1
|
Nepomuceno TC, Foo TK, Richardson ME, Ranola JMO, Weyandt J, Varga MJ, Alarcon A, Gutierrez D, von Wachenfeldt A, Eriksson D, Kim R, Armel S, Iversen E, Couch FJ, Borg Å, Xia B, Carvalho MA, Monteiro ANA. BRCA1 frameshift variants leading to extended incorrect protein C termini. HGG ADVANCES 2023; 4:100240. [PMID: 37718511 PMCID: PMC10558845 DOI: 10.1016/j.xhgg.2023.100240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Carriers of BRCA1 germline pathogenic variants are at substantially higher risk of developing breast and ovarian cancer than the general population. Accurate identification of at-risk individuals is crucial for risk stratification and the implementation of targeted preventive and therapeutic interventions. Despite significant progress in variant classification efforts, a sizable portion of reported BRCA1 variants remain as variants of uncertain clinical significance (VUSs). Variants leading to premature protein termination and loss of essential functional domains are typically classified as pathogenic. However, the impact of frameshift variants that result in an extended incorrect terminus is not clear. Using validated functional assays, we conducted a systematic functional assessment of 17 previously reported BRCA1 extended incorrect terminus variants (EITs) and concluded that 16 constitute loss-of-function variants. This suggests that most EITs are likely to be pathogenic. However, one variant, c.5578dup, displayed a protein expression level, affinity to known binding partners, and activity in transcription and homologous recombination assays comparable to the wild-type BRCA1 protein. Twenty-three additional carriers of c.5578dup were identified at a US clinical diagnostic lab and assessed using a family history likelihood model providing, in combination with the functional data, a likely benign interpretation. These results, consistent with family history data in the current study and available data from ClinVar, indicate that most, but not all, BRCA1 variants leading to an extended incorrect terminus constitute loss-of-function variants and underscore the need for comprehensive assessment of individual variants.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | - Amaya Alarcon
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Diana Gutierrez
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Daniel Eriksson
- Department of Clinical Genetics, Akademiska Sjukhuset, Uppsala, Sweden
| | - Raymond Kim
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Susan Armel
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | | | - Åke Borg
- University of Lund, 221 00 Lund, Sweden
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil.
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Kerr SM, Cowan E, Klaric L, Bell C, O'Sullivan D, Buchanan D, Grzymski JJ, van Hout CV, Tzoneva G, Shuldiner AR, Wilson JF, Miedzybrodzka Z. Clinical case study meets population cohort: identification of a BRCA1 pathogenic founder variant in Orcadians. Eur J Hum Genet 2023; 31:588-595. [PMID: 36927983 PMCID: PMC10172333 DOI: 10.1038/s41431-023-01297-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
We multiply ascertained the BRCA1 pathogenic missense variant c.5207T > C; p.Val1736Ala (V1736A) in clinical investigation of breast and ovarian cancer families from Orkney in the Northern Isles of Scotland, UK. We sought to investigate the frequency and clinical relevance of this variant in those of Orcadian ancestry as an exemplar of the value of population cohorts in clinical care, especially in isolated populations. Oral history and birth, marriage and death registrations indicated genealogical linkage of the clinical cases to ancestors from the Isle of Westray, Orkney. Further clinical cases were identified through targeted testing for V1736A in women of Orcadian ancestry attending National Health Service (NHS) genetic clinics for breast and ovarian cancer family risk assessments. The variant segregates with female breast and ovarian cancer in clinically ascertained cases. Separately, exome sequence data from 2088 volunteer participants with three or more Orcadian grandparents, in the ORCADES research cohort, was interrogated to estimate the population prevalence of V1736A in Orcadians. The effects of the variant were assessed using Electronic Health Record (EHR) linkage. Twenty out of 2088 ORCADES research volunteers (~1%) carry V1736A, with a common haplotype around the variant. This allele frequency is ~480-fold higher than in UK Biobank participants. Cost-effectiveness of population screening for BRCA1 founder pathogenic variants has been demonstrated at a carrier frequency below the ~1% observed here. Thus we suggest that Orcadian women should be offered testing for the BRCA1 V1736A founder pathogenic variant, starting with those with known Westray ancestry.
Collapse
Affiliation(s)
- Shona M Kerr
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Emma Cowan
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, AB25 2ZA, UK
| | - Lucija Klaric
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Christine Bell
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, AB25 2ZA, UK
| | - Dawn O'Sullivan
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, AB25 2ZA, UK
| | - David Buchanan
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Joseph J Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA
- Renown Health, Reno, NV, USA
| | - Cristopher V van Hout
- Regeneron Genetics Center, Tarrytown, NY, USA
- Laboratorio Internacional de Investigatión sobre el Genoma Humano, Campus Juriquilla de la Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | | | | | - James F Wilson
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Zosia Miedzybrodzka
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, AB25 2ZA, UK.
- Medical Genetics Group, School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Polwarth Building, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
3
|
Nepomuceno TC, Dos Santos APP, Fernandes VC, Elias ABR, Gomes TT, Suarez-Kurtz G, Iversen ES, Couch FJ, Monteiro ANA, Carvalho MA. Assessment of small in-frame indels and C-terminal nonsense variants of BRCA1 using a validated functional assay. Sci Rep 2022; 12:16203. [PMID: 36171434 PMCID: PMC9519549 DOI: 10.1038/s41598-022-20500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
BRCA1 (Breast Cancer 1, early onset) is linked to breast and ovarian cancer predisposition. Still, the risks conferred by a significant portion of BRCA1 variants identified in the population remains unknown. Most of these variants of uncertain significance are missense alterations. However, the functional implications of small in-frame deletions and/or insertions (indels) are also difficult to predict. Our group has previously evaluated the functional impact of 347 missense variants using an extensively validated transcriptional activity assay. Here we show a systematic assessment of 30 naturally occurring in-frame indels located at the C-terminal region of BRCA1. We identified positions sensitive and tolerant to alterations, expanding the knowledge of structural determinants of BRCA1 function. We further designed and assessed the impact of four single codon deletions in the tBRCT linker region and six nonsense variants at the C-terminus end of BRCA1. Amino acid substitutions, deletions or insertions in the disordered region do not significantly impact activity and are not likely to constitute pathogenic alleles. On the other hand, a sizeable fraction of in-frame indels at the BRCT domain significantly impact function. We then use a Bayesian integrative statistical model to derive the probability of pathogenicity for each variant. Our data highlights the importance of assessing the impact of small in-frame indels in BRCA1 to improve risk assessment and clinical decisions for carriers.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ana P P Dos Santos
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Vanessa C Fernandes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Anna B R Elias
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Thiago T Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil. .,Laboratório de Genética Molecular, Instituto Federal Do Rio de Janeiro, Rua Senador Furtado, Campus Rio de Janeiro121, Rio de Janeiro, RJ, 20270-021, Brazil.
| |
Collapse
|
4
|
Clark KA, Paquette A, Tao K, Bell R, Boyle JL, Rosenthal J, Snow AK, Stark AW, Thompson BA, Unger J, Gertz J, Varley KE, Boucher KM, Goldgar DE, Foulkes WD, Thomas A, Tavtigian SV. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am J Hum Genet 2022; 109:1153-1174. [PMID: 35659930 PMCID: PMC9247830 DOI: 10.1016/j.ajhg.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew Paquette
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayoko Tao
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Russell Bell
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Julie L Boyle
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Judith Rosenthal
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Angela K Snow
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Alex W Stark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bryony A Thompson
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Unger
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E Varley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth M Boucher
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - David E Goldgar
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William D Foulkes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Research Institute McGill University Health Center, Montreal, QC H3T 1E2, Canada; Departments of Medicine, Human Genetics, and Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alun Thomas
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Birolo G, Aneli S, Di Gaetano C, Cugliari G, Russo A, Allione A, Casalone E, Giorgio E, Paraboschi EM, Ardissino D, Duga S, Asselta R, Matullo G. Functional and clinical implications of genetic structure in 1686 Italian exomes. Hum Mutat 2021; 42:272-289. [PMID: 33326653 DOI: 10.1002/humu.24156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
To reconstruct the phenotypical and clinical implications of the Italian genetic structure, we thoroughly analyzed a whole-exome sequencing data set comprised of 1686 healthy Italian individuals. We found six previously unreported variants with remarkable frequency differences between Northern and Southern Italy in the HERC2, OR52R1, ADH1B, and THBS4 genes. We reported 36 clinically relevant variants (submitted as pathogenic, risk factors, or drug response in ClinVar) with significant frequency differences between Italy and Europe. We then explored putatively pathogenic variants in the Italian exome. On average, our Italian individuals carried 16.6 protein-truncating variants (PTVs), with 2.5% of the population having a PTV in one of the 59 American College of Medical Genetics (ACMG) actionable genes. Lastly, we looked for PTVs that are likely to cause Mendelian diseases. We found four heterozygous PTVs in haploinsufficient genes (KAT6A, PTCH1, and STXBP1) and three homozygous PTVs in genes causing recessive diseases (DPYD, FLG, and PYGM). Comparing frequencies from our data set to other public databases, like gnomAD, we showed the importance of population-specific databases for a more accurate assessment of variant pathogenicity. For this reason, we made aggregated frequencies from our data set publicly available as a tool for both clinicians and researchers (http://nigdb.cineca.it; NIG-ExIT).
Collapse
Affiliation(s)
- Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Serena Aneli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Alzahrani FA, Ahmed F, Sharma M, Rehan M, Mahfuz M, Baeshen MN, Hawsawi Y, Almatrafi A, Alsagaby SA, Kamal MA, Warsi MK, Choudhry H, Jamal MS. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach. Sci Rep 2020; 10:12377. [PMID: 32704157 PMCID: PMC7378827 DOI: 10.1038/s41598-020-69033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia.
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia.
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Mahfuz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Yousef Hawsawi
- Department of Genetics, Research Center, King Faisal Specialist Hospital, and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ahmed Almatrafi
- Department of Biology, Faculty of Science, University of Taibah, Medinah, Saudi Arabia
| | - Suliman Abdallah Alsagaby
- Department of Medical Laboratories, Central Biosciences Research Laboratories, College of Science in Al Zulfi, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Nicolussi A, Belardinilli F, Silvestri V, Mahdavian Y, Valentini V, D'Inzeo S, Petroni M, Zani M, Ferraro S, Di Giulio S, Fabretti F, Fratini B, Gradilone A, Ottini L, Giannini G, Coppa A, Capalbo C. Identification of novel BRCA1 large genomic rearrangements by a computational algorithm of amplicon-based Next-Generation Sequencing data. PeerJ 2019; 7:e7972. [PMID: 31741787 PMCID: PMC6859874 DOI: 10.7717/peerj.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Background Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian cancer patients requires screening for single nucleotide variants, small insertions/deletions and large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean is still debated. The purpose of this study was to establish whether and to which extent the development of an analytical algorithm could help us translating NGS sequencing via an Ion Torrent PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer patients. Methods We first used NGS data of a group of three patients (training set), previously screened in our laboratory by conventional methods, to develop an algorithm for the calculation of the dosage quotient (DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the optimized pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs was obtained via long-range PCR and direct sequencing of the DNA products. Results In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs, demonstrating 100% sensitivity and 100% negative predictive value (NPV) (95% CI [87.6–99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV (95% CI [85.6–99.9])). Interestingly, DQ and IR shared 12 positive results, but exons deletion calls matched only in five cases, two of which confirmed by MLPA. The breakpoints of the 3 novel BRCA1 deletions, involving exons 16–17, 21–22 and 20, have been characterized. Conclusions Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS data. Whether confirmed on larger data sets, this tool could guide the selection of samples to be subjected to MLPA analysis, leading to significant savings in time and money.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | | | - Valentina Silvestri
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Yasaman Mahdavian
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Sonia D'Inzeo
- U.O.C. Microbiology and Virology Laboratory, A.O. San Camillo Forlanini, Roma, Italy
| | - Marialaura Petroni
- Istituto Italiano di Tecnologia, Center for Life Nano Science @ Sapienza, Roma, Italy
| | - Massimo Zani
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Sergio Ferraro
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Beatrice Fratini
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Angela Gradilone
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Laura Ottini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, Italy
| | - Anna Coppa
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| |
Collapse
|
8
|
Xu K, Shi Y, Wang X, Chen Y, Tang L, Guan X. A novel BRCA1 germline mutation promotes triple-negative breast cancer cells progression and enhances sensitivity to DNA damage agents. Cancer Genet 2019; 239:26-32. [PMID: 31476665 DOI: 10.1016/j.cancergen.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/28/2019] [Accepted: 08/21/2019] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most frequent malignancy and the second leading cause of cancer death in female worldwide. Compared with general population, patients with mutations in BRCA1 and BRCA2 genes confer approximately 10-fold increased risk of breast cancer. In this study, we conducted whole-exome sequencing to identify the disease-associated genes in a specific pedigree, in which at least eight individuals were diagnosed with cancers, including breast cancer, urothelial cancer, uterine cancer and colorectal cancer. Furthermore, a nonsense mutation BRCA1 p.Trp372X was identified in the proband. The Sanger sequencing data has validated the same nonsense mutation in other 4 cancer patients and 3 normal family members. Additionally, functional experiments detected that this mutation was implicated in TNBC progression, manifesting as increased cell proliferation and migration. Cells with this mutation displayed impaired recruitment of RAD51 foci and unrepaired DNA damage, potentiating drug sensitivity to PARP inhibitor and cisplatin, both in the settings of combination use or monotherapy. On the basis of its occurrence in hereditary breast cancer and its identification in pedigree, as well as its function as a disruption of BRCA1, this mutation is critical to breast cancer predisposition and progression. Patients carrying this mutation may benefit from DNA damaging treatment regimens. Conclusively, we firstly reported this nonsense mutation in family pedigree and validated its pathogenicity through in vitro functional experiments.
Collapse
Affiliation(s)
- Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yaqin Shi
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing 210002, China
| | - Xin Wang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing 210002, China
| | - Yajuan Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
| | - Lin Tang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Medical Oncology, Medical School of Nanjing University, Nanjing 210002, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.
| |
Collapse
|
9
|
Papamentzelopoulou M, Apostolou P, Fostira F, Dimitrakakis C, Loutradis D, Fountzilas G, Yannoukakos D, Konstantopoulou I. Prevalence and founder effect of the BRCA1 p.(Val1833Met) variant in the Greek population, with further evidence for pathogenicity and risk modification. Cancer Genet 2019; 237:90-96. [PMID: 31447071 DOI: 10.1016/j.cancergen.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Multiple lines of evidence have suggested a likely causative role in breast/ovarian cancer (BrCa/OvCa) predisposition for the BRCA1 p.(Val1833Met) variant, predominantly found among Greek patients. Our aim was to study the variant's prevalence and founder effect on the Greek population, while providing additional data for its pathogenicity. METHODS We genotyped 3531 BrCa/OvCa patients using Sanger and next generation sequencing, as well as 1558 healthy, age-matched females with real-time PCR. Carriers underwent haplotype analysis to determine a founder effect. A co-segregation analysis was applied to estimate the likelihood ratio for pathogenicity. RESULTS In total, 27 BrCa/OvCa patients (0.77%; 27/3531) were found to carry the p.(Val1833Met) variant. No carriers were identified in the control group diagnosis. A common shared haplotype, spanning 2.76 Mb on chromosome 17 was demonstrated among carriers, establishing the founder effect. BRCA1, p.(Val1833Met) is possibly a disease-associated variant, supported by a likelihood ratio of 1.88, while a correlation to ovarian cancer is suspected. CONCLUSIONS Altogether, BRCA1, p.(Val1833Met) variant is a Greek founder and is very likely to predispose for BrCa/OvCa. Therefore, such carriers should be counselled accordingly, with clinical recommendations supporting surveillance and risk-reduction strategies, while providing the option for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Myrto Papamentzelopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi Apostolou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Dimitris Loutradis
- 1st Department of Obstetrics and Gynecology, Athens University Medical School, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
10
|
Brandão RD, Mensaert K, López‐Perolio I, Tserpelis D, Xenakis M, Lattimore V, Walker LC, Kvist A, Vega A, Gutiérrez‐Enríquez S, Díez O, de la Hoya M, Spurdle AB, De Meyer T, Blok MJ. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int J Cancer 2019; 145:401-414. [PMID: 30623411 PMCID: PMC6635756 DOI: 10.1002/ijc.32114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
Collapse
Affiliation(s)
- Rita D. Brandão
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
| | - Irene López‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Demis Tserpelis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Markos Xenakis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical SciencesLund UniversityLundSweden
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐Servicio Galgo de SaúdeGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | | | - Orland Díez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d'HebronBarcelonaSpain
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
- CRIG (Cancer Research Institute Ghent)Ghent UniversityGhentBelgium
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| |
Collapse
|
11
|
Vaclová T, Woods NT, Megías D, Gomez-Lopez S, Setién F, García Bueno JM, Macías JA, Barroso A, Urioste M, Esteller M, Monteiro ANA, Benítez J, Osorio A. Germline missense pathogenic variants in the BRCA1 BRCT domain, p.Gly1706Glu and p.Ala1708Glu, increase cellular sensitivity to PARP inhibitor olaparib by a dominant negative effect. Hum Mol Genet 2016; 25:5287-5299. [PMID: 27742776 DOI: 10.1093/hmg/ddw343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
BRCA1-deficient cells show defects in DNA repair and rely on other members of the DNA repair machinery, which makes them sensitive to PARP inhibitors (PARPi). Although carrying a germline pathogenic variant in BRCA1/2 is the best determinant of response to PARPi, a significant percentage of the patients do not show sensitivity and/or display increased toxicity to the agent. Considering previously suggested mutation-specific BRCA1 haploinsufficiency, we aimed to investigate whether there are any differences in cellular response to PARPi olaparib depending on the BRCA1 mutation type. Lymphoblastoid cell lines derived from carriers of missense pathogenic variants in the BRCA1 BRCT domain (c.5117G > A, p.Gly1706Glu and c.5123C > A, p.Ala1708Glu) showed higher sensitivity to olaparib than cells with truncating variants or wild types (WT). Response to olaparib depended on a basal PARP enzymatic activity, but did not correlate with PARP1 expression. Interestingly, cellular sensitivity to the agent was associated with the level of BRCA1 recruitment into γH2AX foci, being the lowest in cells with missense variants. Since these variants lead to partially stable protein mutants, we propose a model in which the mutant protein acts in a dominant negative manner on the WT BRCA1, impairing the recruitment of BRCA1 into DNA damage sites and, consequently, increasing cellular sensitivity to PARPi. Taken together, our results indicate that carriers of different BRCA1 mutations could benefit from olaparib in a distinct way and show different toxicities to the agent, which could be especially relevant for a potential future use of PARPi as prophylactic agents in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Tereza Vaclová
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Molecular and Biochemical Etiology Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Diego Megías
- Confocal Microscopy Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Gomez-Lopez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando Setién
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | | | - José Antonio Macías
- Hereditary Cancer Unit, Medical Oncology Service, Hospital Morales Meseguer, Murcia, Spain
| | - Alicia Barroso
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, FL, USA
| | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Spanish Network on Rare Diseases (CIBERER), Madrid, Spain.,Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
12
|
Kamaraj B, Purohit R. Mutational Analysis on Membrane Associated Transporter Protein (MATP) and Their Structural Consequences in Oculocutaeous Albinism Type 4 (OCA4)-A Molecular Dynamics Approach. J Cell Biochem 2016; 117:2608-19. [PMID: 27019209 DOI: 10.1002/jcb.25555] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Oculocutaneous albinism type IV (OCA4) is an autosomal recessive inherited disorder which is characterized by reduced biosynthesis of melanin pigmentation in skin, hair, and eyes and caused by the genetic mutations in the membrane-associated transporter protein (MATP) encoded by SLC45A2 gene. The MATP protein consists of 530 amino acids which contains 12 putative transmembrane domains and plays an important role in pigmentation and probably functions as a membrane transporter in melanosomes. We scrutinized the most OCA4 disease-associated mutation and their structural consequences on SLC45A2 gene. To understand the atomic arrangement in 3D space, the native and mutant structures were modeled. Further the structural behavior of native and mutant MATP protein was investigated by molecular dynamics simulation (MDS) approach in explicit lipid and water background. We found Y317C as the most deleterious and disease-associated SNP on SLC45A2 gene. In MDS, mutations in MATP protein showed loss of stability and became more flexible, which alter its structural conformation and function. This phenomenon has indicated a significant role in inducing OCA4. Our study explored the understanding of molecular mechanism of MATP protein upon mutation at atomic level and further helps in the field of pharmacogenomics to develop a personalized medicine for OCA4 disorder. J. Cell. Biochem. 117: 2608-2619, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Balu Kamaraj
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk-Antwerp, Belgium
| | - Rituraj Purohit
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
| |
Collapse
|
13
|
Functional assays provide a robust tool for the clinical annotation of genetic variants of uncertain significance. NPJ Genom Med 2016; 1. [PMID: 28781887 PMCID: PMC5539989 DOI: 10.1038/npjgenmed.2016.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Variants of Uncertain Significance (VUS) are genetic variants whose association with a disease phenotype has not been established. They are a common finding in sequencing-based genetic tests and pose a significant clinical challenge. The objective of this study was to assess the use of functional data to classify variants according to pathogenicity. We conduct functional analysis of a large set of BRCA1 VUS combining a validated functional assay with VarCall, a Bayesian hierarchical model to estimate the likelihood of pathogenicity given the functional data. The results from the functional assays were incorporated into a joint analysis of 214 BRCA1 VUS to predict their likelihood of pathogenicity (breast cancer). We show that applying the VarCall model (1.0 sensitivity; lower bound of 95% confidence interval (CI)=0.75 and 1.0 specificity; lower bound of 95% CI=0.83) to the current set of BRCA1 variants, use of the functional data would significantly reduce the number of VUS associated with the C-terminal region of the BRCA1 protein by ~87%. We extend this work developing yeast-based functional assays for two other genes coding for BRCT domain containing proteins, MCPH1 and MDC1. Analysis of missense variants in MCPH1 and MDC1 shows that structural inference based on the BRCA1 data set can aid in prioritising variants for further analysis. Taken together our results indicate that systematic functional assays can provide a robust tool to aid in clinical annotation of VUS. We propose that well-validated functional assays could be used for clinical annotation even in the absence of additional sources of evidence.
Collapse
|
14
|
Jhuraney A, Velkova A, Johnson RC, Kessing B, Carvalho RS, Whiley P, Spurdle AB, Vreeswijk MPG, Caputo SM, Millot GA, Vega A, Coquelle N, Galli A, Eccles D, Blok MJ, Pal T, van der Luijt RB, Santamariña Pena M, Neuhausen SL, Donenberg T, Machackova E, Thomas S, Vallée M, Couch FJ, Tavtigian SV, Glover JNM, Carvalho MA, Brody LC, Sharan SK, Monteiro AN. BRCA1 Circos: a visualisation resource for functional analysis of missense variants. J Med Genet 2015; 52:224-30. [PMID: 25643705 PMCID: PMC4392196 DOI: 10.1136/jmedgenet-2014-102766] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes. METHODS AND RESULTS To facilitate VUS analysis, we have developed a visualisation resource that compiles and displays functional data on all documented BRCA1 missense variants. BRCA1 Circos is a web-based visualisation tool based on the freely available Circos software package. The BRCA1 Circos web tool (http://research.nhgri.nih.gov/bic/circos/) aggregates data from all published BRCA1 missense variants for functional studies, harmonises their results and presents various functionalities to search and interpret individual-level functional information for each BRCA1 missense variant. CONCLUSIONS This research visualisation tool will serve as a quick one-stop publically available reference for all the BRCA1 missense variants that have been functionally assessed. It will facilitate meta-analysis of functional data and improve assessment of pathogenicity of VUS.
Collapse
Affiliation(s)
- Ankita Jhuraney
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- University of South Florida Cancer Biology PhD Program, Tampa, Florida, USA
| | - Aneliya Velkova
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Randall C Johnson
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, Maryland, USA
| | - Bailey Kessing
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, Maryland, USA
| | - Renato S Carvalho
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Câncer, Divisão de Farmacologia, Rio de Janeiro, Brazil
| | - Phillip Whiley
- Genetics and Population Health Division, QIMR, BNE, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Population Health Division, QIMR, BNE, Brisbane, Queensland, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Hôpital René Huguenin, Paris, France
| | - Gael A Millot
- Institut Curie, Université Pierre et Marie Curie, Paris, France
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Santiago, Spain
| | - Nicolas Coquelle
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | - Alvaro Galli
- Instituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Tuya Pal
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Rob B van der Luijt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Simon Thomas
- Salisbury District Hospital, Salisbury, Wiltshire, UK
| | - Maxime Vallée
- International Agency for Research on Cancer, Lyon, France
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | - Marcelo A Carvalho
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Câncer, Divisão de Farmacologia, Rio de Janeiro, Brazil
| | - Lawrence C Brody
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Shyam K Sharan
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | |
Collapse
|
15
|
Protein stability versus function: effects of destabilizing missense mutations on BRCA1 DNA repair activity. Biochem J 2015; 466:613-24. [DOI: 10.1042/bj20141077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The majority of the unstable BRCA1 BRCT domain missense mutations we studied disrupted DNA repair in vivo, but reduced cellular function only weakly correlated with reduced structural stability. The findings have an impact on assessing cancer susceptibility in patients with BRCA1 mutations.
Collapse
|
16
|
Computational Analysis Reveals the Association of Threonine 118 Methionine Mutation in PMP22 Resulting in CMT-1A. Adv Bioinformatics 2014; 2014:502618. [PMID: 25400662 PMCID: PMC4220619 DOI: 10.1155/2014/502618] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/31/2022] Open
Abstract
The T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability difference between the wild type protein structure and the mutant protein structure. The mutation T118M resulted in the overall increase in the stability of the mutant protein. The superimposed structure shows marked structural variation between the wild type and the mutant protein structures.
Collapse
|
17
|
Kumar CV, Swetha RG, Ramaiah S, Anbarasu A. Tryptophan to Glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein. J Biomol Struct Dyn 2014; 33:1695-709. [DOI: 10.1080/07391102.2014.968211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Computational screening of disease associated mutations on NPC1 gene and its structural consequence in Niemann-Pick type-C1. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Evidence of colorectal cancer-associated mutation in MCAK: a computational report. Cell Biochem Biophys 2014; 67:837-51. [PMID: 23564489 DOI: 10.1007/s12013-013-9572-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Computational prediction of disease-associated non-synonymous polymorphism (nsSNP) has provided a significant platform to filter out the pathological mutations from large pool of SNP datasets at a very low cost input. Several methodologies and complementary protocols have been previously implemented and has provided significant prediction results. Although the previously implicated prediction methods were capable of investigating the most likely deleterious nsSNPs, but due to the lack of genotype-phenotype association analysis, the prediction results lacked in accuracy level. In this work we implemented the computational compilation of protein conformational changes as well as the probable disease-associated phenotypic outcomes. Our result suggested E403K mutation in mitotic centromere-associated kinesin protein as highly damaging and showed strong concordance to the previously observed colorectal cancer mutations aggregation tendency and energy value changes. Moreover, the molecular dynamics simulation results showed major loss in conformation and stability of mutant N-terminal kinesin-like domain structure. The result obtained in this study will provide future prospect of computational approaches in determining the SNPs that may affect the native conformation of protein structure and lead to cancer-associated disorders.
Collapse
|
20
|
Genetic testing in hereditary breast and ovarian cancer using massive parallel sequencing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:542541. [PMID: 25136594 PMCID: PMC4098986 DOI: 10.1155/2014/542541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/05/2014] [Indexed: 01/18/2023]
Abstract
High throughput methods such as next generation sequencing are increasingly used in molecular diagnosis. The aim of this study was to develop a workflow for the detection of BRCA1 and BRCA2 mutations using massive parallel sequencing in a 454 GS Junior bench top sequencer. Our approach was first validated in a panel of 23 patients containing 62 unique variants that had been previously Sanger sequenced. Subsequently, 101 patients with familial breast and ovarian cancer were studied. BRCA1 and BRCA2 exon enrichment has been performed by PCR amplification using the BRCA MASTR kit (Multiplicom). Bioinformatic analysis of reads is performed with the AVA software v2.7 (Roche). In total, all 62 variants were detected resulting in a sensitivity of 100%. 71 false positives were called resulting in a specificity of 97.35%. All of them correspond to deletions located in homopolymeric stretches. The analysis of the homopolymers stretches of 6 bp or longer using the BRCA HP kit (Multiplicom) increased the specificity of the detection of BRCA1 and BRCA2 mutations to 99.99%. We show here that massive parallel pyrosequencing can be used as a diagnostic strategy to test for BRCA1 and BRCA2 mutations meeting very stringent sensitivity and specificity parameters replacing traditional Sanger sequencing with a lower cost.
Collapse
|
21
|
Kamaraj B, Rajendran V, Sethumadhavan R, Kumar CV, Purohit R. Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6. J Biomol Struct Dyn 2014; 33:834-44. [DOI: 10.1080/07391102.2014.915762] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Balu Kamaraj
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Vidya Rajendran
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Rao Sethumadhavan
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Chundi Vinay Kumar
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Rituraj Purohit
- School of Bio Sciences and Technology (SBST), Bioinformatics Division, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
22
|
Vinay Kumar C, Kumar KM, Swetha R, Ramaiah S, Anbarasu A. Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. J Theor Biol 2014; 354:72-80. [PMID: 24681403 DOI: 10.1016/j.jtbi.2014.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding vesicle-associated membrane protein (VAPB) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The VAPB gene is mapped to chromosome number 20 and can be found at cytogenetic location 20q13.33 of the chromosome. VAPB is seen to play a significant role in the unfolded protein response (UPR), which is a process that suppresses the accumulation of unfolded proteins in the endoplasmic reticulum. Earlier studies have reported two points; which we have analyzed in our study. Firstly, the mutation P56S in the VAPB is seen to increase the stability of the protein and secondly, the mutation P56S in VAPB is seen to interrupt the functioning of the gene and loses its ability to be involved in the activation of the IRE1/XBP1 pathway which leads to ALS. With correlation on the previous research studies on the stability of this protein, we carried out Molecular dynamics (MD) simulation. We analyzed the SNP results of 17 nsSNPs obtained from dbSNP using SIFT, polyphen, I-Mutant, SNP&GO, PhDSNP and Mutpred to predict the role of nsSNPs in VAPB. MD simulation is carried out and plots for RMSD, RMSF, Rg, SASA, H-bond and PCA are obtained to check and prove the stability of the wild type and the mutant protein structure. The protein is checked for its aggregation and the results obtained show changes in the protein structure that might result in the loss of function.
Collapse
Affiliation(s)
- Chundi Vinay Kumar
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - K M Kumar
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rayapadi Swetha
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Anand Anbarasu
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
23
|
Haferkamp B, Zhang H, Kissinger S, Wang X, Lin Y, Schultz M, Xiang J. BaxΔ2 Family Alternative Splicing Salvages Bax Microsatellite-Frameshift Mutations. Genes Cancer 2014; 4:501-12. [PMID: 24386510 DOI: 10.1177/1947601913515906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022] Open
Abstract
Mutation or aberrant splicing can interrupt gene expression. Tumor suppressor Bax is one of the susceptible genes prone to microsatellite frameshifting mutations in coding regions. As a result, tumors exhibiting microsatellite instability (MSI) often present a "Bax-negative" phenotype. We previously reported that some Bax-negative cells in fact contain a functional Bax isoform (BaxΔ2), generated when unique alternative splicing "salvages" the shifted reading frame introduced by a microsatellite mutation. Here we compared Bax alternative splicing profiles in a range of cell lines and primary tumors with and without Bax microsatellite mutations. We found that MSI tumors exhibit a high Bax alternative splicing frequency, especially in exon 2, and produce a family of alternatively spliced isoforms that retain many important Bax functional domains. Surprisingly, these BaxΔ2 family isoforms can rescue Bax from all common microsatellite frameshift mutations. Production of BaxΔ2 requires specific cis mutations, while trans components are not cell-type specific. Furthermore, all BaxΔ2 family isoforms are more potent cell death inducers than the parental Bax without directly targeting mitochondria. These results indicate that the BaxΔ2 family can potentially salvage Bax tumor suppressor expression otherwise lost to mutation.
Collapse
Affiliation(s)
- Bonnie Haferkamp
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Honghong Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Samuel Kissinger
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Xin Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Yuting Lin
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Megan Schultz
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Jialing Xiang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
24
|
Kamaraj B, Purohit R. Computational Screening of Disease-Associated Mutations in OCA2 Gene. Cell Biochem Biophys 2013; 68:97-109. [DOI: 10.1007/s12013-013-9697-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3. BIOMED RESEARCH INTERNATIONAL 2013; 2013:697051. [PMID: 23862152 PMCID: PMC3703794 DOI: 10.1155/2013/697051] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/17/2022]
Abstract
Oculocutaneous albinism type III (OCA3), caused by mutations of TYRP1 gene, is an autosomal recessive disorder characterized by reduced biosynthesis of melanin pigment in the hair, skin, and eyes. The TYRP1 gene encodes a protein called tyrosinase-related protein-1 (Tyrp1). Tyrp1 is involved in maintaining the stability of tyrosinase protein and modulating its catalytic activity in eumelanin synthesis. Tyrp1 is also involved in maintenance of melanosome structure and affects melanocyte proliferation and cell death. In this work we implemented computational analysis to filter the most probable mutation that might be associated with OCA3. We found R326H and R356Q as most deleterious and disease associated by using PolyPhen 2.0, SIFT, PANTHER, I-mutant 3.0, PhD-SNP, SNP&GO, Pmut, and Mutpred tools. To understand the atomic arrangement in 3D space, the native and mutant (R326H and R356Q) structures were modelled. Finally the structural analyses of native and mutant Tyrp1 proteins were investigated using molecular dynamics simulation (MDS) approach. MDS results showed more flexibility in native Tyrp1 structure. Due to mutation in Tyrp1 protein, it became more rigid and might disturb the structural conformation and catalytic function of the structure and might also play a significant role in inducing OCA3. The results obtained from this study would facilitate wet-lab researches to develop a potent drug therapies against OCA3.
Collapse
|
26
|
Roadmap to determine the point mutations involved in cardiomyopathy disorder: A Bayesian approach. Gene 2013; 519:34-40. [DOI: 10.1016/j.gene.2013.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/31/2012] [Accepted: 01/27/2013] [Indexed: 11/18/2022]
|
27
|
Stavropoulou AV, Fostira F, Pertesi M, Tsitlaidou M, Voutsinas GE, Triantafyllidou O, Bamias A, Dimopoulos MA, Timotheadou E, Pectasides D, Christodoulou C, Klouvas G, Papadimitriou C, Makatsoris T, Pentheroudakis G, Aravantinos G, Karydakis V, Yannoukakos D, Fountzilas G, Konstantopoulou I. Prevalence of BRCA1 mutations in familial and sporadic greek ovarian cancer cases. PLoS One 2013; 8:e58182. [PMID: 23536787 PMCID: PMC3594241 DOI: 10.1371/journal.pone.0058182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/31/2013] [Indexed: 12/20/2022] Open
Abstract
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23-24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.
Collapse
Affiliation(s)
- Alexandra V. Stavropoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Maroulio Pertesi
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Marianthi Tsitlaidou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Gerassimos E. Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Olga Triantafyllidou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens School of Medicine, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens School of Medicine, Athens, Greece
| | - Eleni Timotheadou
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, “Hippokration” Hospital, Athens, Greece
| | | | - George Klouvas
- Second Department of Medical Oncology, “Metropolitan” Hospital, Piraeus, Greece
| | - Christos Papadimitriou
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens School of Medicine, Athens, Greece
| | - Thomas Makatsoris
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, “Agii Anargiri” Cancer Hospital, Athens, Greece
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
28
|
Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene 2012; 503:75-82. [DOI: 10.1016/j.gene.2012.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/01/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
|
29
|
Multimodel assessment of BRCA1 mutations in Taiwanese (ethnic Chinese) women with early-onset, bilateral or familial breast cancer. J Hum Genet 2012; 57:130-8. [PMID: 22277901 DOI: 10.1038/jhg.2011.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although evidence suggests an importance of genetic factors in the development of breast cancer in Taiwanese (ethnic Chinese) women, including a high incidence of early-onset and secondary contralateral breast cancer, a major breast cancer predisposition gene, BRCA1, has not been well studied in this population. In fact, the carcinogenic impacts of many genetic variants of BRCA1 are unknown and classified as variants of uncertain significance (VUS). It is therefore important to establish a method to characterize the BRCA1 VUSs and understand their role in Taiwanese breast cancer patients. Accordingly, we developed a multimodel assessment strategy consisting of a prescreening portion and a validated functional assay to study breast cancer patients with early-onset, bilateral or familial breast cancer. We found germ-line BRCA1 mutations in 11.1% of our cohort and identified one novel missense mutation, c.5191C>A. Two genetic variants were initially classified as VUSs (c.1155C>T and c.5191C>A). c.1155C>T is not predicted to be deleterious in the prescreening portion of our assessment strategy. c.5191C>A, on the other hand, causes p.T1691K, which is predicted to have high deleterious probability because of significant structural alteration, a high deleterious score in the predictive programs and, clinically, triple negative characteristics in breast tumors. This mutant is confirmed by transcription activation and yeast growth-inhibition assays. In conclusion, we show as high a prevalence of germ-line BRCA1 mutation in high-risk Taiwanese patients as in Caucasians and demonstrate a useful strategy for studying BRCA1 VUSs.
Collapse
|
30
|
di Masi A, Gullotta F, Cappadonna V, Leboffe L, Ascenzi P. Cancer predisposing mutations in BRCT domains. IUBMB Life 2011; 63:503-12. [DOI: 10.1002/iub.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Iversen ES, Couch FJ, Goldgar DE, Tavtigian SV, Monteiro ANA. A computational method to classify variants of uncertain significance using functional assay data with application to BRCA1. Cancer Epidemiol Biomarkers Prev 2011; 20:1078-88. [PMID: 21447777 PMCID: PMC3111818 DOI: 10.1158/1055-9965.epi-10-1214] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Besides revealing cancer predisposition variants or the absence of any changes, genetic testing for cancer predisposition genes can also identify variants of uncertain clinical significance (VUS). Classifying VUSs is a pressing problem, as ever more patients seek genetic testing for disease syndromes and receive noninformative results from those tests. In cases such as the breast and ovarian cancer syndrome in which prophylactic options can be severe and life changing, having information on the disease relevance of the VUS that a patient harbors can be critical. METHODS We describe a computational approach for inferring the disease relevance of VUSs in disease genes from data derived from an in vitro functional assay. It is based on a Bayesian hierarchical model that accounts for sources of experimental heterogeneity. RESULTS The functional data correlate well with the pathogenicity of BRCA1 BRCT VUSs, thus providing evidence regarding pathogenicity when family and genetic data are absent or uninformative. CONCLUSIONS We show the utility of the model by using it to classify 76 VUSs located in the BRCT region of BRCA1. The approach is both sensitive and specific when evaluated on variants previously classified using independent sources of data. Although the functional data are very informative, they will need to be combined with other forms of data to meet the more stringent requirements of clinical application. IMPACT Our work will lead to improved classification of VUSs and will aid in the clinical decision making of their carriers.
Collapse
Affiliation(s)
- Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | |
Collapse
|
32
|
Rodríguez M, Torres A, Borràs J, Salvat M, Gumà J. Large genomic rearrangements in mutation-negative BRCA families: a population-based study. Clin Genet 2011; 78:405-7. [PMID: 21050186 DOI: 10.1111/j.1399-0004.2010.01463.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Germline mutations of BRCA1 and BRCA2 genes in Turkish breast, ovarian, and prostate cancer patients. ACTA ACUST UNITED AC 2011; 203:230-7. [PMID: 21156238 DOI: 10.1016/j.cancergencyto.2010.07.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 12/17/2022]
Abstract
Distribution and prevalence of germline mutations in BRCA1 and BRCA2 differ among different populations. For the Turkish population, several studies have addressed high-risk breast cancer and ovarian cancer (BC-OC) patients. In most studies, both genes were analyzed in part, and a quite heterogeneous mutation spectrum was observed. For high-risk Turkish prostate cancer (PCa) patients, however, there are no data available about mutations of germline BRCA genes. To accurately determine the contribution of germline mutations in BRCA1 and BRCA2 in Turkish BC, OC, and PCa high-risk patients, 106 high-risk BC-OC patients, 50 high-risk PCa patients, and 50 control subjects were recruited. The study represents the only full screening, to date, of a large series of Turkish high-risk BC-OC patients and the only study in Turkish high-risk PCa patients. Mutation screenings were performed on coding exons of both genes with either denaturing gradient gel electrophoresis or denaturing high performance liquid chromatography, or with both techniques. Three deleterious mutations in BRCA1 and three deleterious mutations in BRCA2 were detected in different BC-OC patients, and one truncating mutation was detected in a high-risk PCa patient. In addition, 28 different unclassified and mostly novel variants were detected in both genes, as well as several silent polymorphisms. These findings reflect the genetic heterogeneity of the Turkish population and are relevant to genetic counseling and clinical management.
Collapse
|
34
|
Clinical relevance of rare germline sequence variants in cancer genes: evolution and application of classification models. Curr Opin Genet Dev 2010; 20:315-23. [PMID: 20456937 DOI: 10.1016/j.gde.2010.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 12/11/2022]
Abstract
Multifactorial models developed for BRCA1/2 variant classification have proved very useful for delineating BRCA1/2 variants associated with very high risk of cancer, or with little clinical significance. Recent linkage of this quantitative assessment of risk to clinical management guidelines has provided a basis to standardize variant reporting, variant classification and management of families with such variants, and can theoretically be applied to any disease gene. As proof of principle, the multifactorial approach already shows great promise for application to the evaluation of mismatch repair gene variants identified in families with suspected Lynch syndrome. However there is need to be cautious of the noted limitations and caveats of the current model, some of which may be exacerbated by differences in ascertainment and biological pathways to disease for different cancer syndromes.
Collapse
|