1
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
2
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
3
|
Bisht D, Patne K, Rakesh R, Muthuswami R. On the Interaction Between SMARCAL1 and BRG1. Front Cell Dev Biol 2022; 10:870815. [PMID: 35784471 PMCID: PMC9243424 DOI: 10.3389/fcell.2022.870815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
SMARCAL1 and BRG1, both classified as ATP-dependent chromatin remodeling proteins, play a role in double-strand break DNA damage response pathways. Mutations in SMARCAL1 cause Schimke Immuno-osseous Dysplasia (SIOD) while mutations in BRG1 are associated with Coffin-Siris Syndrome (CSS4). In HeLa cells, SMARCAL1 and BRG1 co-regulate the expression of ATM, ATR, and RNAi genes on doxorubicin-induced DNA damage. Both the proteins are found to be simultaneously present on the promoter of these genes. Based on these results we hypothesized that SMARCAL1 and BRG1 interact with each other forming a complex. In this paper, we validate our hypothesis and show that SMARCAL1 and BRG1 do indeed interact with each other both in the absence and presence of doxorubicin. The formation of these complexes is dependent on the ATPase activity of both SMARCAL1 and BRG1. Using deletion constructs, we show that the HARP domains of SMARCAL1 mediate interaction with BRG1 while multiple domains of BRG1 are probably important for binding to SMARCAL1. We also show that SIOD-associated mutants fail to form a complex with BRG1. Similarly, CSS4-associated mutants of BRG1 fail to interact with SMARCAL1, thus, possibly contributing to the failure of the DNA damage response pathway and pathophysiology associated with SIOD and CSS4.
Collapse
|
4
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
5
|
Fujiwara M, Sato N, Okamoto K. Hypoxanthine Reduces Radiation Damage in Vascular Endothelial Cells and Mouse Skin by Enhancing ATP Production via the Salvage Pathway. Radiat Res 2022; 197:583-593. [PMID: 35334490 DOI: 10.1667/rade-21-00223.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
An effective method that can protect radiation-damaged tissues from apoptosis and promote tissue repair has not been reported to date. Hypoxanthine (Hx) is an intermediate metabolite in the purine degradation system that serves as a substrate for ATP synthesis via the salvage pathway. In this study, we focused on the transient decrease in intracellular ATP concentration after radiation exposure and examined the protective effect of Hx against radiation-induced tissue damage. Human umbilical vein endothelial cells were X irradiated, and the cell viability and incidence of apoptosis and DNA double-strand breaks (DSBs) were evaluated at different Hx concentrations. We found that in the presence of 2-100 μM Hx, the percentages of DSBs and apoptotic cells after 2, 6 and 10 Gy dose of radiation significantly decreased, whereas cell viability increased in a concentration-dependent manner. Moreover, the addition of Hx increased the levels of AMP, ADP, and ATP in the cells at 2 h postirradiation, suggesting that Hx was used for adenine nucleotide synthesis through the salvage pathway. Administration of a xanthine oxidoreductase inhibitor to a mouse model of radiation dermatitis resulted in increased blood Hx levels that inhibited severe dermatitis and accelerated recovery. In conclusion, the findings provide evidence that increasing the levels of Hx to replenish ATP could be an effective strategy to reduce radiation-induced tissue damage and elucidating the detailed mechanisms underlying the protective effects of Hx could help develop new protective strategies against radiation.
Collapse
Affiliation(s)
- Megumi Fujiwara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Nana Sato
- Department of Food Biotechnology and Structural Biology, Tokyo University, Tokyo, Japan
| | - Ken Okamoto
- Department of Food Biotechnology and Structural Biology, Tokyo University, Tokyo, Japan
| |
Collapse
|
6
|
Tan CYR, Tan CL, Chin T, Morenc M, Ho CY, Rovito HA, Quek LS, Soon AL, Lim JSY, Dreesen O, Oblong JE, Bellanger S. Nicotinamide Prevents UVB- and Oxidative Stress-Induced Photoaging in Human Primary Keratinocytes. J Invest Dermatol 2021; 142:1670-1681.e12. [PMID: 34740582 DOI: 10.1016/j.jid.2021.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Nicotinamide (NAM), a NAD+ precursor, is known for its benefits to skin health. Under standard culture conditions, NAM delays the differentiation and enhances the proliferation of human primary keratinocytes (HPKs), leading to the maintenance of stem cells. Here, we investigated the effects of NAM on photoaging in 2D HPK cultures and 3D organotypic epidermal models. In both models, we found that UVB irradiation and hydrogen peroxide induced HPK premature terminal differentiation and senescence. In 3D organotypics, the phenotype was characterized by a thickening of the granular layer expressing filaggrin and loricrin, but thinning of the epidermis overall. NAM limited premature differentiation and ameliorated senescence, as evidenced by the maintenance of lamin B1 levels in both models, with decreased lipofuscin staining and reduced IL-6/IL-8 secretion in 3D models, compared to UVB-only controls. In addition, DNA damage observed after irradiation was accompanied by a decline in energy metabolism, while both effects were partially prevented by NAM. Our data thus highlight the protective effects of NAM against photoaging and oxidative stress in the human epidermis, and pinpoint DNA repair and energy metabolism as crucial underlying mechanisms.
Collapse
Affiliation(s)
- Christina Yan Ru Tan
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Chye Ling Tan
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Toby Chin
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Malgorzata Morenc
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Chin Yee Ho
- Cell Aging, A*STAR Skin Research Labs, Singapore
| | - Holly A Rovito
- Beauty Technology Division, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Ling Shih Quek
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Ai Ling Soon
- Cell Aging, A*STAR Skin Research Labs, Singapore
| | | | | | | | - Sophie Bellanger
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore.
| |
Collapse
|
7
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
8
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
9
|
Smitten KL, Thick EJ, Southam HM, Bernardino de la Serna J, Foster SJ, Thomas JA. Mononuclear ruthenium(ii) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chem Sci 2020; 11:8828-8838. [PMID: 34123136 PMCID: PMC8163430 DOI: 10.1039/d0sc03410j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023] Open
Abstract
Six luminescent, mononuclear ruthenium(ii) complexes based on the tetrapyridophenazine (tpphz) and dipyridophenazine (dppz) ligands are reported. The therapeutic activities of the complexes against Gram-negative bacteria (E. coli, A. baumannii, P. aeruginosa) and Gram-positive bacteria (E. faecalis and S. aureus) including pathogenic multi- and pan-drug resistant strains were assessed. Estimated minimum inhibitory and bactericidal concentrations show the activity of the lead compound is comparable to ampicillin and oxacillin in therapeutically sensitive strains and this activity was retained in resistant strains. Unlike related dinuclear analogues the lead compound does not damage bacterial membranes but is still rapidly taken up by both Gram-positive and Gram-negative bacteria in a glucose independent manner. Direct imaging of the complexes through super-resolution nanoscopy and transmission electron microscopy reveals that once internalized the complexes' intracellular target for both Gram-negative and Gram-positive strains is bacterial DNA. Model toxicity screens showed the compound is non-toxic to Galleria mellonella even at exposure concentrations that are orders of magnitude higher than the bacterial MIC.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Eleanor J Thick
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus London SW7 2AZ UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Central Laser Facility, United Kingdom Research and Innovation OX11 0FA UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
10
|
Singh A, Choudhuri P, Chandradoss KR, Lal M, Mishra SK, Sandhu KS. Does genome surveillance explain the global discrepancy between binding and effect of chromatin factors? FEBS Lett 2020; 594:1339-1353. [PMID: 31930486 DOI: 10.1002/1873-3468.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/11/2022]
Abstract
Knocking out a chromatin factor often does not alter the transcription of its binding targets. What explains the observed disconnect between binding and effect? We hypothesize that this discrepancy could be associated with the role of chromatin factors in maintaining genetic and epigenetic integrity at promoters, and not necessarily with transcription. Through re-analysis of published datasets, we present several lines of evidence that support our hypothesis and deflate the popular assumptions. We also tested the hypothesis through mutation accumulation assays on yeast knockouts of chromatin factors. Altogether, the proposed hypothesis presents a simple explanation for the global discord between chromatin factor binding and effect. Future work in this direction might fortify the hypothesis and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | - Poulami Choudhuri
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | | | - Mohan Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| |
Collapse
|
11
|
Wang H, Ma Y, Lin Y, Chen R, Xu B, Deng J. SHU00238 Promotes Colorectal Cancer Cell Apoptosis Through miR-4701-3p and miR-4793-3p. Front Genet 2020; 10:1320. [PMID: 31998373 PMCID: PMC6965150 DOI: 10.3389/fgene.2019.01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer is one of the most leading causes of death. Searching for new therapeutic targets for colorectal cancer is urgently needed. SHU00238, an isoxazole derivative, was reported to suppress colorectal tumor growth through microRNAs. But the underlying mechanisms still remain unknown. Here, we explored the mechanism of SHU00238 on colorectal cancer by RT-PCR, CCK-8, flow cytometry, mirTarBase, and GO enrichment analysis. We screened partial microRNAs regulated by SHU00238 in colorectal cancer cells. Furthermore, we identified that miR-4701-3p and miR-4793-3p can reverse the acceleration of SHU00238 on colorectal cancer cell apoptosis in HCT116 Cells. Finally, we found that SMARCA5, MBD3, VPS53, EHD4 are estimated to mediate the regulation of miR-4701-3p and miR-4793-3p on colorectal cancer cell apoptosis, which targets ATP-dependent chromatin remodeling pathway and endocytic recycling pathway. Taken together, our study reveals that SHU00238 promotes colorectal cancer cell apoptosis through miR-4701-3p and miR-4793-3p, which provide a potential drug target and therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China.,School of Life Science, Shanghai University, Shanghai, China
| | - Yurui Ma
- School of Life Science, Shanghai University, Shanghai, China
| | - Yifan Lin
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China
| | - Rui Chen
- School of Life Science, Shanghai University, Shanghai, China
| | - Bin Xu
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China.,Innovative Drug Research Center, Shanghai University, Shanghai, China
| | - Jiali Deng
- School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Andrade D, Mehta M, Griffith J, Oh S, Corbin J, Babu A, De S, Chen A, Zhao YD, Husain S, Roy S, Xu L, Aube J, Janknecht R, Gorospe M, Herman T, Ramesh R, Munshi A. HuR Reduces Radiation-Induced DNA Damage by Enhancing Expression of ARID1A. Cancers (Basel) 2019; 11:cancers11122014. [PMID: 31847141 PMCID: PMC6966656 DOI: 10.3390/cancers11122014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor suppressor ARID1A, a subunit of the chromatin remodeling complex SWI/SNF, regulates cell cycle progression, interacts with the tumor suppressor TP53, and prevents genomic instability. In addition, ARID1A has been shown to foster resistance to cancer therapy. By promoting non-homologous end joining (NHEJ), ARID1A enhances DNA repair. Consequently, ARID1A has been proposed as a promising therapeutic target to sensitize cancer cells to chemotherapy and radiation. Here, we report that ARID1A is regulated by human antigen R (HuR), an RNA-binding protein that is highly expressed in a wide range of cancers and enables resistance to chemotherapy and radiation. Our results indicate that HuR binds ARID1A mRNA, thereby increasing its stability in breast cancer cells. We further find that ARID1A expression suppresses the accumulation of DNA double-strand breaks (DSBs) caused by radiation and can rescue the loss of radioresistance triggered by HuR inhibition, suggesting that ARID1A plays an important role in HuR-driven resistance to radiation. Taken together, our work shows that HuR and ARID1A form an important regulatory axis in radiation resistance that can be targeted to improve radiotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Daniel Andrade
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
| | - James Griffith
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
| | - Sangphil Oh
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joshua Corbin
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Anish Babu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Supriyo De
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (S.D.); (M.G.)
| | - Allshine Chen
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Yan D. Zhao
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Sanam Husain
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (J.A.)
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jeffrey Aube
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (J.A.)
| | - Ralf Janknecht
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (S.D.); (M.G.)
| | - Terence Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
| | - Rajagopal Ramesh
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.C.)
- Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.A.); (M.M.); (J.G.); (T.H.)
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.O.); (A.B.); (Y.D.Z.); (R.J.); (R.R.)
- Correspondence: ; Tel.: +1-405-271-6102; Fax: +1-405-271-2141
| |
Collapse
|
13
|
Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet 2019; 66:531-548. [PMID: 31784768 DOI: 10.1007/s00294-019-01047-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.
Collapse
|
14
|
Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. Int J Mol Sci 2019; 20:ijms20235946. [PMID: 31779194 PMCID: PMC6929077 DOI: 10.3390/ijms20235946] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/16/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide (NAM) is an amide form of vitamin B3 and the precursor of nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme of redox reactions for adenosine triphosphate (ATP) production and for other metabolic processes. As NAD+ status is critical in maintaining cellular energy, vitamin B3 deficiency mainly affects tissues that need high cellular energy causing pellagra and skin sun sensitivity. In animal models, NAD+ deficiency leads to UV sensitivity of the skin, impairs DNA damage response, and increases genomic instability and cancer incidence. Furthermore, NAD+ depletion is associated with human skin aging and cancer. NAM prevents the UV-induced ATP depletion boosting cellular energy and enhances DNA repair activity in vitro and in vivo. Moreover, NAM reduces skin cancer incidence and prevents the immune-suppressive effects of UV in mice. Thus, NAM is involved in the maintenance of genomic stability and may have beneficial effects against skin aging changes and tumor development. Clinical studies showed that topical use of NAM reduces cutaneous aging. Furthermore, oral NAM administration reduces the level of UV-mediated immunosuppression and lowers the rate of non-melanoma skin cancers in high-risk patients. Therefore, NAM replenishment strategy may be a promising approach for skin cancer chemoprevention.
Collapse
|
15
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP. Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 2019; 6:43. [PMID: 31231660 PMCID: PMC6567933 DOI: 10.3389/fmolb.2019.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
16
|
Al-Gayyar MMH, Bagalagel A, Noor AO, Almasri DM, Diri R. The therapeutic effects of nicotinamide in hepatocellular carcinoma through blocking IGF-1 and effecting the balance between Nrf2 and PKB. Biomed Pharmacother 2019; 112:108653. [PMID: 30784932 DOI: 10.1016/j.biopha.2019.108653] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
Insulin growth factor (IGF) family and their receptors play a great role in tumors' development. In addition, IGF-1 enhances cancer progression through regulating cell proliferation, angiogenesis, immune modulation and metastasis. Moreover, nicotinamide is association with protection against cancer. Therefore, we conducted this research to examine the therapeutic effects of nicotinamide against hepatocellular carcinoma (HCC) both in vivo and in vitro through affecting IGF-1 and the balance between PKB and Nrf2. HCC was induced in rats by 200 mg/kg, ip thioacetamide. The rat survival, number and size of tumors and serum α-fetoprotein (AFP) were measured. The gene and protein levels of IGF-1, Nrf2, PKB and JNK-MAPK were assessed in rat livers. In addition, HepG2 cells, human HCC cell lines, were treated with different concentrations of nicotinamide. We found that nicotinamide enhanced the rats' survival and reduced the number and size of hepatic tumors as well as it reduced serum AFP and HepG2 cells survival. Nicotinamide ameliorated HCC-induced reduction in the expression of Nrf2. Moreover, nicotinamide blocked HCC-induced elevation in IGF-1, PKB and JNK-MAPK. In conclusion, nicotinamide produced cytotoxic effects against HCC both in vivo and in vitro. The cytotoxic activity can be explained by inhibition of HCC-induced increased in the expression of IGF-1 and leads to disturbances in the balance between the cell death signal by PKB and MAPK; and the cell survival signal by Nrf2, directing it towards cell survival signals in normal liver cells providing more protection for body against tumor.
Collapse
Affiliation(s)
- Mohammed M H Al-Gayyar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Alaa Bagalagel
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad O Noor
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diena M Almasri
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Diri
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Choi SH, Ryu TH, Kim JI, Lee S, Lee SS, Kim JH. Mutation in DDM1 inhibits the homology directed repair of double strand breaks. PLoS One 2019; 14:e0211878. [PMID: 30742642 PMCID: PMC6370192 DOI: 10.1371/journal.pone.0211878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
In all organisms, DNA damage must be repaired quickly and properly, as it can be lethal for cells. Because eukaryotic DNA is packaged into nucleosomes, the structural units of chromatin, chromatin modification is necessary during DNA damage repair and is achieved by histone modification and chromatin remodeling. Chromatin remodeling proteins therefore play important roles in the DNA damage response (DDR) by modifying the accessibility of DNA damage sites. Here, we show that mutation in a SWI2/SNF2 chromatin remodeling protein (DDM1) causes hypersensitivity in the DNA damage response via defects in single-strand annealing (SSA) repair of double-strand breaks (DSBs) as well as in the initial steps of homologous recombination (HR) repair. ddm1 mutants such as ddm1-1 and ddm1-2 exhibited increased root cell death and higher DSB frequency compared to the wild type after gamma irradiation. Although the DDM1 mutation did not affect the expression of most DDR genes, it did cause substantial decrease in the frequency of SSA as well as partial inhibition in the γ-H2AX and Rad51 induction, the initial steps of HR. Furthermore, global chromatin structure seemed to be affected by DDM1 mutations. These results suggest that DDM1 is involved in the homology directed repair such as SSA and HR, probably by modifying chromatin structure.
Collapse
Affiliation(s)
- Seung Hee Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Tae Ho Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Qi W, Chen H, Lu C, Bu Q, Wang X, Han L. BRG1 Promotes chromatin remodeling around DNA damage sites. Anim Cells Syst (Seoul) 2018; 22:360-367. [PMID: 30533258 PMCID: PMC6282460 DOI: 10.1080/19768354.2018.1525429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 10/30/2022] Open
Abstract
Chromatin remodeling complexes play important roles in various DNA metabolism processes, including DNA damage repair. BRG1 is the core subunit of the SWI/SNF complex, which plays critical roles in cell cycle regulation, cell development, cell differentiation, and tumorigenesis. In the present study, we report that BRG1 depletion increased the percentage of apoptotic cells in etoposide-treated cells. Moreover, western blotting and immunofluorescence data showed that BRG1 depletion decreased H2AX phosphorylation and caused defective phosphorylated histone H2AX (γH2AX) clearance. Furthermore, we found that in both SW13 and U2OS cells, BRG1 expression could increase the sensitivity of genomic DNA to micrococcal nuclease (MNase) and facilitate chromatin relaxation around DNA damage sites. Thus, the results provide evidence that BRG1 plays an important role in early DNA damage repair by remodeling the chromatin structure near DNA damage sites.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, People's Republic of China
| | - Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, People's Republic of China
| | - Chengwen Lu
- Department of Bioscience, Changchun Normal University, Changchun, People's Republic of China
| | - Qingpan Bu
- Department of Bioscience, Changchun Normal University, Changchun, People's Republic of China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Normal University, Changchun, People's Republic of China
| | - Liping Han
- Department of Bioscience, Changchun Normal University, Changchun, People's Republic of China
| |
Collapse
|
19
|
Basnet S, Kamble ST. Silencing of Four Genes Involved in Chromatin Remodeling by RNA Interference Adversely Affects Fecundity of Bed Bugs (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1440-1445. [PMID: 30010946 DOI: 10.1093/jme/tjy112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 06/08/2023]
Abstract
DNA, the blue print of life, is densely wrapped around histone proteins to form chromatin. Chromatin remodeling ATPases unwind histone-DNA interactions to facilitate DNA transcription, modification, and repair. Four genes involved in chromatin remodeling, namely, imitation SWI (iswi), chromodomain-helicase-DNA-binding protein 1 (chd-1), DNA helicase INO80 (ino80) and mi-2 were silenced through the injection of dsRNA, and phenotypes were assessed in bed bugs. Bed bugs were injected with 0.2 µg dsRNA per insect between the last thoracic segment and first abdominal segment using a fine capillary tube fitted to a nanoinjector. We observed a significant reduction in reproductive potential with all the genes tested, suggesting the essential function of chromatin remodeling ATPases in many cellular processes including egg-laying and egg-hatching. Knockdown of mi-2 and iswi completely inhibited oviposition over time. Real-time quantitative polymerase chain reaction confirmed significant knockdown of targeted mRNAs for at least 30 d, which supports persistence of RNAi in bed bugs. In addition, we observed a significant depletion of targeted transcripts in eggs laid by bed bugs injected with dsRNAs specific to chromatin remodeling ATPases. This study demonstrates the importance of chromatin remodeling ATPase in bed bug reproduction.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
20
|
Lohani M, Dhasmana A, Haque S, Dar SA, Jawed A, Wahid M, Mandal RK, Akhter N, Farasani A, Hobani YH, Singh A, Hussain S. Niacin deficiency modulates genes involved in cancer: Are smokers at higher risk? J Cell Biochem 2018; 120:232-242. [PMID: 30171725 DOI: 10.1002/jcb.27324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022]
Abstract
The role of niacin's metabolite, nicotinamide adenine dinucleotide (NAD), in DNA repair via base-excision repair pathway is well documented. We evaluated if niacin deficiency results in genetic instability in normal human fetal lung fibroblasts (MRC-5), and further, does it leads to enhanced accumulation of cigarette smoke-induced genetic damage? MRC-5 cells were grown discretely in niacin-proficient/deficient media, and exposed to nicotine-derived nitrosamine ketone (NNK, a cigarette smoke carcinogen). Niacin deficiency abated the NAD polymerization, augmented the spontaneous induction of micronuclei (MN) and chromosomal aberrations (CA) and raised the expression of 10 genes and suppressed 12 genes involved in different biological functions. NNK exposure resulted in genetic damage as measured by the induction of MN and CA in cells grown in niacin-proficient medium, but the damage became practically marked when niacin-deficient cells were exposed to NNK. NNK exposure raised the expression of 16 genes and suppressed the expression of 56 genes in cells grown in niacin-proficient medium. NNK exposure to niacin-deficient cells raised the expression of eight genes including genes crucial in promoting cancer such as FGFR3 and DUSP1 and suppressed the expression of 33 genes, including genes crucial in preventing the onset and progression of cancer like RASSF2, JUP, and IL24, in comparison with the cells grown in niacin-proficient medium. Overall, niacin deficiency interferes with the DNA damage repair process induced by chemical carcinogens like NNK, and niacin-deficient population are at the higher risk of genetic instability caused by cigarette smoke carcinogen NNK.
Collapse
Affiliation(s)
- Mohtashim Lohani
- Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Department of Biosciences, Integral University, Lucknow, India
| | - Anupam Dhasmana
- Department of Biosciences, Integral University, Lucknow, India.,Department of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Al Baha, Saudi Arabia
| | - Abdullah Farasani
- Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Yahya Hassan Hobani
- Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ankita Singh
- Division of Molecular Oncology, National Institute of Cancer Prevention & Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention & Research, Noida, India
| |
Collapse
|
21
|
Min S, Choi YW, Yun H, Jo S, Ji JH, Cho H. Post-Translational Regulation of the RSF1 Chromatin Remodeler under DNA Damage. Mol Cells 2018; 41:127-133. [PMID: 29385673 PMCID: PMC5824022 DOI: 10.14348/molcells.2018.2244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Chromatin remodeling factors are involved in many cellular processes such as transcription, replication, and DNA damage response by regulating chromatin structure. As one of chromatin remodeling factors, remodeling and spacing factor 1 (RSF1) is recruited at double strand break (DSB) sites and regulates ataxia telangiectasia mutated (ATM) -dependent checkpoint pathway upon DNA damage for the efficient repair. RSF1 is overexpressed in a variety of cancers, but regulation of RSF1 levels remains largely unknown. Here, we showed that protein levels of RSF1 chromatin remodeler are temporally upregulated in response to different DNA damage agents without changing the RSF1 mRNA level. In the absence of SNF2h, a binding partner of RSF1, the RSF1 protein level was significantly diminished. Intriguingly, the level of RSF1-3SA mutant lacking ATM-mediated phosphorylation sites significantly increased, and upregulation of RSF1 levels under DNA damage was not observed in cells overexpressing ATM kinase. Furthermore, failure in the regulation of RSF1 level caused a significant reduction in DNA repair, whereas reconstitution of RSF1, but not of RSF1-3SA mutants, restored DSB repair. Our findings reveal that temporal regulation of RSF1 levels at its post-translational modification by SNF2h and ATM is essential for efficient DNA repair.
Collapse
Affiliation(s)
- Sunwoo Min
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499,
Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499,
Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Yong Won Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499,
Korea
- Department of Hematology and Oncology, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Hansol Yun
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499,
Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499,
Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Sujin Jo
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499,
Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499,
Korea
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499,
Korea
| |
Collapse
|
22
|
Wiest NE, Houghtaling S, Sanchez JC, Tomkinson AE, Osley MA. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast. Nucleic Acids Res 2017; 45:5887-5900. [PMID: 28398510 PMCID: PMC5449591 DOI: 10.1093/nar/gkx221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by either the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Pathway choice is determined by the generation of 3΄ single-strand DNA overhangs at the break that are initiated by the action of the Mre11-Rad50-Xrs2 (MRX) complex to direct repair toward HR. DSB repair occurs in the context of chromatin, and multiple chromatin regulators have been shown to play important roles in the repair process. We have investigated the role of the SWI/SNF ATP-dependent nucleosome-remodeling complex in the repair of a defined DNA DSB. SWI/SNF was previously shown to regulate presynaptic events in HR, but its function in these events is unknown. We find that in the absence of functional SWI/SNF, the initiation of DNA end resection is significantly delayed. The delay in resection initiation is accompanied by impaired recruitment of MRX to the DSB, and other functions of MRX in HR including the recruitment of long-range resection factors and activation of the DNA damage response are also diminished. These phenotypes are correlated with a delay in the eviction of nucleosomes surrounding the DSB. We propose that SWI/SNF orchestrates the recruitment of a pool of MRX that is specifically dedicated to HR.
Collapse
Affiliation(s)
- Nathaniel E Wiest
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Scott Houghtaling
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Joseph C Sanchez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alan E Tomkinson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
23
|
Minocha R, Damian DL, Halliday GM. Melanoma and nonmelanoma skin cancer chemoprevention: A role for nicotinamide? PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:5-12. [DOI: 10.1111/phpp.12328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Rashi Minocha
- Discipline of Dermatology; Bosch Institute; Central Clinical School; University of Sydney; Sydney NSW Australia
- Dermatology; Sydney Cancer Centre; Royal Prince Alfred Hospital; Sydney NSW Australia
| | - Diona L. Damian
- Discipline of Dermatology; Bosch Institute; Central Clinical School; University of Sydney; Sydney NSW Australia
- Dermatology; Sydney Cancer Centre; Royal Prince Alfred Hospital; Sydney NSW Australia
- Melanoma Institute Australia; North Sydney NSW Australia
| | - Gary M. Halliday
- Discipline of Dermatology; Bosch Institute; Central Clinical School; University of Sydney; Sydney NSW Australia
- Dermatology; Sydney Cancer Centre; Royal Prince Alfred Hospital; Sydney NSW Australia
| |
Collapse
|
24
|
Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. eLife 2017. [PMID: 28621664 PMCID: PMC5482572 DOI: 10.7554/elife.26176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Based on observations of markers for DNA lesions, such as phosphorylated histone H2AX (γH2AX) and open DNA ends, it has been suggested that post-meiotic DNA double-strand breaks (PM-DSBs) enable chromatin remodeling during animal spermiogenesis. However, the existence of PM-DSBs is unconfirmed, and the mechanism responsible for their formation is unclear. Here, we report the first direct observation of programmed PM-DSBs via the electrophoretic separation of DSB-generated DNA fragments in the ciliate Tetrahymena thermophila. These PM-DSBs are accompanied by switching from a heterochromatic to euchromatic chromatin structure in the haploid pronucleus. Both a topoisomerase II paralog with exclusive pronuclear expression and Spo11 are prerequisites for PM-DSB induction. Reduced PM-DSB induction blocks euchromatin formation, characterized by histone H3K56 acetylation, leading to a failure in gametic nuclei production. We propose that PM-DSBs are responsible for histone replacement during the reprogramming of generative to undifferentiated progeny nuclei. DOI:http://dx.doi.org/10.7554/eLife.26176.001
Collapse
Affiliation(s)
- Takahiko Akematsu
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasuhiro Fukuda
- Department of Biodiversity Science, Tohoku University, Oosaki, Japan.,Division of Biological Resource Science, Tohoku University, Oosaki, Japan.,Graduate School of Agricultural Science, Tohoku University, Oosaki, Japan
| | - Jyoti Garg
- Department of Biology, York University, Toronto, Canada
| | | | | | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Koschmann C, Calinescu AA, Nunez FJ, Mackay A, Fazal-Salom J, Thomas D, Mendez F, Kamran N, Dzaman M, Mulpuri L, Krasinkiewicz J, Doherty R, Lemons R, Brosnan-Cashman JA, Li Y, Roh S, Zhao L, Appelman H, Ferguson D, Gorbunova V, Meeker A, Jones C, Lowenstein PR, Castro MG. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med 2016; 8:328ra28. [PMID: 26936505 DOI: 10.1126/scitranslmed.aac8228] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent work in human glioblastoma (GBM) has documented recurrent mutations in the histone chaperone protein ATRX. We developed an animal model of ATRX-deficient GBM and showed that loss of ATRX reduces median survival and increases genetic instability. Further, analysis of genome-wide data for human gliomas showed that ATRX mutation is associated with increased mutation rate at the single-nucleotide variant (SNV) level. In mouse tumors, ATRX deficiency impairs nonhomologous end joining and increases sensitivity to DNA-damaging agents that induce double-stranded DNA breaks. We propose that ATRX loss results in a genetically unstable tumor, which is more aggressive when left untreated but is more responsive to double-stranded DNA-damaging agents, resulting in improved overall survival.
Collapse
Affiliation(s)
- Carl Koschmann
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA. Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Anda-Alexandra Calinescu
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Felipe J Nunez
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Janet Fazal-Salom
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Daniel Thomas
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Flor Mendez
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Neha Kamran
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Marta Dzaman
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Lakshman Mulpuri
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Johnathon Krasinkiewicz
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Robert Doherty
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Rosemary Lemons
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | - Youping Li
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Soyeon Roh
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Henry Appelman
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - David Ferguson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alan Meeker
- Departments of Pathology and Urology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Pedro R Lowenstein
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Maria G Castro
- Departments of Neurosurgery and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proc Natl Acad Sci U S A 2016; 113:9057-62. [PMID: 27457959 DOI: 10.1073/pnas.1606667113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UV-induced DNA lesions are important contributors to mutagenesis and cancer, but it is not fully understood how the chromosomal landscape influences UV lesion formation and repair. Genome-wide profiling of repair activity in UV irradiated cells has revealed significant variations in repair kinetics across the genome, not only among large chromatin domains, but also at individual transcription factor binding sites. Here we report that there is also a striking but predictable variation in initial UV damage levels across a eukaryotic genome. We used a new high-throughput sequencing method, known as CPD-seq, to precisely map UV-induced cyclobutane pyrimidine dimers (CPDs) at single-nucleotide resolution throughout the yeast genome. This analysis revealed that individual nucleosomes significantly alter CPD formation, protecting nucleosomal DNA with an inward rotational setting, even though such DNA is, on average, more intrinsically prone to form CPD lesions. CPD formation is also inhibited by DNA-bound transcription factors, in effect shielding important DNA elements from UV damage. Analysis of CPD repair revealed that initial differences in CPD damage formation often persist, even at later repair time points. Furthermore, our high-resolution data demonstrate, to our knowledge for the first time, that CPD repair is significantly less efficient at translational positions near the dyad of strongly positioned nucleosomes in the yeast genome. These findings define the global roles of nucleosomes and transcription factors in both UV damage formation and repair, and have important implications for our understanding of UV-induced mutagenesis in human cancers.
Collapse
|
27
|
Histone modifications in DNA damage response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:257-70. [PMID: 26825946 DOI: 10.1007/s11427-016-5011-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.
Collapse
|
28
|
Abstract
DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways.
Collapse
Affiliation(s)
- John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
29
|
Vellinga TT, Borovski T, de Boer VCJ, Fatrai S, van Schelven S, Trumpi K, Verheem A, Snoeren N, Emmink BL, Koster J, Rinkes IHMB, Kranenburg O. SIRT1/PGC1α-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer. Clin Cancer Res 2015; 21:2870-9. [PMID: 25779952 DOI: 10.1158/1078-0432.ccr-14-2290] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/27/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemotherapy treatment of metastatic colon cancer ultimately fails due to development of drug resistance. Identification of chemotherapy-induced changes in tumor biology may provide insight into drug resistance mechanisms. EXPERIMENTAL DESIGN We studied gene expression differences between groups of liver metastases that were exposed to preoperative chemotherapy or not. Multiple patient-derived colonosphere cultures were used to assess how chemotherapy alters energy metabolism by measuring mitochondrial biomass, oxygen consumption, and lactate production. Genetically manipulated colonosphere-initiated tumors were used to assess how altered energy metabolism affects chemotherapy efficacy. RESULTS Gene ontology and pathway enrichment analysis revealed significant upregulation of genes involved in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in metastases that were exposed to chemotherapy. This suggested chemotherapy induces a shift in tumor metabolism from glycolysis towards OXPHOS. Indeed, chemotreatment of patient-derived colonosphere cultures resulted in an increase of mitochondrial biomass, increased expression of respiratory chain enzymes, and higher rates of oxygen consumption. This was mediated by the histone deacetylase sirtuin-1 (SIRT1) and its substrate, the transcriptional coactivator PGC1α. Knockdown of SIRT1 or PGC1α prevented chemotherapy-induced OXPHOS and significantly sensitized patient-derived colonospheres as well as tumor xenografts to chemotherapy. CONCLUSIONS Chemotherapy of colorectal tumors induces a SIRT1/PGC1α-dependent increase in OXPHOS that promotes tumor survival during treatment. This phenomenon is also observed in chemotherapy-exposed resected liver metastases, strongly suggesting that chemotherapy induces long-lasting changes in tumor metabolism that potentially interfere with drug efficacy. In conclusion, we propose a novel mechanism of chemotherapy resistance that may be clinically relevant and therapeutically exploitable.
Collapse
Affiliation(s)
- Thomas T Vellinga
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tijana Borovski
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincent C J de Boer
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Szabolcs Fatrai
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Susanne van Schelven
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kari Trumpi
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andre Verheem
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nikol Snoeren
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Benjamin L Emmink
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Qi W, Wang R, Chen H, Wang X, Xiao T, Boldogh I, Ba X, Han L, Zeng X. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51. J Cell Sci 2014; 128:317-30. [PMID: 25395584 DOI: 10.1242/jcs.159103] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1-RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells.
Collapse
Affiliation(s)
- Wenjing Qi
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Ruoxi Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Xiaolin Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Ting Xiao
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Liping Han
- Department of Bioscience, Changchun Normal University, #677, Changji Northroad, Changchun, Jilin, 130032, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| |
Collapse
|
31
|
Watanabe R, Ui A, Kanno SI, Ogiwara H, Nagase T, Kohno T, Yasui A. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res 2014; 74:2465-75. [PMID: 24788099 DOI: 10.1158/0008-5472.can-13-3608] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The SWI/SNF chromatin-remodeling family contains various protein complexes, which regulate gene expression during cellular development and influence DNA damage response in an ATP- and complex-dependent manner, of which details remain elusive. Recent human genome sequencing of various cancer cells revealed frequent mutations in SWI/SNF factors, especially ARID1A, a variant subunit in the BRG1-associated factor (BAF) complex of the SWI/SNF family. We combined live-cell analysis and gene-suppression experiments to show that suppression of either ARID1A or its paralog ARID1B led to reduced nonhomologous end joining activity of DNA double-strand breaks (DSB), decreased accumulation of KU70/KU80 proteins at DSB, and sensitivity to ionizing radiation, as well as to cisplatin and UV. Thus, in contrast to transcriptional regulation, both ARID1 proteins are required for cellular resistance to various types of DNA damage, including DSB. The suppression of other SWI/SNF factors, namely SNF5, BAF60a, BAF60c, BAF155, or BAF170, exhibits a similar phenotype. Of these factors, ARID1A, ARID1B, SNF5, and BAF60c are necessary for the immediate recruitment of the ATPase subunit of the SWI/SNF complex to DSB, arguing that both ARID1 proteins facilitate the damage response of the complex. Finally, we found interdependent protein stability among the SWI/SNF factors, suggesting their direct interaction within the complex and the reason why multiple factors are frequently lost in parallel in cancer cells. Taken together, we show that cancer cells lacking in the expression of certain SWI/SNF factors, including ARID1A, are deficient in DNA repair and potentially vulnerable to DNA damage.
Collapse
Affiliation(s)
- Reiko Watanabe
- Authors' Affiliations: Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai; Division of Genome Biology, National Cancer Center Research Institute, Tokyo; and Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Shapiro JA. Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 2014; 5:87. [PMID: 24795749 PMCID: PMC4007016 DOI: 10.3389/fgene.2014.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.
Collapse
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of ChicagoChicago, IL, USA
| |
Collapse
|
33
|
Mathew V, Pauleau AL, Steffen N, Bergner A, Becker P, Erhardt S. The Histone-Fold Protein CHRAC14 Influences Chromatin Composition in Response to DNA Damage. Cell Rep 2014; 7:321-330. [DOI: 10.1016/j.celrep.2014.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/03/2014] [Accepted: 03/04/2014] [Indexed: 01/16/2023] Open
|
34
|
Abstract
The CHD4 (chromodomain-helicase-DNA-binding 4) (or Mi-2β) protein is a founding component of the NuRD (nucleosome remodelling and deacetylation) complex. NuRD has long been known to function in transcriptional regulation, and is conserved throughout the animal and plant kingdoms. In recent years, evidence has steadily accumulated indicating that CHD4 can both function outside of the NuRD complex and also play important roles in cellular processes other than transcriptional regulation. A number of loss-of-function studies have identified important roles for CHD4 in the DNA-damage response and in cell cycle progression through S-phase and into G2. Furthermore, as part of NuRD, it participates in regulating acetylation levels of p53, thereby indirectly regulating the G1/S cell cycle checkpoint. Although CHD4 has a somewhat complicated relationship with the cell cycle, recent evidence indicates that CHD4 may exert some tumour-suppressor functions in human carcinogenesis. CHD4 is a defining member of the NuRD complex, but evidence is accumulating that CHD4 also plays important NuRD-independent roles in the DNA-damage response and cell cycle progression, as well as in transcriptional regulation.
Collapse
|
35
|
Min S, Jo S, Lee HS, Chae S, Lee JS, Ji JH, Cho H. ATM-dependent chromatin remodeler Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. Cell Cycle 2013; 13:666-77. [PMID: 24351651 DOI: 10.4161/cc.27548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
As a member of imitation switch (ISWI) family in ATP-dependent chromatin remodeling factors, RSF complex consists of SNF2h ATPase and Rsf-1. Although it has been reported that SNF2h ATPase is recruited to DNA damage sites (DSBs) in a poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent manner in DNA damage response (DDR), the function of Rsf-1 is still elusive. Here we show that Rsf-1 is recruited to DSBs confirmed by various cellular analyses. Moreover, the initial recruitment of Rsf-1 and SNF2h to DSBs shows faster kinetics than that of γH2AX after micro-irradiation. Signals of Rsf-1 and SNF2h are retained over 30 min after micro-irradiation, whereas γH2AX signals are gradually reduced at 10 min. In addition, Rsf-1 is accumulated at DSBs in ATM-dependent manner, and the putative pSQ motifs of Rsf-1 by ATM are required for its accumulation at DSBs. Furtheremore, depletion of Rsf-1 attenuates the activation of DNA damage checkpoint signals and cell survival upon DNA damage. Finally, we demonstrate that Rsf-1 promotes homologous recombination repair (HRR) by recruiting resection factors RPA32 and Rad51. Thus, these findings reveal a new function of chromatin remodeler Rsf-1 as a guard in DNA damage checkpoints and homologous recombination repair.
Collapse
Affiliation(s)
- Sunwoo Min
- Department of Biochemistry; Ajou University School of Medicine; Suwon, South Korea; Genomic Instability Research Center; Ajou University School of Medicine; Suwon, South Korea
| | - Sujin Jo
- Department of Biochemistry; Ajou University School of Medicine; Suwon, South Korea; Genomic Instability Research Center; Ajou University School of Medicine; Suwon, South Korea
| | - Ho-Soo Lee
- Department of Biochemistry; Ajou University School of Medicine; Suwon, South Korea; Genomic Instability Research Center; Ajou University School of Medicine; Suwon, South Korea
| | - Sunyoung Chae
- Department of Biochemistry; Ajou University School of Medicine; Suwon, South Korea
| | - Jong-Soo Lee
- Department of Life Science; College of Natural Sciences; Ajou University; Suwon, South Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center; Ajou University School of Medicine; Suwon, South Korea
| | - Hyeseong Cho
- Department of Biochemistry; Ajou University School of Medicine; Suwon, South Korea; Genomic Instability Research Center; Ajou University School of Medicine; Suwon, South Korea
| |
Collapse
|
36
|
Viti C, Marchi E, Decorosi F, Giovannetti L. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 2013; 38:633-59. [PMID: 24188101 DOI: 10.1111/1574-6976.12051] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] contamination is one of the main problems of environmental protection because the Cr(VI) is a hazard to human health. The Cr(VI) form is highly toxic, mutagenic, and carcinogenic, and it spreads widely beyond the site of initial contamination because of its mobility. Cr(VI), crossing the cellular membrane via the sulfate uptake pathway, generates active intermediates Cr(V) and/or Cr(IV), free radicals, and Cr(III) as the final product. Cr(III) affects DNA replication, causes mutagenesis, and alters the structure and activity of enzymes, reacting with their carboxyl and thiol groups. To persist in Cr(VI)-contaminated environments, microorganisms must have efficient systems to neutralize the negative effects of this form of chromium. The systems involve detoxification or repair strategies such as Cr(VI) efflux pumps, Cr(VI) reduction to Cr(III), and activation of enzymes involved in the ROS detoxifying processes, repair of DNA lesions, sulfur metabolism, and iron homeostasis. This review provides an overview of the processes involved in bacterial and fungal Cr(VI) resistance that have been identified through 'omics' studies. A comparative analysis of the described molecular mechanisms is offered and compared with the cellular evidences obtained using classical microbiological approaches.
Collapse
Affiliation(s)
- Carlo Viti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente - sezione di Microbiologia, Università degli Studi di Firenze, Florence, Italy
| | | | | | | |
Collapse
|
37
|
Maher RL, Prasad A, Rizvanova O, Wallace SS, Pederson DS. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair (Amst) 2013; 12:964-71. [PMID: 24051050 DOI: 10.1016/j.dnarep.2013.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16NT from the nucleosome edge occurred ~7-8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo.
Collapse
Affiliation(s)
- Robyn L Maher
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
38
|
Adkins NL, Niu H, Sung P, Peterson CL. Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol 2013; 20:836-42. [PMID: 23728291 PMCID: PMC3711194 DOI: 10.1038/nsmb.2585] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022]
Abstract
The repair of DNA double strand breaks (DSBs) is critical for the maintenance of genome integrity. The first step in DSB repair by homologous recombination is processing of the ends by one of two resection pathways, exemplified by Saccharomyces cerevisiae Exo1 and Sgs1–Dna2. Here we report in vitro and in vivo studies that characterize the impact of chromatin on each resection pathway. We find that efficient resection by the Sgs1-Dna2 -dependent machinery requires a nucleosome-free gap adjacent to the DSB. Resection by Exo1 is blocked by nucleosomes, and processing activity can be partially restored by removal of the H2A-H2B dimers. Our study also supports a role for the dynamic incorporation of the H2A.Z histone variant in Exo1 processing, and it further suggests that the two resection pathways require distinct chromatin remodeling events in order to navigate chromatin structure.
Collapse
Affiliation(s)
- Nicholas L Adkins
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
39
|
Liu B, Yip RK, Zhou Z. Chromatin remodeling, DNA damage repair and aging. Curr Genomics 2013; 13:533-47. [PMID: 23633913 PMCID: PMC3468886 DOI: 10.2174/138920212803251373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 01/26/2023] Open
Abstract
Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging.
Collapse
Affiliation(s)
- Baohua Liu
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China ; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
40
|
Matuo R, Sousa FG, Bonatto D, Mielniczki-Pereira AA, Saffi J, Soares DG, Escargueil AE, Larsen AK, Henriques JAP. ATP-dependent chromatin remodeling and histone acetyltransferases in 5-FU cytotoxicity in Saccharomyces cerevisiae. GENETICS AND MOLECULAR RESEARCH 2013; 12:1440-56. [PMID: 23661467 DOI: 10.4238/2013.april.26.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chromatin is thought to modulate access of repair proteins to DNA lesions, and may be altered by chromatin remodelers to facilitate repair. We investigated the participation of chromatin remodelers and DNA repair in 5-fluorouracil (5-FU) cytotoxicity in Saccharomyces cerevisiae. 5-FU is an antineoplastic drug commonly used in clinical settings. Among the several strains tested, only those with deficiencies in ATP-dependent chromatin remodeling (CR) and some histone acetyltransferases (HAT) exhibited sensitivity to 5-FU. CR and HAT double-mutants exhibited increased resistance to 5-FU in comparison to the wild-type mutant, but were still arrested in G2/M, as were the sensitive strains. The participation of Htz1p in 5-FU toxicity was also evaluated in single- and double-mutants of CR and HAT; the most significant effect was on cell cycle distribution. 5-FU lesions are repaired by different DNA repair machineries, including homologous recombination (HR) and post-replication repair (PRR). We investigated the role of CR and HAT in these DNA repair pathways. Deficiencies in Nhp10 and CR combined with deficiencies in HR or PRR increased 5-FU sensitivity; however, combined deficiencies of HAT, HR, and PRR did not. CRs are directly recruited to DNA damage and lead to chromatin relaxation, which facilitates access of HR and PRR proteins to 5-FU lesions. Combined deficiencies in HAT with defects in HR and PRR did not potentiate 5-FU cytotoxicity, possibly because they function in a common pathway.
Collapse
Affiliation(s)
- R Matuo
- Centro de Biotecnologia, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJM, Hunter-Schaedle K, Kalpana GV, Korf B, Messiaen L, Papi L, Ratner N, Sherman LS, Smith MJ, Stemmer-Rachamimov AO, Vitte J, Giovannini M. Update from the 2011 International Schwannomatosis Workshop: From genetics to diagnostic criteria. Am J Med Genet A 2013; 161A:405-16. [PMID: 23401320 DOI: 10.1002/ajmg.a.35760] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/13/2012] [Indexed: 11/06/2022]
Abstract
Schwannomatosis is the third major form of neurofibromatosis and is characterized by the development of multiple schwannomas in the absence of bilateral vestibular schwannomas. The 2011 Schwannomatosis Update was organized by the Children's Tumor Foundation (www.ctf.org) and held in Los Angeles, CA, from June 5-8, 2011. This article summarizes the highlights presented at the Conference and represents the "state-of-the-field" in 2011. Genetic studies indicate that constitutional mutations in the SMARCB1 tumor suppressor gene occur in 40-50% of familial cases and in 8-10% of sporadic cases of schwannomatosis. Tumorigenesis is thought to occur through a four-hit, three-step model, beginning with a germline mutation in SMARCB1 (hit 1), followed by loss of a portion of chromosome 22 that contains the second SMARCB1 allele and one NF2 allele (hits 2 and 3), followed by mutation of the remaining wild-type NF2 allele (hit 4). Insights from research on HIV and pediatric rhabdoid tumors have shed light on potential molecular pathways that are dysregulated in schwannomatosis-related schwannomas. Mouse models of schwannomatosis have been developed and promise to further expand our understanding of tumorigenesis and the tumor microenvironment. Clinical reports have described the occurrence of intracranial meningiomas in schwannomatosis patients and in families with germline SMARCB1 mutations. The authors propose updated diagnostic criteria to incorporate new clinical and genetic findings since 2005. In the next 5 years, the authors expect that advances in basic research in the pathogenesis of schwannomatosis will lead toward clinical investigations of potential drug therapies.
Collapse
Affiliation(s)
- Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cruz LA, Guecheva TN, Bonato D, Henriques JAP. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae. Genet Mol Biol 2012; 35:1052-9. [PMID: 23412648 PMCID: PMC3571434 DOI: 10.1590/s1415-47572012000600021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxypsoralen (8-MOP) is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA), focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL) formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER), base excision repair (BER), translesion repair (TLS) and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.
Collapse
Affiliation(s)
- Lavínia Almeida Cruz
- Programa de Pós-Gradução em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
43
|
Pang J, Xi C, Dai Y, Gong H, Zhang TM. Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes. Med Sci Monit 2012; 18:BR281-5. [PMID: 22739728 PMCID: PMC3560773 DOI: 10.12659/msm.883206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background It is widely accepted that chronic hyperglycemia induces DNA oxidative damage in type 2 diabetes, but little is known about the effect of hyperglycemia on the DNA repair system which plays a critical role in the maintenance of genomic DNA stability in diabetes. Material/Methods To investigate the alteration of base excision repair (BER) genes under hyperglycemia, the relative expression of the mRNAs of the BER genes – ogg1, polβ, lig3, xrcc1, and parp1 – were quantified using real-time PCR in HepG2 hepatocytes incubated with 5.5 mM or 30 mM glucose. Results High levels of glucose induced ROS accumulation and DNA damage, paralleling the dynamic alterations of BER mRNA expression. Compared to 5.5 mM glucose-treated cells, ogg1 and polβ mRNA expression transiently increased at day 1 and decreased after day 4 in cells exposed to 30 mM glucose. Exposure to 30 mM glucose increased the activity of PARP1, which led to reduced cellular NAD content and insulin receptor phosphorylation. Conclusions Exposure to high concentrations of glucose initially led to the increased expression of BER mRNAs to counteract hyperglycemia-induced DNA damage; however, long-term exposure to high glucose concentrations reduced the expression of mRNA from BER genes, leading to accumulated DNA damage.
Collapse
Affiliation(s)
- Jing Pang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, China
| | | | | | | | | |
Collapse
|
44
|
Siggens L, Figg N, Bennett M, Foo R. Nutrient deprivation regulates DNA damage repair in cardiomyocytes via loss of the base-excision repair enzyme OGG1. FASEB J 2012; 26:2117-24. [PMID: 22302830 PMCID: PMC3630495 DOI: 10.1096/fj.11-197525] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidative stress contributes to the pathogenesis of many diseases, including heart failure, but the role and regulation of oxidative DNA damage in many cases have not been studied. Here, we set out to examine how oxidative DNA damage is regulated in cardiomyocytes. Compared to normal healthy controls, human hearts in end-stage cardiomyopathy (EsCM) showed a high degree of DNA damage by histological evidence of damage markers, including 8-oxoG and γH2AX (8-oxoG: 4.7±0.88 vs. 99.9±0.11%; γH2AX: 2.1±0.33 vs. 85.0±13.8%; P<0.01) This raised the possibility that defective DNA repair may be partly responsible. Indeed, nutrient deprivation led to impaired base-excision repair (BER) in cardiomyocytes in vitro, accompanied by loss of the BER enzyme OGG1, while BER activity was rescued by recombinant OGG1 (control vs. nutrient deprived vs. nutrient deprived+OGG1; 100±2.96 vs. 68.2±7.53 vs. 94.0±0.72%; ANOVA, P<0.01). Hearts from humans with EsCM and two murine models of myocardial stress also showed a loss of OGG1 protein. OGG1 loss was inhibited by the autophagy inhibitor bafilomycin and in autophagy-deficient Atg5(-/-) mouse embryonic fibroblasts. However, pharmacological activation of autophagy, itself, did not induce OGG1 loss, suggesting that autophagy is necessary but not sufficient for OGG1 turnover, and OGG1 loss requires concurrent nutrient deprivation. Finally, we found that the role of autophagy in nutrient starvation is complex, since it balanced the positive effects of ROS inhibition against the negative effect of OGG1 loss. Therefore, we have identified a central role for OGG1 in regulating DNA repair in cardiomyopathy. The manipulation of OGG1 may be used in future studies to examine the direct contribution of oxidative DNA damage to the progression of heart failure.
Collapse
Affiliation(s)
- Lee Siggens
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Roger Foo
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
45
|
Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 2012; 2:249-268. [PMID: 22679557 PMCID: PMC3365807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/15/2012] [Indexed: 06/01/2023] Open
Abstract
A DNA double strand break (DSB) is a highly toxic lesion, which can generate genetic instability and profound genome rearrangements. However, DSBs are required to generate diversity during physiological processes such as meiosis or the establishment of the immune repertoire. Thus, the precise regulation of a complex network of processes is necessary for the maintenance of genomic stability, allowing genetic diversity but protecting against genetic instability and its consequences on oncogenesis. Two main strategies are employed for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is initiated by single-stranded DNA (ssDNA) resection and requires sequence homology with an intact partner, while NHEJ requires neither resection at initiation nor a homologous partner. Thus, resection is an pivotal step at DSB repair initiation, driving the choice of the DSB repair pathway employed. However, an alternative end-joining (A-EJ) pathway, which is highly mutagenic, has recently been described; A-EJ is initiated by ssDNA resection but does not require a homologous partner. The choice of the appropriate DSB repair system, for instance according the cell cycle stage, is essential for genome stability maintenance. In this context, controlling the initial events of DSB repair is thus an essential step that may be irreversible, and the wrong decision should lead to dramatic consequences. Here, we first present the main DSB repair mechanisms and then discuss the importance of the choice of the appropriate DSB repair pathway according to the cell cycle phase. In a third section, we present the early steps of DSB repair i.e., DSB signaling, chromatin remodeling, and the regulation of ssDNA resection. In the last part, we discuss the competition between the different DSB repair mechanisms. Finally, we conclude with the importance of the fine tuning of this network for genome stability maintenance and for tumor protection in fine.
Collapse
Affiliation(s)
- Anastazja Grabarz
- Université Paris Sud, Laboratoire « Stabilité Génétique et Oncogenèse » CNRS, UMR 8200 and Institut de Cancérologie Gustave-Roussy PR2, 114 Rue Edouard Vaillant, 94805 VILLEJUIF. CNRS, France
| | | | | | | |
Collapse
|
46
|
Rubtsova M, Vasilkova D, Malyavko A, Naraikina Y, Zvereva M, Dontsova O. Telomere lengthening and other functions of telomerase. Acta Naturae 2012; 4:44-61. [PMID: 22872811 PMCID: PMC3408703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.
Collapse
Affiliation(s)
- M.P. Rubtsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | | | - A.N. Malyavko
- Lomonosov Moscow State University, Chemistry Department
| | - Yu.V. Naraikina
- Lomonosov Moscow State University, Faculty of Bioengineering and
Bioinformatics
| | - M.I. Zvereva
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | - O.A. Dontsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| |
Collapse
|
47
|
Ye Y, Xiao Y, Wang W, Gao JX, Yearsley K, Yan Q, Barsky SH. Singular v dual inhibition of SNF2L and its isoform, SNF2LT, have similar effects on DNA damage but opposite effects on the DNA damage response, cancer cell growth arrest and apoptosis. Oncotarget 2012; 3:475-89. [PMID: 22577152 PMCID: PMC3380581 DOI: 10.18632/oncotarget.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/28/2012] [Indexed: 01/15/2023] Open
Abstract
SNF2L, an ATPase chromatin remodeling gene nearly ubiquitously expressed in diverse tissues, cancers, and derived cell lines, contributes to the chromatin remodeling complex that facilitates transcription. Because of this near ubiquitous expression, it has not been exploited as a cancer therapeutic target. However, in a recent study, we found that highly malignant cancer cells, although expressing SNF2L at similar levels as their normal counterparts, were sensitive to its knockdown. Only the highly malignant (HM) lines showed significant growth inhibition, DNA damage, a DNA damage response, and phosphorylation of checkpoint proteins and marked apoptosis. In studying SNF2L, we discovered a novel truncated isoform, SNF2LT which, when compared to full length SNF2L, lacked three important domains: HAND, SANT and SLIDE. Although truncated isoforms usually have antagonistic functions to their parental molecule, here SNF2LT knockdown had similar effects to the knockdown of its parental molecule, SNF2L, of inducing DNA damage, a DNA damage response, cell cycle arrest and apoptosis selectively in cancer cell lines. However dual SNF2L and SNF2LT knockdown, while inducing DNA damage, did not result in a DNA damage response, a cell cycle arrest and apoptosis. In fact HM lines subjected to dual knockdown paradoxically exhibited sustained cell growth. Our findings indicate that the ratio of SNF2L to its isoform tightly regulates the cancer cell's response to DNA damage. Cancer cell lines which endogenously express low levels of both SNF2L and its isoform mimic the situation of dual knockdown and permit DNA damage which is allowed to propagate unchecked.
Collapse
Affiliation(s)
- Yin Ye
- Department of Pathology, University of Nevada School of Medicine, Reno, NV, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Warmoes M, Jaspers JE, Pham TV, Piersma SR, Oudgenoeg G, Massink MPG, Waisfisz Q, Rottenberg S, Boven E, Jonkers J, Jimenez CR. Proteomics of mouse BRCA1-deficient mammary tumors identifies DNA repair proteins with potential diagnostic and prognostic value in human breast cancer. Mol Cell Proteomics 2012; 11:M111.013334. [PMID: 22366898 DOI: 10.1074/mcp.m111.013334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer 1, early onset (BRCA1) hereditary breast cancer, a type of cancer with defects in the homology-directed DNA repair pathway, would benefit from the identification of proteins for diagnosis, which might also be of potential use as screening, prognostic, or predictive markers. Sporadic breast cancers with defects in the BRCA1 pathway might also be diagnosed. We employed proteomics based on one-dimensional gel electrophoresis in combination with nano-LC-MS/MS and spectral counting to compare the protein profiles of mammary tumor tissues of genetic mouse models either deficient or proficient in BRCA1. We identified a total of 3,545 proteins, of which 801 were significantly differentially regulated between the BRCA1-deficient and -proficient breast tumors. Pathway and protein complex analysis identified DNA repair and related functions as the major processes associated with the up-regulated proteins in the BRCA1-deficient tumors. In addition, by selecting highly connected nodes, we identified a BRCA1 deficiency signature of 45 proteins that enriches for homology-directed DNA repair deficiency in human gene expression breast cancer data sets. This signature also exhibits prognostic power across multiple data sets, with optimal performance in a data set enriched in tumors deficient in homology-directed DNA repair. In conclusion, by comparing mouse proteomes from BRCA1-proficient and -deficient mammary tumors, we were able to identify several markers associated with BRCA1 deficiency and a prognostic signature for human breast cancer deficient in homology-directed DNA repair.
Collapse
Affiliation(s)
- Marc Warmoes
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012; 5:4. [PMID: 22289628 PMCID: PMC3275488 DOI: 10.1186/1756-8935-5-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
50
|
Komura JI, Ikehata H, Mori T, Ono T. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin. Exp Cell Res 2012; 318:623-31. [PMID: 22248875 DOI: 10.1016/j.yexcr.2012.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 12/27/2022]
Abstract
During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression.
Collapse
Affiliation(s)
- Jun-ichiro Komura
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|