µg/mL), while A. alba did not significantly affect the mean MN frequency. Further, both acetone extracts were genotoxic in all tested concentrations, except the lowest tested (10 µg/mL) of A. alba. All tested extracts affected the nuclear division index (NDI) except the aqueous A. alba extract (p < 0.05). Based on our results, we can conclude that both acetone and aqueous A. vulgaris extracts and A. alba acetone extract were genotoxic in PBLs in vitro. A. alba aqueous extract was not genotoxic and cytotoxic in tested concentrations. We suggest that the aqueous extract of A. alba can be used in treatment, which has been confirmed by traditional medicine, but with a high dose of caution and not in high concentrations.
Collapse
Affiliation(s)
| | - Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Milena Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Darko Grujičić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
29
|
Benković V, Marčina N, Horvat Knežević A, Šikić D, Rajevac V, Milić M, Kopjar N. Potential radioprotective properties of arbutin against ionising radiation on human leukocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503413. [PMID: 34798933 DOI: 10.1016/j.mrgentox.2021.503413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Arbutin is a simple phenolic glucoside biosynthesised in many plant families. Some of the everyday foods that contain arbutin are species of the genus Origanum, peaches, cereal products, coffee and tea and Arctostaphyllos uva ursi L. leaves. Arbutin possesses various beneficial effects in the organism, and was confirmed effective in the treatment of urinary tract infections as well as in preventing skin hyperpigmentation. It shows antioxidant and anti-inflammatory properties, and antitumor activity. The aim of this study was to explore potential radioprotective properties of arbutin in concentrations of 11.4 μg/mL, 57 μg/mL, 200 μg/mL and 400 μg/mL administered as a pre-treatment for one hour before exposing human leukocytes to ionising radiation at a therapeutic dose of 2 Gy. The alkaline comet assay was used to establish the levels of primary DNA damage, and cytokinesis-block micronucleus (CBMN) cytome assay to determine the level of cytogenetic damage. None of the tested concentrations of single arbutin showed genotoxic and cytotoxic effects. Even at the lowest tested concentration, 11.4 μg/mL, arbutin demonstrated remarkable potential for radioprotection in vitro, observed both at the level of primary DNA damage, and using CBMN cytome assay. The best dose reduction compared with amifostine was observed after pre-treatment with the highest concentration of arbutin, corresponding to 400 μg/mL. Promising results obtained on the leukocyte model speak in favour of extending similar experiments on other cell and animal models.
Collapse
Affiliation(s)
- Vesna Benković
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Nives Marčina
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anica Horvat Knežević
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Dunja Šikić
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vedran Rajevac
- University Hospital for Tumours, Sisters of Mercy University Hospital Centre, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
30
|
Jurič A, Brčić Karačonji I, Kopjar N. Homogentisic acid, a main phenolic constituent of strawberry tree honey, protects human peripheral blood lymphocytes against irinotecan-induced cytogenetic damage in vitro. Chem Biol Interact 2021; 349:109672. [PMID: 34560068 DOI: 10.1016/j.cbi.2021.109672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
Homogentisic acid (HGA) is the most abundant phenolic compound in strawberry tree (Arbutus unedo L.) honey and an intermediate in the metabolism of phenylalanine and tyrosine. Since HGA exerts its dual nature (pro-oxidant and antioxidant), which depends on the concentration and cell type, the aim of study was to determine whether HGA possess cytoprotective effects and could counteract the cyto- and genotoxic effects of the antineoplastic drug irinotecan (IRI). Tested concentrations corresponded to HGA content in average daily dose of strawberry tree honey as well as five- and ten-fold higher concentrations. Cyto- and genoprotective effects were tested on human peripheral blood lymphocytes using chromosomal aberrations assay and cytokinesis-block micronucleus cytome assay. HGA, even at concentrations 10-fold higher than the one present in the daily amount of consumed strawberry tree honey, posed a non-significant cytotoxic threat to lymphocytes, had a negligible potential for causing cytogenetic damage in treated cells, and did not significantly impair their proliferation. Results of the chromosomal aberration assay and CBMN Cyt assay also showed that HGA efficiently counteracted the detrimental cytogenetic effects of IRI in vitro. The finding on cyto- and genoprotective effects of HGA merits further research in order to better explain the safety profile of this compound and to assess its potency for the development of novel nutraceutical products.
Collapse
Affiliation(s)
- Andreja Jurič
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, Zagreb, Croatia; Faculty of Health Studies, University of Rijeka, Rijeka, Croatia.
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
31
|
Jaunay EL, Dhillon VS, Semple SJ, Simpson BS, Ghetia M, Deo P, Fenech M. Genotoxicity of advanced glycation end products in vitro is influenced by their preparation temperature, purification, and cell exposure time. Mutagenesis 2021; 36:445-455. [PMID: 34612487 DOI: 10.1093/mutage/geab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are formed via non-enzymatic reactions between amino groups of proteins and the carbonyl groups of reducing sugars. Previous studies have shown that highly glycated albumin prepared using a glucose-bovine serum albumin (Glu-BSA) model system incubated at 60°C for 6 weeks induces genotoxicity in WIL2-NS cells at 9 days of exposure measured by the cytokinesis-block micronucleus cytome (CBMNcyt) assay. However, this AGE model system is not physiologically relevant as normal body temperature is 37°C and the degree of glycation may exceed the extent of albumin modification in vivo. We hypothesised that the incubation temperature and purification method used in these studies may cause changes to the chemical profile of the glycated albumin and may influence the extent of genotoxicity observed at 3, 6 and 9 days of exposure. We prepared AGEs generated using Glu-BSA model systems incubated at 60°C or 37°C purified using trichloroacetic acid (TCA) precipitation or ultrafiltration (UF) and compared their chemical profile (glycation, oxidation, and aggregation) and genotoxicity in WIL2-NS cells using the CBMNcyt assay after 3, 6, and 9 days of exposure. The number of micronuclei (MNi) was significantly higher for cells treated with Glu-BSA incubated at 60°C and purified via TCA (12 ± 1 MNi/1000 binucleated cells) compared to Glu-BSA incubated at 37°C and purified using UF (6 ± 1 MNi/1000 binucleated cells) after 9 days (p < 0.0001). The increase in genotoxicity observed could be explained by a higher level of protein glycation, oxidation, and aggregation of the Glu-BSA model system incubated at 60°C relative to 37°C. This study highlighted that the incubation temperature, purification method and cell exposure time are important variables to consider when generating AGEs in vitro and will enable future studies to better reflect in vivo situations of albumin glycation.
Collapse
Affiliation(s)
- Emma L Jaunay
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Varinderpal S Dhillon
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Susan J Semple
- University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Maulik Ghetia
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Permal Deo
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Michael Fenech
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,Faculty of Health Sciences, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
32
|
Librelotto CS, Souza APDE, Álvares-DA-Silva MR, Simon D, Dihl RR. Evaluation of the genetic toxicity of sofosbuvir and simeprevir with and without ribavirin in a human-derived liver cell line. AN ACAD BRAS CIENC 2021; 93:e20200632. [PMID: 34586319 DOI: 10.1590/0001-3765202120200632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022] Open
Abstract
Direct-acting antivirals have revolutionized the treatment of chronic hepatitis C. Sofosbuvir and simeprevir are prescribed worldwide. However, there is a scarcity of information regarding their genotoxicity. Therefore, the present study assessed the cytotoxic and genotoxic effects of sofosbuvir and simeprevir, alone and combined with ribavirin. HepG2 cells were analyzed using the in vitro cytokinesis-block micronucleus cytome assay. Cells were treated for 24 h with sofosbuvir (0.011-1.511 mM), simeprevir (0.156-5.0 µM), and their combinations with ribavirin (0.250-4.0 mM). No significant differences were observed in the nuclear division cytotoxicity index, reflecting the absence of cytotoxic effects associated to sofosbuvir. However, the highest concentration of simeprevir showed a significant difference for the nuclear division cytotoxicity index. Moreover, significant results were observed for nuclear division cytotoxicity index in two combinations of sofosbuvir plus ribavirin and only in the highest combination of simeprevir plus ribavirin. Additionally, our results showed that sofosbuvir did not increase the frequency of chromosomal damage, but simeprevir significantly increased the frequency of micronuclei at the highest concentrations. The combination index demonstrated that both sofosbuvir and simeprevir produced antagonism to the genotoxic effects of ribavirin. In conclusion, our results showed that simeprevir, but not sofosbuvir, has genotoxic effects in HepG2 cells.
Collapse
Affiliation(s)
- Carina S Librelotto
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), PPG Biologia Celular e Molecular Aplicada à Saúde, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - Ana Paula DE Souza
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), PPG Biologia Celular e Molecular Aplicada à Saúde, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - Mário R Álvares-DA-Silva
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Universidade Federal do Rio Grande do Sul (UFRGS), Hospital das Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Santa Cecilia, 90035-007 Porto Alegre, RS, Brazil
| | - Daniel Simon
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), PPG Biologia Celular e Molecular Aplicada à Saúde, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| | - Rafael R Dihl
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), PPG Biologia Celular e Molecular Aplicada à Saúde, Av. Farroupilha, 8001, Prédio 22, 4° andar, 92425-900 Canoas, RS, Brazil
| |
Collapse
|
33
|
Jaunay EL, Dhillon VS, Semple SJ, Simpson BS, Deo P, Fenech M. Can a digital slide scanner and viewing technique assist the visual scoring for the cytokinesis-block micronucleus cytome assay? Mutagenesis 2021; 35:311-318. [PMID: 32383458 DOI: 10.1093/mutage/geaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/23/2020] [Indexed: 01/30/2023] Open
Abstract
The cytokinesis-block micronucleus cytome (CBMNcyt) assay is a comprehensive method to measure DNA damage, cytostasis and cytotoxicity caused by nutritional, radiation and chemical factors. A slide imaging technique has been identified as a new method to assist with the visual scoring of cells for the CBMNcyt assay. A NanoZoomer S60 Digital Pathology slide scanner was used to view WIL2-NS cells treated with hydrogen peroxide (H2O2) and measure CBMNcyt assay biomarkers using a high-definition desktop computer screen. The H2O2-treated WIL2-NS cells were also scored visually using a standard light microscope, and the two visual scoring methods were compared. Good agreement was found between the scoring methods for all DNA damage indices (micronuclei, nucleoplasmic bridges and nuclear buds) and nuclear division index with correlation R values ranging from 0.438 to 0.789, P < 0.05. Apoptotic and necrotic cell frequency was lower for the NanoZoomer scoring method, but necrotic frequency correlated well with the direct visual microscope method (R = 0.703, P < 0.0001). Considerable advantages of the NanoZoomer scoring method compared to direct visual microscopy includes reduced scoring time, improved ergonomics and a reduction in scorer fatigue. This study indicates that a digital slide scanning and viewing technique may assist with visual scoring for the CBMNcyt assay and provides similar results to conventional direct visual scoring.
Collapse
Affiliation(s)
- Emma L Jaunay
- Health and Biomedical Innovation, University of South Australia, Adelaide SA, Australia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, University of South Australia, Adelaide SA, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, UniSA Clinical and Health Sciences, University of South Australia, Adelaide SA, Australia
| | - Bradley S Simpson
- Health and Biomedical Innovation, University of South Australia, Adelaide SA, Australia
| | - Permal Deo
- Health and Biomedical Innovation, University of South Australia, Adelaide SA, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, University of South Australia, Adelaide SA, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
34
|
Masotta NE, Martinez-Perafan F, Carballo MA, Gorzalczany SB, Rojas AM, Tripodi VP. Genotoxic risk in humans and acute toxicity in rats of a novel oral high-dose coenzyme Q10 oleogel. Toxicol Rep 2021; 8:1229-1239. [PMID: 34195014 PMCID: PMC8233171 DOI: 10.1016/j.toxrep.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
An oral high-dose CoQ10 oleogel was assessed in its genotoxicity and acute toxicity. There was no genotoxic risk associated with the use of CoQ10 oleogel in volunteers. Biochemical parameters remained within reference values after oleogel treatment. No signs of toxicity or mortality were observed in the rats exposed to the oleogel. The novel high-dose CoQ10 oleogel formulation designed is safe for oral consumption.
Coenzyme Q10 (CoQ10) supplementation has demonstrated to be safe and effective in primary and secondary CoQ10 deficiencies. Previously, we have designed a high-dose CoQ10 oleogel (1 g/disk) with excipients used in quantities that do not represent any toxic risk. However, it was necessary to demonstrate their safety in the final formulation. Following this purpose, an acute toxicity study of the oleogel in rats was performed. Furthermore, the genotoxic risk was evaluated in human volunteers after CoQ10 supplementation with oleogel and compared to the solid form (1 g/three 00-size-capsules). In addition, the general health status and possible biochemical changes of the participants were determined using serum parameters. Results suggested the absence of adverse effects caused by the interaction of the components in the oleogel formulation. Therefore, we conclude that the designed novel high-dose CoQ10 oleogel was safe for oral consumption.
Collapse
Key Words
- ALKP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CBMNcyt, cytokinesis-block micronucleus cytome
- CoQ10, coenzyme Q10
- EC, ethylcellulose
- GGT, gamma-glutamyl transferase
- Genotoxicity
- High-dose coenzyme Q10 oleogel
- LDH, lactate dehydrogenase
- MCT, Medium-chain Triglycerides
- MNi, micronuclei
- Micronucleus cytome assay
- NBUDs, nuclear buds
- NPBs, nucleoplasmic bridges
- Rat acute toxicity
- Serum biochemical parameters
Collapse
Affiliation(s)
- Natalia Ehrenhaus Masotta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, ITAPROQ (CONICET-UBA), Int. Güiraldes 2620, Ciudad Universitaria, C1428BGA, Buenos Aires, Argentina.,CONICET, Argentina
| | - Fabian Martinez-Perafan
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Departamento de Bioquímica Clínica, CIGETOX (Citogenética Humana y Genética Toxicológica), C1113AAD, Buenos Aires, Argentina
| | - Marta Ana Carballo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Departamento de Bioquímica Clínica, CIGETOX (Citogenética Humana y Genética Toxicológica), C1113AAD, Buenos Aires, Argentina
| | - Susana Beatriz Gorzalczany
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, C1113AAD, Buenos Aires, Argentina
| | - Ana M Rojas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, ITAPROQ (CONICET-UBA), Int. Güiraldes 2620, Ciudad Universitaria, C1428BGA, Buenos Aires, Argentina.,CONICET, Argentina
| | - Valeria P Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Junín 954, C1113AAD, Buenos Aires, Argentina.,CONICET, Argentina
| |
Collapse
|
35
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
36
|
Jirsova K, Vesela V, Skalicka P, Ruzickova E, Glezgova J, Zima T, Dusinska M, Collins A, Bednar J. The micronucleus cytome assay - A fast tool for DNA damage screening in human conjunctival epithelial cells. Ocul Surf 2021; 20:195-198. [PMID: 33677062 DOI: 10.1016/j.jtos.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To assess whether the micronucleus cytome assay (MCyt) reliably detects DNA damage occurring in control and pathological superficial epithelial cells from human conjunctiva. METHODS Impression cytology samples from the bulbar conjunctiva of 33 healthy controls, eight patients with conjunctival intraepithelial neoplasia (CIN) and eight with mucous membrane pemphigoid (MMP) were examined using the MCyt modified for the ocular surface. RESULTS The mean number of micronuclei (MNi) in control samples was 0.94 MNi/1000 epithelial cells, with no significant difference between conjunctival quadrants and independent of sex and age. The MCyt assay applied to CIN-affected eyes showed a significantly higher frequency of MNi (18.63/1000 cells), apoptotic cells, nuclear enlargement, multinucleated cells, and keratolysis compared with the corresponding unaffected paired eyes and with the control value. Although the mean MNi frequency in MMP eyes was also higher (1.73 MNi/1000 cells), it did not prove to be statistically different from the control samples. On the other hand, the MMP-affected eyes revealed significantly elevated percentages of cells with snake-like chromatin, multinucleated cells, apoptotic cells, and nuclear buds compared with controls. CONCLUSIONS Micronucleus cytome assay was adapted as a rapid screening test for genomic instability on the ocular surface. We have determined reference levels for MNi and other nuclear alterations on healthy conjunctiva and demonstrated that particularly frequencies of MNi are significantly elevated in conjunctiva affected by CIN. We demonstrate that MNi are more specific than other nuclear abnormalities and thus can be used for screening of ocular surface neoplasia.
Collapse
Affiliation(s)
- Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic. https://maps.google.com/?q=Prague,+Czech+Republic+%0D%0A+Albertov+4,+128+00,+Prague,+Czech+Republic&entry=gmail&source=g
| | - Viera Vesela
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Eva Ruzickova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Johana Glezgova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Jan Bednar
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
37
|
Yazici I, Caglar O, Guclu O, Cobanoglu H, Coskun M, Coskun M, Kilic A, Dereköy FS. Micronucleus, nucleoplasmic bridge and nuclear bud frequencies in patients with laryngeal carcinoma. ACTA ACUST UNITED AC 2021; 40:410-414. [PMID: 33558768 PMCID: PMC7889252 DOI: 10.14639/0392-100x-n0490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/05/2020] [Indexed: 12/04/2022]
Abstract
The aim of the study is to determine and compare micronucleus (MN), nucleoplasmic bridge (NPB) and nuclear bud (NBUD) frequencies in patients with laryngeal carcinoma and healthy controls. The study was conducted in the School of Medicine of Onsekiz Mart University. A total of 102 volunteers, 51 of whom had laryngeal carcinoma and 51 of whom were healthy control subjects, participated in this study. The Cytokinesis-Block Micronucleus Assay (CBMN) was applied to peripheral blood lymphocytes taken from patients and controls. We evaluated MN, NPBs and NBUDs frequencies in patients with laryngeal carcinoma and compared the results with those in the control group. The frequencies of MN, NPBs and NBUDs of patients with laryngeal carcinoma were found significantly higher than those in the control group (P = 0.01, P = 0.004, P = 0.01, respectively). MN, NPB and NBUD frequencies were also compared in the patients with and without pesticide exposure, and the means of all frequencies was higher in patients with pesticide exposure (P = 0.001, P = 0.02 respectively). The MN, NPBs and NBUDs frequencies of the patients with laryngeal cancer were significantly higher than those of the control group, and pesticide exposure might be a risk factor that increases genomic instability and risk of laryngeal cancer.
Collapse
Affiliation(s)
- Ibrahim Yazici
- Deparment of Otorhinolaryngology, Ezine State Hospital Çanakkale, Turkey
| | - Ozge Caglar
- Deparment of Otorhinolaryngology, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| | - Oguz Guclu
- Deparment of Otorhinolaryngology, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| | - Hayal Cobanoglu
- Çanakkale Onsekiz Mart University, Health Services Vocational College, Çanakkale, Turkey
| | - Mahmut Coskun
- Çanakkale Onsekiz Mart University, Faculty of Medicine, Department of Medical Biology, Çanakkale, Turkey
| | - Münevver Coskun
- Çanakkale Onsekiz Mart University, Health Services Vocational College, Çanakkale, Turkey
| | - Aytac Kilic
- Deparment of Otorhinolaryngology, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| | - Fevzi Sefa Dereköy
- Deparment of Otorhinolaryngology, Çanakkale Onsekiz Mart University, Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
38
|
Effects of radiation quality and dose rate on radiation-induced nucleoplasmic bridges in human peripheral blood lymphocytes. Mutat Res 2021; 863-864:503321. [PMID: 33678246 DOI: 10.1016/j.mrgentox.2021.503321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
Previous studies showed that the yield of cobalt-60 γ-rays-induced nucleoplasmic bridges (NPB) in human peripheral blood lymphocytes is dose dependent. However, the influence of the radiation quality and dose rates on NPB frequencies has not been investigated. The present study aimed to investigate NPB frequencies in human peripheral blood lymphocytes induced by carbon ions and explore the dose rate effect on cobalt-60 γ-rays-induced NPB. To establish dose-response curves, human peripheral blood samples were irradiated with 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and 8.0 Gy of carbon ions at a dose rate of 3.0 Gy/min in vitro. To explore the dose rate effect, human peripheral blood samples were irradiated with 2.0 and 5.0 Gy of cobalt-60 γ-rays at dose rates of 0.2, 0.5, 1.0, 3.0, 5.0 and 10.0 Gy/min in vitro. NPB and micronuclei (MN) in binucleated cells were analyzed with the cytokinesis-block micronucleus cytome assay. Results showed that the dose-response curve of carbon ion-induced NPB frequencies follow a linear-quadratic model (R2 = 0.934). The relative biological effectiveness (RBE) values of carbon ions to cobalt-60 γ-rays decreased with increased NPB frequencies (ranging from 2.47 to 5.86). Compared with group 1.0 Gy/min, the NPB frequencies in groups 10.0 Gy/min (2.0 Gy), 5.0 and 10.0 Gy/min (5.0 Gy) were decreased significantly (P < 0.05). Carbon ion-induced NPB in human peripheral blood lymphocytes have a good dose-response relationship. Cobalt-60 γ-rays-induced NPB frequencies are affected by the specific dose rate.
Collapse
|
39
|
Bao C, Sun Y, Dwarakanath B, Dong Y, Huang Y, Wu X, Guha C, Kong L, Lu JJ. Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-x. J Cancer 2021; 12:1520-1530. [PMID: 33531997 PMCID: PMC7847655 DOI: 10.7150/jca.46316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023] Open
Abstract
To explore the potential and mechanisms of necroptosis, a form of immunogenic cell death, induced by carbon ion as compared to photon beams in established photon resistant- (PR-) and sensitive nasopharyngeal carcinoma (NPC) cells. MLKL is considered a central executor of necroptosis and phosphorylation of MLKL (p-MLKL) was a critical event of necroptosis. The clonogenic survival and DNA microarray demonstrated that after repeated photon irradiation, radiosensitive NPC cells became apoptosis-resistant but could be effectively inhibited by carbon ion irradiation. The relative biologic effectiveness (RBE) at D10 and D37 were 2.15 and 2.78 for PR-NPC cells. Carbon ion induced delayed DNA damage repair, cell cycle arrest, cytogenetic damage, morphological change and cell necrosis, indicating the possibility of necroptosis in both PR- and sensitive NPC cell types. The lower expression of necroptotic inhibitors (caspase-8 and Bcl-x) and higher level of MLKL in PR-NPC cells showed it was relatively more predisposed to necroptosis compared to the sensitive cells. Subsequent experiments demonstrated the significant upregulation of p-MLKL in the PR-NPC cells treated by carbon ion (4 Gy) compared with photon irradiation at both physical (4 Gy) and RBE (10 Gy) doses (P≤0.0001). Moreover, carbon ion induced a robust (up to 28 folds) p-MLKL in the PR-NPC cells as well as sensitive cells (up to 6-fold) coupled with a lower level of BCL-x expression and increased GM-CSF implicated in resculputure of immune system. These results suggested that carbon ion could induce necroptosis of NPC cells, especially in PR-NPC cells, and its mechanisms involve BCL-x.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Bilikere Dwarakanath
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaodong Wu
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
40
|
Laffon B, Bonassi S, Costa S, Valdiglesias V. Genomic instability as a main driving factor of unsuccessful ageing: Potential for translating the use of micronuclei into clinical practice. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108359. [PMID: 34083047 DOI: 10.1016/j.mrrev.2020.108359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/23/2023]
Abstract
Genome instability denotes an increased tendency to alterations in the genome during cell life cycle, driven by a large variety of endogenous and exogenous insults. Ageing is characterized by the presence of damage to various cellular constituents, but genome alterations, randomly accumulating with age in different tissues, constitute the key target in this process, and are believed to be the main factor of ageing. Age-related failure of DNA repair pathways allows DNA lesions to occur more frequently, and their accumulation over time contributes to the age-associated decrease in genome integrity in somatic cells. The micronucleus (MN) test is one of the most widely used assays to evaluate genomic instability in different surrogate tissues. A large number of studies has consistently shown a progressive increase in MN frequency with age, starting from very young age groups onwards. Therefore, MN frequency is a suitable biomarker of genomic instability in ageing. Frailty is a multidimensional geriatric syndrome of unsuccessful ageing, characterized by decreased biological reserves and increased vulnerability to external stressors, involving a higher risk of negative health outcomes. Although there is a well-founded belief that genome instability is involved in the frailty syndrome, only two studies investigated the relationship between MN frequency and frailty, not allowing to draw a definite conclusion on the utility of this biomarker for frailty detection. The use of MN and other genomic biomarkers in the detection and follow-up of patients affected by or at risk of frailty has the potential to accumulate evidence on the clinical impact of this approach in the identification and control of frailty in older people.
Collapse
Affiliation(s)
- Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A, Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A, Coruña, Spain.
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Solange Costa
- Environmental Health Department, National Health Institute, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit -Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n◦ 135, 4050-600, Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A, Coruña, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A, Coruña, Spain
| |
Collapse
|
41
|
Women rag pickers at a dump in Ahmedabad: Genotoxicity and oxidative stress. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503254. [PMID: 33198935 DOI: 10.1016/j.mrgentox.2020.503254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022]
Abstract
Municipal solid waste (MSW) generated in Ahmedabad, India, and the surrounding area is dumped at the Pirana site; rag pickers collect materials for re-sale. We have compared genotoxicity and oxidative stress in samples from women rag pickers working at this site, with women involved only in door-to-door waste picking (in residential areas near the university campus) as "controls". The buccal Cytokinesis-Block Micronucleus (CBMN) assay showed significantly higher frequencies of Micronucleus (MN), Nucleoplasmic Bridges (NPB), and Nuclear Buds (NB) in the rag pickers than in the "controls". The buccal Micronuclei Cytome (BMCyt) assay showed significantly higher prevalence of nuclear anomalies, such as micronucleus, karyorrhexis, karyolytic cells, and nuclear buds. Blood samples from the rag pickers showed lower levels of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), lower total serum protein concentrations, and greater lipid peroxidation compared to the "control" group. Exposure to hazardous solid waste may lead to increased oxidative damage and genotoxicity; improved safety procedures and the use of personal protective equipment are recommended.
Collapse
|
42
|
Andreassi MG, Borghini A, Vecoli C. Micronucleus assay for predicting coronary artery disease: A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108348. [PMID: 34083055 DOI: 10.1016/j.mrrev.2020.108348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide. Coronary angiography allows an accurate assessment of the extent and severity of atherosclerotic coronary narrowing, but it provides little characterization of early detection of potentially asymptomatic vulnerable plaque. The identification of the coronary "vulnerable patient" or high-risk plaques remains a major challenge in the treatment of CAD. Recently, growing evidence shows that DNA damage plays a role in the initiation and progression of atherosclerotic plaque. Cytokinesis-block micronucleus (CBMN) assay is one of the most frequently used and validated method for assessing chromosomal damage and genetic instability. Accordingly, the purpose of this systematic review was to retrieve and discuss existing literature on the studies assessing the association between MN and angiographically-proven CAD. A total of 8 studies published between 2001 and 2017 were included in the meta-analysis. Despite a large heterogeneity between studies (I2= 99.7 %, p < 0.0001), an overall increase of MN frequencies was found in patients with CAD compared with control group (meta-MR = 1.96; 95 % CI, 1.5-3.2, p = 0.009). A subgroup analysis showed an increase in the frequency of MN formation for both two- vessel (MR = 2.13, 95 % CI: 0.9-6.9, p = 0.08) and three-vessel disease (MR = 2.89, 95 % CI: 1.84-4.55, P = 0.06). Overall, the results of this meta-analysis provide evidence of an association between CBMN and presence, extent and severity of angiographically-assessed CAD. However, the small number of papers analyzed requires further large and more rigorously designed studies, carefully considering a series of clinical confounding factors, such as the quality of the metabolic control, the influence of drugs and radiation imaging treatments.
Collapse
Affiliation(s)
| | - Andrea Borghini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, Pisa, Italy
| | - Cecilia Vecoli
- CNR Institute of Clinical Physiology, Via Moruzzi 1, Pisa, Italy
| |
Collapse
|
43
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
44
|
Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108342. [PMID: 33339572 DOI: 10.1016/j.mrrev.2020.108342] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Micronuclei (MNi) are among the most widely studied biomarkers of DNA damage and chromosomal instability in humans. They originate from chromosome fragments or intact chromosomes that are not included in daughter nuclei during mitosis. The main reasons for their formation are a lack of functional centromere in the chromosome fragments or whole chromosomes or defects in one or more of the proteins of the mitotic system that, consequently, fails to segregate chromosomes properly. Assays have been developed to measure MNi in peripheral blood lymphocytes, red blood cells as well as various types of epithelial cells such as buccal, nasal, urothelial and cervical cells. Some of the assays have been further developed into micronucleus (MN) cytome assays to include additional nuclear anomalies, cell death and nuclear division biomarkers. In addition, the use of molecular probes has been adopted widely for the purpose of understanding the mechanistic origin of MNi. MN assays in humans are used for the purpose of investigating the genotoxic effects of adverse environmental, life-style and occupational factors, genetic susceptibility to DNA damage, and for determining risk of accelerated aging and diseases affected by genomic instability such as developmental defects and cancer. The emerging new knowledge showing that chromosomes trapped in MNi can undergo a high rate of fragmentation and become massively re-arranged have highlighted the possibility that MN formation is not only a biomarker of induced DNA damage but also a mechanism that drives hypermutation. Furthermore, another line of recent research showed that DNA and chromatin leaking from disrupted MNi triggers the innate immune cGAS-STING mechanism that promotes inflammation which can cause a wide-range of age-related diseases if left unresolved. For these reasons, MN assays in humans have become an increasingly important biomarker of disease initiation and progression across all life-stages.
Collapse
|
45
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
46
|
Çobanoğlu H, Coşkun M, Coşkun M, Çayır A. Different working conditions shift the genetic damage levels of pesticide-exposed agriculture workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31750-31759. [PMID: 32504430 DOI: 10.1007/s11356-020-09463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
In the current study, we had two main purposes. Firstly, we aimed to compare genetic damages in the agricultural workers of two different types of environmental conditions including the greenhouse and open fields. Secondly, we aimed to compare genetic damages in the total agricultural workers as the exposed group (greenhouse and open field workers) (n = 114) and the non-exposed control group (n = 98) living in the same area in Canakkale, Turkey. For these purposes, we investigated the incidence of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) in peripheral blood lymphocytes. We observed that the frequencies of MN, NPB, and NBUD obtained for the greenhouse workers were statistically significantly higher than those obtained for the open field workers. When the results of the control group were compared with those of the total workers, there were statistically significant differences in terms of MN and NBUD frequencies. We found that age and MN were correlated at a significant level in both the agricultural workers and the control group. The MN frequency of the female workers was 1.5 times greater than that of the male workers, and it was a significant level in the agricultural workers.
Collapse
Affiliation(s)
- Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Münevver Coşkun
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Mahmut Coşkun
- Faculty of Medicine, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17100, Çanakkale, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
47
|
Quadros APOD, Almeida LM, Petreanu M, Niero R, Rosa PCP, Sawaya ACHF, Mantovani MS, Gaivão IODM, Maistro EL. Risk assessment via genotoxicity, metabolism, apoptosis, and cell growth effects in a HepG2/C3A cell line upon treatment with Rubus rosifolius (Rosaceae) leaves extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:495-508. [PMID: 32568621 DOI: 10.1080/15287394.2020.1779888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sm. (Rosaceae) is a plant traditionally used in Brazil and some other countries to treat diarrhea, stomach diseases, and as an analgesic, antimicrobial, antihypertensive, and as well as other pharmacological properties. The aim of this study was to examine cytotoxic and genotoxic effects of R. rosifolius leaves extract on HepG2/C3A cells and correlate these findings with the expression of mRNA to underlying mechanisms of action. At concentrations between 0.01 and 100 µg/ml, cytotoxic effects were not detected by the MTT assay. This was confirmed by mRNA induction of the CYP3A4 gene (by RT-qPCR assay). However, genotoxic effects occurred at treatments from 1 µg/ml extract (comet and micronucleus test). An increase in the number of cells in S phase was observed at 100 µg/ml, and an elevation in apoptotic cell number was found for all tested concentrations (10, 20, or 100 µg/ml) (cell cycle and apoptosis analysis by flow cytometry). The genotoxicity induced by the extract was the main cause of the rise in the number of cells undergoing apoptosis, as indicated by rise in mRNA of CASP7 gene, and elevation of cells in the S phase of the cell cycle at the higher tested concentrations, as an attempt to repair genetic damage that occurred. These observations suggest that, despite its pharmacological potential, the use of R. rosifolius leaves extract may pose a risk to the integrity of the genetic material of human cells.
Collapse
Affiliation(s)
- Ana Paula Oliveira De Quadros
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute , Botucatu, SP, Brazil
- Departamento de Biomedicina, Centro Universitário De Rio Preto - UNIRP - São José Do Rio Preto , SP, Brasil
| | - Laíza Moura Almeida
- Marilia Medical School , Marilia, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences Marília, SP, Brazil
| | - Marcel Petreanu
- Department of Biological Sciences, Vale Do Itajaí University (UNIVALI) , Itajaí, SC, Brazil
| | - Rivaldo Niero
- Department of Biological Sciences, Vale Do Itajaí University (UNIVALI) , Itajaí, SC, Brazil
| | - Paulo Cesar Pires Rosa
- Faculty of Pharmaceutical Sciences, University of Campinas , Campinas, São Paulo, Brazil
| | | | | | | | - Edson Luis Maistro
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute , Botucatu, SP, Brazil
- Marilia Medical School , Marilia, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences Marília, SP, Brazil
| |
Collapse
|
48
|
Ferré DM, Jotallan PJ, Lentini V, Ludueña HR, Romano RR, Gorla NBM. Biomonitoring of the hematological, biochemical and genotoxic effects of the mixture cypermethrin plus chlorpyrifos applications in bovines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138058. [PMID: 32481203 DOI: 10.1016/j.scitotenv.2020.138058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
External antiparasitic agents applied in bovine production represent a risk to consumers of meat products, especially if the conditions of their use are not strictly respected. The post-mortem control of residues in meat is an activity that must be updated and reinforced by the biomonitoring of live animals and the use of analytical tools to help identifying signs of early warning risks. The objective of the present study was to carry out a pre-slaughter biomonitoring approach in Aberdeen Angus cattle and crosses (n = 12) with the application of a commercial formulation of cypermethrin plus chlorpyrifos. This was performed with a single therapeutic dose applied on the backs of the cattle, through hematological, enzymatic, as well as hepatic and renal function analysis in plasma, and then quantifying the genotoxic effect on lymphocytes. Analytical measurements of plasma concentrations of cypermethrin plus chlorpyrifos at 24 h were negative and therefore a low absorption of the compounds was assumed. Measurement of acetyl cholinesterase showed no inhibition after exposure. The concentration of urea increased between 24 h and 168 h post application of the formulation, without showing any kidney damage. The rest of the parameters analyzed did not show any variations. This evaluation of hematological and biochemical effects and of cytokinesis-block micronucleus cytome assay in bovines is proposed as a pre-slaughter control of biomonitoring of the health status of animals, with a focus on food safety for meat consumers.
Collapse
Affiliation(s)
- Daniela M Ferré
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Genética, Ambiente y Reproducción, Universidad Juan Agustín Maza, lateral sur 2245, Guaymallén, Mendoza, Argentina.
| | - Paola J Jotallan
- Laboratorio de Genética, Ambiente y Reproducción, Universidad Juan Agustín Maza, lateral sur 2245, Guaymallén, Mendoza, Argentina
| | - Valeria Lentini
- Laboratorio de Genética, Ambiente y Reproducción, Universidad Juan Agustín Maza, lateral sur 2245, Guaymallén, Mendoza, Argentina
| | - Hector R Ludueña
- Laboratorio de Genética, Ambiente y Reproducción, Universidad Juan Agustín Maza, lateral sur 2245, Guaymallén, Mendoza, Argentina
| | - Raquel R Romano
- Laboratorio de Genética, Ambiente y Reproducción, Universidad Juan Agustín Maza, lateral sur 2245, Guaymallén, Mendoza, Argentina
| | - Nora B M Gorla
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Genética, Ambiente y Reproducción, Universidad Juan Agustín Maza, lateral sur 2245, Guaymallén, Mendoza, Argentina.
| |
Collapse
|
49
|
Arellano-García ME, Izaguirre-Pérez ME, Molina-Noyola LD, Castañeda-Yslas IY, Luna-Vázquez-Gómez R, Torres-Bugarín O. Genetic Instability of a Polydactyl Hypopigmented Cat With Squamous Cell Carcinoma-A Case Report. Front Vet Sci 2020; 7:258. [PMID: 32528983 PMCID: PMC7247834 DOI: 10.3389/fvets.2020.00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 04/17/2020] [Indexed: 11/29/2022] Open
Abstract
Polydactyly, hypopigmentation, and squamous cell carcinoma are common in cats. However, a cat exhibiting all of these conditions has not yet been reported. This study presents the case of a 14- year-old male Mexican cat, hypopigmented, with supernumerary fingers, two preaxial and one on each posterior limb, admitted to the clinic with a lesion in the left periocular region. The cat was subjected to a general physical examination, blood, and urine chemistry, as well as a biopsy and genomic instability assessment with an analysis of the red blood cells (RBC) micronucleated erythrocytes (RBC-MNE) in the peripheral blood. The biopsy was positive for squamous cell carcinoma, and the RBC-MNE count (8.6 MNE/1000 erythrocytes) was high compared to that previously described in other domestic cats or wild cats. Thus, the genomic instability of the RBC-MNE could be used as an indicator to identify clinical conditions of felines, particularly those with one of the characteristics exhibited by this Mexican cat. The RBC-MNE test is the most widely used in the world for the evaluation of DNA damage, but to our knowledge, it has not been used to identify vulnerable non-human specimens.
Collapse
Affiliation(s)
- María Evarista Arellano-García
- Laboratorio de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | | | - Idalia Yazmín Castañeda-Yslas
- Laboratorio de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Roberto Luna-Vázquez-Gómez
- Laboratorio de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Olivia Torres-Bugarín
- Programa Internacional de Medicina, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| |
Collapse
|
50
|
Ruiz-Ruiz B, Arellano-García ME, Radilla-Chávez P, Salas-Vargas DS, Toledano-Magaña Y, Casillas-Figueroa F, Luna Vazquez-Gomez R, Pestryakov A, García-Ramos JC, Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS OMEGA 2020; 5:12005-12015. [PMID: 32548379 PMCID: PMC7271025 DOI: 10.1021/acsomega.0c00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 μg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.
Collapse
Affiliation(s)
- Balam Ruiz-Ruiz
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - María Evarista Arellano-García
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - Patricia Radilla-Chávez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - David Sergio Salas-Vargas
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Yanis Toledano-Magaña
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Francisco Casillas-Figueroa
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Roberto Luna Vazquez-Gomez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Alexey Pestryakov
- Department
of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Juan Carlos García-Ramos
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, C.P. 22879 Ensenada, Baja California, México
| |
Collapse
|