1
|
Jee Y, Ryu M, Sull JW. Alcohol Consumption and Cancer Risk: Two Sample Mendelian Randomization. EPIDEMIOLOGIA 2024; 5:618-626. [PMID: 39311360 PMCID: PMC11417818 DOI: 10.3390/epidemiologia5030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Although numerous observational studies have reported on the association between alcohol consumption and cancer, insufficient studies have estimated the causality. Our study evaluated the causal relationship between various types of cancer according to the frequency of drinking and the amount of alcohol consumed. The research data were obtained from the publicly available MR-Base platform. The frequency and amount of drinking were selected as the exposure, and 16 cancer types were selected as the outcome. Two-sample summary data Mendelian randomization (2SMR) was conducted to examine the causality between alcohol consumption and cancer type. Additionally, for cancers suspected of pleiotropy, outliers were removed and re-analyzed through radial MR. The MR results using the inverse variance weighted (IVW) method were different before and after removing outliers. The biggest differences were found for esophageal cancer and biliary tract cancer. For esophageal cancer, after removing outliers (rs13102973, rs540606, rs650558), the OR (95% CI) was 3.44 (1.19-9.89), which was statistically significant (p = 0.02172). Even in biliary tract cancer, after removing outliers (rs13231886, rs58905411), the OR (95% CI) was 3.86 (0.89-16.859), which was of borderline statistical significance (p = 0.07223). The strongest association was found for esophageal cancer. For other cancers, the evidence was not sufficient to draw conclusions. More research is needed to understand the causality between drinking and cancer.
Collapse
Affiliation(s)
- Yongho Jee
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Mikyung Ryu
- Institute of Genetic Epidemiology, Basgenbio Inc., Seoul 04167, Republic of Korea
| | - Jae-Woong Sull
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea;
| |
Collapse
|
2
|
Hirko KA, Lucas DR, Pathak DR, Hamilton AS, Post LM, Ihenacho U, Carnegie NB, Houang RT, Schwartz K, Velie EM. Lifetime alcohol consumption patterns and young-onset breast cancer by subtype among Non-Hispanic Black and White women in the Young Women's Health History Study. Cancer Causes Control 2024; 35:377-391. [PMID: 37787924 DOI: 10.1007/s10552-023-01801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE The role of alcohol in young-onset breast cancer (YOBC) is unclear. We examined associations between lifetime alcohol consumption and YOBC in the Young Women's Health History Study, a population-based case-control study of breast cancer among Non-Hispanic Black and White women < 50 years of age. METHODS Breast cancer cases (n = 1,812) were diagnosed in the Metropolitan Detroit and Los Angeles County SEER registry areas, 2010-2015. Controls (n = 1,381) were identified through area-based sampling and were frequency-matched to cases by age, site, and race. Alcohol consumption and covariates were collected from in-person interviews. Weighted multivariable logistic regression was conducted to calculate adjusted odds ratios (aOR) and 95% confidence intervals (CI) for associations between alcohol consumption and YOBC overall and by subtype (Luminal A, Luminal B, HER2, or triple negative). RESULTS Lifetime alcohol consumption was not associated with YOBC overall or with subtypes (all ptrend ≥ 0.13). Similarly, alcohol consumption in adolescence, young and middle adulthood was not associated with YOBC (all ptrend ≥ 0.09). An inverse association with triple-negative YOBC, however, was observed for younger age at alcohol use initiation (< 18 years vs. no consumption), aOR (95% CI) = 0.62 (0.42, 0.93). No evidence of statistical interaction by race or household poverty was observed. CONCLUSIONS Our findings suggest alcohol consumption has a different association with YOBC than postmenopausal breast cancer-lifetime consumption was not linked to increased risk and younger age at alcohol use initiation was associated with a decreased risk of triple-negative YOBC. Future studies on alcohol consumption in YOBC subtypes are warranted.
Collapse
Affiliation(s)
- Kelly A Hirko
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Darek R Lucas
- Epidemiology Program, Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Dorothy R Pathak
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann S Hamilton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lydia M Post
- Epidemiology Program, Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Ugonna Ihenacho
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Richard T Houang
- Department of Education, College of Education, Michigan State University, East Lansing, MI, USA
| | - Kendra Schwartz
- Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Ellen M Velie
- Epidemiology Program, Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
- Departments of Medicine and Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Zhang J, Wang H, Chen H, Liu Y, Wang A, Hou H, Hu Q. Acetaldehyde induces similar cytotoxic and genotoxic risks in BEAS-2B cells and HHSteCs: involvement of differential regulation of MAPK/ERK and PI3K/AKT pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79423-79436. [PMID: 37284951 DOI: 10.1007/s11356-023-27508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Long-term use of alcohol and cigarettes is associated with millions of deaths each year, directly or indirectly. The carcinogen acetaldehyde is both a metabolite of alcohol and the most abundant carbonyl compound in cigarette smoke, and co-exposure of them is usual and primarily leads to liver and lung injury, respectively. However, few studies have explored the synchronic risk of acetaldehyde on the liver and lung. Here, we investigated the toxic effects and related mechanisms of acetaldehyde based on normal hepatocytes and lung cells. The results showed that acetaldehyde caused significant dose-dependent increases of cytotoxicity, ROS level, DNA adduct level, DNA single/double-strand breakage, and chromosomal damage in BEAS-2B cells and HHSteCs, with similar effects at the same doses. The gene and protein expression and phosphorylation of p38MAPK, ERK, PI3K, and AKT, key proteins of MAPK/ERK and PI3K/AKT pathways regulating cell survival and tumorigenesis, were significantly upregulated on BEAS-2B cells, while only protein expression and phosphorylation of ERK were upregulated significantly, the other three decreased in HHSteCs. When either the inhibitor of the four key proteins was co-treated with acetaldehyde, cell viabilities were almost unchanged in BEAS-2B cells and HHSteCs. Thus, acetaldehyde could synchronically induce similar toxic effects in BEAS-2B cells and HHSteCs, and MAPK/ERK and PI3K/AKT pathways seem to be involved in different regulatory mechanisms.
Collapse
Affiliation(s)
- Jingni Zhang
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Yong Liu
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - An Wang
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Qingyuan Hu
- University of Science and Technology of China, 230026, Hefei, China.
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China.
| |
Collapse
|
4
|
Moon J, Kitty I, Renata K, Qin S, Zhao F, Kim W. DNA Damage and Its Role in Cancer Therapeutics. Int J Mol Sci 2023; 24:4741. [PMID: 36902170 PMCID: PMC10003233 DOI: 10.3390/ijms24054741] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
DNA damage is a double-edged sword in cancer cells. On the one hand, DNA damage exacerbates gene mutation frequency and cancer risk. Mutations in key DNA repair genes, such as breast cancer 1 (BRCA1) and/or breast cancer 2 (BRCA2), induce genomic instability and promote tumorigenesis. On the other hand, the induction of DNA damage using chemical reagents or radiation kills cancer cells effectively. Cancer-burdening mutations in key DNA repair-related genes imply relatively high sensitivity to chemotherapy or radiotherapy because of reduced DNA repair efficiency. Therefore, designing specific inhibitors targeting key enzymes in the DNA repair pathway is an effective way to induce synthetic lethality with chemotherapy or radiotherapy in cancer therapeutics. This study reviews the general pathways involved in DNA repair in cancer cells and the potential proteins that could be targeted for cancer therapeutics.
Collapse
Affiliation(s)
- Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Kusuma Renata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Matsuzaki K, Kumatoriya K, Tando M, Kometani T, Shinohara M. Polyphenols from persimmon fruit attenuate acetaldehyde-induced DNA double-strand breaks by scavenging acetaldehyde. Sci Rep 2022; 12:10300. [PMID: 35717470 PMCID: PMC9206672 DOI: 10.1038/s41598-022-14374-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Acetaldehyde, a metabolic product of ethanol, induces DNA damage and genome instability. Accumulation of acetaldehyde due to alcohol consumption or aldehyde dehydrogenase (ALDH2) deficiency increases the risks of various types of cancers, including esophageal cancer. Although acetaldehyde chemically induces DNA adducts, the repair process of the lesions remains unclear. To investigate the mechanism of repair of acetaldehyde-induced DNA damage, we determined the repair pathway using siRNA knockdown and immunofluorescence assays of repair factors. Herein, we report that acetaldehyde induces DNA double-strand breaks (DSBs) in human U2OS cells and that both DSB repair pathways, non-homologous end-joining (NHEJ) and homology-directed repair (HDR), are required for the repair of acetaldehyde-induced DNA damage. Our findings suggest that acetaldehyde-induced DNA adducts are converted into DSBs and repaired via NHEJ or HDR in human cells. To reduce the risk of acetaldehyde-associated carcinogenesis, we investigated potential strategies of reducing acetaldehyde-induced DNA damage. We report that polyphenols extracted from persimmon fruits and epigallocatechin, a major component of persimmon polyphenols, attenuate acetaldehyde-induced DNA damage without affecting the repair kinetics. The data suggest that persimmon polyphenols suppress DSB formation by scavenging acetaldehyde. Persimmon polyphenols can potentially inhibit carcinogenesis following alcohol consumption.
Collapse
Affiliation(s)
- Kenichiro Matsuzaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan.
| | - Kenji Kumatoriya
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Mizuki Tando
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Takashi Kometani
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
- Pharma Foods International, Co., Ltd., 1-49 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan
| | - Miki Shinohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
| |
Collapse
|
6
|
Alcohol Consumption, ALDH2 Polymorphism as Risk Factors for Upper Aerodigestive Tract Cancer Progression and Prognosis. Life (Basel) 2022; 12:life12030348. [PMID: 35330099 PMCID: PMC8956056 DOI: 10.3390/life12030348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
The upper aerodigestive tract (UADT) is highly susceptible to multiple primary cancers originated from squamous epithelia and constitutes a field of cancerization. Patients with head and neck cancer (head and neck squamous cell carcinoma, HNSCC) are at high risk of developing multiple cancers in the esophagus (esophageal squamous cell carcinoma, ESCC). Conversely, esophageal cancer patients are prone to develop multiple primary tumors in the head and neck region. The East Asian-specific dysfunctional ALDH2*2 missense mutation is a genetic risk factor for UADT cancer. It is not only associated with increased incidences of UADT cancer, but is also implicated in faster cancer progression and poorer prognosis. Alcohol use is a major lifestyle risk factor which causes UADT cancer among ALDH2*2 carriers. The accumulation of the immediate metabolite of alcohol, acetaldehyde, is likely the genotoxic agents that is involved in the process of tumorigenesis. This review summarizes recent publications on the risk and association of ALDH2*2 mutation, alcohol consumption in synchronous, metachronous UADT cancer. Possible molecular mechanisms involved in cancer initiation, progress and prognosis are discussed. The review also highlights a need for precision medicine-based preventive and therapeutic strategies by integrating lifestyle and genetic risk factors, such as alcohol consumption, genotypes of the alcohol metabolizing genes, ADH1B and ALDH2, into a risk assessment model for better screening, surveillance and treatment outcome.
Collapse
|
7
|
Peake JD, Noguchi C, Lin B, Theriault A, O'Connor M, Sheth S, Tanaka K, Nakagawa H, Noguchi E. FANCD2 limits acetaldehyde-induced genomic instability during DNA replication in esophageal keratinocytes. Mol Oncol 2021; 15:3109-3124. [PMID: 34328261 PMCID: PMC8564632 DOI: 10.1002/1878-0261.13072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Baicheng Lin
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amber Theriault
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Margaret O'Connor
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shivani Sheth
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Koji Tanaka
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Present address:
Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiroshi Nakagawa
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia University Herbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
8
|
Benfatto S, Serçin Ö, Dejure FR, Abdollahi A, Zenke FT, Mardin BR. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality. Mol Cancer 2021; 20:111. [PMID: 34454516 PMCID: PMC8401190 DOI: 10.1186/s12943-021-01405-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells. CRISPR viability screens have been widely employed to identify cancer vulnerabilities. However, an approach to systematically infer genetic interactions from viability screens is missing. METHODS Here we describe PAn-canceR Inferred Synthetic lethalities (PARIS), a machine learning approach to identify cancer vulnerabilities. PARIS predicts synthetic lethal (SL) interactions by combining CRISPR viability screens with genomics and transcriptomics data across hundreds of cancer cell lines profiled within the Cancer Dependency Map. RESULTS Using PARIS, we predicted 15 high confidence SL interactions within 549 DNA damage repair (DDR) genes. We show experimental validation of an SL interaction between the tumor suppressor CDKN2A, thymidine phosphorylase (TYMP) and the thymidylate synthase (TYMS), which may allow stratifying patients for treatment with TYMS inhibitors. Using genome-wide mapping of SL interactions for DDR genes, we unraveled a dependency between the aldehyde dehydrogenase ALDH2 and the BRCA-interacting protein BRIP1. Our results suggest BRIP1 as a potential therapeutic target in ~ 30% of all tumors, which express low levels of ALDH2. CONCLUSIONS PARIS is an unbiased, scalable and easy to adapt platform to identify SL interactions that should aid in improving cancer therapy with increased availability of cancer genomics data.
Collapse
Affiliation(s)
- Salvatore Benfatto
- BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Özdemirhan Serçin
- BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Francesca R Dejure
- BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, National Centre for Tumour Diseases (NCT), Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Frank T Zenke
- Translational Innovation Platform Oncology & Immuno-Oncology, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Balca R Mardin
- BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Pachva MC, Kisselev AF, Matkarimov BT, Saparbaev M, Groisman R. DNA-Histone Cross-Links: Formation and Repair. Front Cell Dev Biol 2021; 8:607045. [PMID: 33409281 PMCID: PMC7779557 DOI: 10.3389/fcell.2020.607045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The nucleosome is a stretch of DNA wrapped around a histone octamer. Electrostatic interactions and hydrogen bonds between histones and DNA are vital for the stable organization of nucleosome core particles, and for the folding of chromatin into more compact structures, which regulate gene expression via controlled access to DNA. As a drawback of tight association, under genotoxic stress, DNA can accidentally cross-link to histone in a covalent manner, generating a highly toxic DNA-histone cross-link (DHC). DHC is a bulky lesion that can impede DNA transcription, replication, and repair, often with lethal consequences. The chemotherapeutic agent cisplatin, as well as ionizing and ultraviolet irradiations and endogenously occurring reactive aldehydes, generate DHCs by forming either stable or transient covalent bonds between DNA and side-chain amino groups of histone lysine residues. The mechanisms of DHC repair start to unravel, and certain common principles of DNA-protein cross-link (DPC) repair mechanisms that participate in the removal of cross-linked histones from DNA have been described. In general, DPC is removed via a two-step repair mechanism. First, cross-linked proteins are degraded by specific DPC proteases or by the proteasome, relieving steric hindrance. Second, the remaining DNA-peptide cross-links are eliminated in various DNA repair pathways. Delineating the molecular mechanisms of DHC repair would help target specific DNA repair proteins for therapeutic intervention to combat tumor resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Alexei F Kisselev
- Department Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Murat Saparbaev
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Regina Groisman
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
10
|
Azimi P, Keshavarz Z, Lahaie Luna M, Cedeno Laurent JG, Vallarino J, Christiani DC, Allen JG. An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E385. [PMID: 33419122 PMCID: PMC7825490 DOI: 10.3390/ijerph18020385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/01/2023]
Abstract
Up to 95% of the liquid volume in an e-cigarette consists of propylene glycol. Previous research has shown that propylene glycol can generate diacetyl and formaldehyde when heated. New research shows that propylene glycol can also generate methylglyoxal, an alpha di-carbonyl compound recently shown to cause epithelial necrosis at even lower concentrations than diacetyl, the flavoring chemical associated with bronchiolitis obliterans ("Popcorn Lung"). We analyzed chemical emissions from 13 JUUL pod flavors. Diacetyl and methylglyoxal was detected in 100% of samples with median concentration (range) of 20 µg/m3 (less than limit of quantification: 54 µg/m3) and 4219 µg/m3 (677-15,342 µg/m3), respectively. We also detected acetaldehyde (median concentration: 341 µg/m3) and propionaldehyde (median concentration: 87 µg/m3) in all samples. The recent evidence that methylglyoxal is more cytotoxic to airway epithelial cells than diacetyl makes this an urgent public health concern. Current smokers considering e-cigarettes as a smoking cessation tool, and never users, who may be under the impression that e-cigarettes are harmless, need information on emissions and potential risks to make informed decisions.
Collapse
Affiliation(s)
- Parham Azimi
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Zahra Keshavarz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Marianne Lahaie Luna
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
- Occupational & Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Jose Guillermo Cedeno Laurent
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Jose Vallarino
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - David C. Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| |
Collapse
|
11
|
Hande V, Teo K, Srikanth P, Wong JSM, Sethu S, Martinez-Lopez W, Hande MP. Investigations on the new mechanism of action for acetaldehyde-induced clastogenic effects in human lung fibroblasts. Mutat Res 2020; 861-862:503303. [PMID: 33551104 DOI: 10.1016/j.mrgentox.2020.503303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Acetaldehyde (AA) has been classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC, WHO) and by the US Environmental Protection Agency due to its ability to cause tumours following inhalation or alcohol consumption in animals. Humans are constantly exposed to AA through inhalation from the environment through cigarette smoke, vehicle fumes and industrial emissions as well as by persistent alcohol ingestion. Individuals with deficiencies in the enzymes that are involved in the metabolism of AA are more susceptible to its toxicity and constitute a vulnerable human population. Studies have shown that AA induces DNA damage and cytogenetic abnormalities. A study was undertaken to elucidate the clastogenic effects induced by AA and any preceding DNA damage that occurs in normal human lung fibroblasts as this will further validate the detrimental effects of inhalation exposure to AA. AA exposure induced DNA damage, involving DNA double strand breaks, which could possibly occur at the telomeric regions as well, resulting in a clastogenic effect and subsequent genomic instability, which contributed to the cell cycle arrest. The clastogenic effect induced by AA in human lung fibroblasts was evidenced by micronuclei induction and chromosomal aberrations, including those at the telomeric regions. Co-localisation between the DNA double strand breaks and telomeric regions was observed, suggesting possible induction of DNA double strand breaks due to AA exposure at the telomeric regions as a new mechanism beyond the clastogenic effect of AA. From the cell cycle profile following AA exposure, a G2/M phase arrest and a decrease in cell viability were also detected. Therefore, these effects due to AA exposure via inhalation may have implications in the development of carcinogenesis in humans.
Collapse
Affiliation(s)
- Varsha Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Keith Teo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; University of Auckland, New Zealand
| | - Prarthana Srikanth
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jane See Mei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Wilner Martinez-Lopez
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Associate Unit on Genomic Stability, Faculty of Medicine, University of the Republic (UdelaR), Montevideo, Uruguay; Vellore Institute of Technology, Vellore, India
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Vellore Institute of Technology, Vellore, India; Mangalore University, India; Tembusu College, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Rageul J, Kim H. Fanconi anemia and the underlying causes of genomic instability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:693-708. [PMID: 31983075 PMCID: PMC7778457 DOI: 10.1002/em.22358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disorder, characterized by birth defects, progressive bone marrow failure, and a predisposition to cancer. This devastating disease is caused by germline mutations in any one of the 22 known FA genes, where the gene products are primarily responsible for the resolution of DNA interstrand cross-links (ICLs), a type of DNA damage generally formed by cytotoxic chemotherapeutic agents. However, the identity of endogenous mutagens that generate DNA ICLs remains largely elusive. In addition, whether DNA ICLs are indeed the primary cause behind FA phenotypes is still a matter of debate. Recent genetic studies suggest that naturally occurring reactive aldehydes are a primary source of DNA damage in hematopoietic stem cells, implicating that they could play a role in genome instability and FA. Emerging lines of evidence indicate that the FA pathway constitutes a general surveillance mechanism for the genome by protecting against a variety of DNA replication stresses. Therefore, understanding the DNA repair signaling that is regulated by the FA pathway, and the types of DNA lesions underlying the FA pathophysiology is crucial for the treatment of FA and FA-associated cancers. Here, we review recent advances in our understanding of the relationship between reactive aldehydes, bone marrow dysfunction, and FA biology in the context of signaling pathways triggered during FA-mediated DNA repair and maintenance of the genomic integrity. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York 11794, USA
- Correspondence to: Hyungjin Kim, Ph.D., Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Basic Sciences Tower 8-125, 100 Nicolls Rd., Stony Brook, NY 11794, Phone: 631-444-3134, FAX: 631-444-3218,
| |
Collapse
|
13
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
14
|
Ibrahim MA, Yasui M, Saha LK, Sasanuma H, Honma M, Takeda S. Enhancing the sensitivity of the thymidine kinase assay by using DNA repair-deficient human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:602-610. [PMID: 32243652 PMCID: PMC7384079 DOI: 10.1002/em.22371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/17/2023]
Abstract
The OECD guidelines define the bioassays of identifying mutagenic chemicals, including the thymidine kinase (TK) assay, which specifically detects the mutations that inactivate the TK gene in the human TK6 lymphoid line. However, the sensitivity of this assay is limited because it detects mutations occurring only in the TK gene but not any other genes. Moreover, the limited sensitivity of the conventional TK assay is caused by the usage of DNA repair-proficient wild-type cells, which are capable of accurately repairing DNA damage induced by chemicals. Mutagenic chemicals produce a variety of DNA lesions, including base lesions, sugar damage, crosslinks, and strand breaks. Base damage causes point mutations and is repaired by the base excision repair (BER) and nucleotide excision repair (NER) pathways. To increase the sensitivity of TK assay, we simultaneously disrupted two genes encoding XRCC1, an important BER factor, and XPA, which is essential for NER, generating XRCC1 -/- /XPA -/- cells from TK6 cells. We measured the mutation frequency induced by four typical mutagenic agents, methyl methane sulfonate (MMS), cis-diamminedichloro-platinum(II) (cisplatin, CDDP), mitomycin-C (MMC), and cyclophosphamide (CP) by the conventional TK assay using wild-type TK6 cells and also by the TK assay using XRCC1 -/- /XPA -/- cells. The usage of XRCC1 -/- /XPA -/- cells increased the sensitivity of detecting the mutagenicity by 8.6 times for MMC, 8.5 times for CDDP, and 2.6 times for MMS in comparison with the conventional TK assay. In conclusion, the usage of XRCC1 -/- /XPA -/- cells will significantly improve TK assay.
Collapse
Affiliation(s)
| | - Manabu Yasui
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Liton Kumar Saha
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hiroyuki Sasanuma
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| | - Masamitsu Honma
- Division of Genetics and MutagenesisNational Institute of Health SciencesKawasakiKanagawaJapan
| | - Shunichi Takeda
- Department of Radiation GeneticsKyoto University, Graduate School of MedicineKyotoJapan
| |
Collapse
|
15
|
Sánchez-Bayona R, Gea A, Gardeazabal I, Romanos-Nanclares A, Martínez-González MÁ, Bes-Rastrollo M, Santisteban M, Toledo E. Binge Drinking and Risk of Breast Cancer: Results from the SUN ('Seguimiento Universidad de Navarra') Project. Nutrients 2020; 12:nu12030731. [PMID: 32164388 PMCID: PMC7146187 DOI: 10.3390/nu12030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/26/2023] Open
Abstract
Alcohol intake is associated with the risk of breast cancer. Different patterns of alcohol-drinking may have different effects on breast cancer even when keeping constant the total amount of alcohol consumed. We aimed to assess the association between binge drinking and breast cancer risk. The SUN Project is a Spanish dynamic prospective cohort of university graduates initiated in 1999. In the 556-item lifestyle baseline questionnaire a validated food-frequency questionnaire was embedded. Participants completed biennial follow-up questionnaires. Cox regression models were used to estimate the hazard ratio (HR) for breast cancer associated with the exposure to binge drinking. A stratified analysis was performed according to menopausal status. We included 9577 women (mean age = 34 years, SD = 10 years), with a median follow-up of 11.8 years. Among 104,932 women-years of follow-up, we confirmed 88 incident cases of breast cancer. Women in the binge drinking group showed a higher risk of breast cancer (HR = 1.76; 95% CI: 1.03–2.99) compared to women in the non-binge drinking category. In the stratified analysis, a 2-fold higher risk for premenopausal breast cancer was associated with binge drinking habit (HR = 2.06; 95% CI: 1.11–3.82). This study adds new evidence on the association of binge drinking with breast cancer risk.
Collapse
Affiliation(s)
- Rodrigo Sánchez-Bayona
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
- Department of Clinical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-425-600 (ext. 806637)
| | - Itziar Gardeazabal
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
- Department of Clinical Oncology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Andrea Romanos-Nanclares
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Marta Santisteban
- Department of Clinical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008 Pamplona, Spain; (R.S.-B.); (I.G.); (A.R.-N.); (M.Á.M.-G.); (M.B.-R.); (E.T.)
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
16
|
Majera D, Skrott Z, Chroma K, Merchut-Maya JM, Mistrik M, Bartek J. Targeting the NPL4 Adaptor of p97/VCP Segregase by Disulfiram as an Emerging Cancer Vulnerability Evokes Replication Stress and DNA Damage while Silencing the ATR Pathway. Cells 2020; 9:cells9020469. [PMID: 32085572 PMCID: PMC7072750 DOI: 10.3390/cells9020469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Research on repurposing the old alcohol-aversion drug disulfiram (DSF) for cancer treatment has identified inhibition of NPL4, an adaptor of the p97/VCP segregase essential for turnover of proteins involved in multiple pathways, as an unsuspected cancer cell vulnerability. While we reported that NPL4 is targeted by the anticancer metabolite of DSF, the bis-diethyldithiocarbamate-copper complex (CuET), the exact, apparently multifaceted mechanism(s) through which the CuET-induced aggregation of NPL4 kills cancer cells remains to be fully elucidated. Given the pronounced sensitivity to CuET in tumor cell lines lacking the genome integrity caretaker proteins BRCA1 and BRCA2, here we investigated the impact of NPL4 targeting by CuET on DNA replication dynamics and DNA damage response pathways in human cancer cell models. Our results show that CuET treatment interferes with DNA replication, slows down replication fork progression and causes accumulation of single-stranded DNA (ssDNA). Such a replication stress (RS) scenario is associated with DNA damage, preferentially in the S phase, and activates the homologous recombination (HR) DNA repair pathway. At the same time, we find that cellular responses to the CuET-triggered RS are seriously impaired due to concomitant malfunction of the ATRIP-ATR-CHK1 signaling pathway that reflects an unorthodox checkpoint silencing mode through ATR (Ataxia telangiectasia and Rad3 related) kinase sequestration within the CuET-evoked NPL4 protein aggregates.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | | | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Correspondence: (M.M.); (J.B.)
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 77 Stockholm, Sweden
- Correspondence: (M.M.); (J.B.)
| |
Collapse
|
17
|
DNA- and DNA-Protein-Crosslink Repair in Plants. Int J Mol Sci 2019; 20:ijms20174304. [PMID: 31484324 PMCID: PMC6747210 DOI: 10.3390/ijms20174304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
DNA-crosslinks are one of the most severe types of DNA lesions. Crosslinks (CLs) can be subdivided into DNA-intrastrand CLs, DNA-interstrand CLs (ICLs) and DNA-protein crosslinks (DPCs), and arise by various exogenous and endogenous sources. If left unrepaired before the cell enters S-phase, ICLs and DPCs pose a major threat to genomic integrity by blocking replication. In order to prevent the collapse of replication forks and impairment of cell division, complex repair pathways have emerged. In mammals, ICLs are repaired by the so-called Fanconi anemia (FA) pathway, which includes 22 different FANC genes, while in plants only a few of these genes are conserved. In this context, two pathways of ICL repair have been defined, each requiring the interaction of a helicase (FANCJB/RTEL1) and a nuclease (FAN1/MUS81). Moreover, homologous recombination (HR) as well as postreplicative repair factors are also involved. Although DPCs possess a comparable toxic potential to cells, it has only recently been shown that at least three parallel pathways for DPC repair exist in plants, defined by the protease WSS1A, the endonuclease MUS81 and tyrosyl-DNA phosphodiesterase 1 (TDP1). The importance of crosslink repair processes are highlighted by the fact that deficiencies in the respective pathways are associated with diverse hereditary disorders.
Collapse
|
18
|
Acetaldehyde forms covalent GG intrastrand crosslinks in DNA. Sci Rep 2019; 9:660. [PMID: 30679737 PMCID: PMC6345987 DOI: 10.1038/s41598-018-37239-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
Carcinogens often generate mutable DNA lesions that contribute to cancer and aging. However, the chemical structure of tumorigenic DNA lesions formed by acetaldehyde remains unknown, although it has long been considered an environmental mutagen in alcohol, tobacco, and food. Here, we identify an aldehyde-induced DNA lesion, forming an intrastrand crosslink between adjacent guanine bases, but not in single guanine bases or in other combinations of nucleotides. The GG intrastrand crosslink exists in equilibrium in the presence of aldehyde, and therefore it has not been detected or analyzed in the previous investigations. The newly identified GG intrastrand crosslinks might explain the toxicity and mutagenicity of acetaldehyde in DNA metabolism.
Collapse
|
19
|
Huang SJ, Xu YM, Lau ATY. Electronic cigarette: A recent update of its toxic effects on humans. J Cell Physiol 2018; 233:4466-4478. [PMID: 29215738 DOI: 10.1002/jcp.26352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
Abstract
Electronic cigarettes (e-cigarettes), battery-powered and liquid-vaporizing devices, were invented to replace the conventional cigarette (c-cigarette) smoking for the sake of reducing the adverse effects on multiple organ systems that c-cigarettes have induced. Although some of the identified harmful components in e-cigarettes were alleged to be measured in lower quantity than those in c-cigarettes, researchers unveiled that the toxic effects of e-cigarettes should not be understated. This review is sought for an attempt to throw light on several typical types of e-cigarette components (tobacco-specific nitrosamines, carbonyl compounds, and volatile organic compounds) by revealing their possible impacts on human bodies through different action mechanisms characterized by alteration of specific biomarkers on cellular and molecular levels. In addition, this review is intended to draw the limelight that like c-cigarettes, e-cigarettes could also be accompanied with toxic effects on whole human body, which are especially apparent on respiratory system. From head to foot, from physical aspect to chemical aspect, from genotype to phenotype, potential alterations will take place upon the intake of the liquid aerosol.
Collapse
Affiliation(s)
- Shu-Jie Huang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Tacconi EM, Lai X, Folio C, Porru M, Zonderland G, Badie S, Michl J, Sechi I, Rogier M, Matía García V, Batra AS, Rueda OM, Bouwman P, Jonkers J, Ryan A, Reina-San-Martin B, Hui J, Tang N, Bruna A, Biroccio A, Tarsounas M. BRCA1 and BRCA2 tumor suppressors protect against endogenous acetaldehyde toxicity. EMBO Mol Med 2018; 9:1398-1414. [PMID: 28729482 PMCID: PMC5623864 DOI: 10.15252/emmm.201607446] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity requires the functional interplay between Fanconi anemia (FA) and homologous recombination (HR) repair pathways. Endogenous acetaldehyde, a product of cellular metabolism, is a potent source of DNA damage, particularly toxic to cells and mice lacking the FA protein FANCD2. Here, we investigate whether HR-compromised cells are sensitive to acetaldehyde, similarly to FANCD2-deficient cells. We demonstrate that inactivation of HR factors BRCA1, BRCA2, or RAD51 hypersensitizes cells to acetaldehyde treatment, in spite of the FA pathway being functional. Aldehyde dehydrogenases (ALDHs) play key roles in endogenous acetaldehyde detoxification, and their chemical inhibition leads to cellular acetaldehyde accumulation. We find that disulfiram (Antabuse), an ALDH2 inhibitor in widespread clinical use for the treatment of alcoholism, selectively eliminates BRCA1/2-deficient cells. Consistently, Aldh2 gene inactivation suppresses proliferation of HR-deficient mouse embryonic fibroblasts (MEFs) and human fibroblasts. Hypersensitivity of cells lacking BRCA2 to acetaldehyde stems from accumulation of toxic replication-associated DNA damage, leading to checkpoint activation, G2/M arrest, and cell death. Acetaldehyde-arrested replication forks require BRCA2 and FANCD2 for protection against MRE11-dependent degradation. Importantly, acetaldehyde specifically inhibits in vivo the growth of BRCA1/2-deficient tumors and ex vivo in patient-derived tumor xenograft cells (PDTCs), including those that are resistant to poly (ADP-ribose) polymerase (PARP) inhibitors. The work presented here therefore identifies acetaldehyde metabolism as a potential therapeutic target for the selective elimination of BRCA1/2-deficient cells and tumors.
Collapse
Affiliation(s)
- Eliana Mc Tacconi
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Xianning Lai
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Cecilia Folio
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Manuela Porru
- Area of Translational Research, Regina Elena National Cancer Institute, Rome, Italy
| | - Gijs Zonderland
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Sophie Badie
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Johanna Michl
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Irene Sechi
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Mélanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Verónica Matía García
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Oscar M Rueda
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Peter Bouwman
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anderson Ryan
- Department of Oncology, Lung Cancer Translational Science Research Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Joannie Hui
- Department of Chemical Pathology and Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nelson Tang
- Department of Chemical Pathology and Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Annamaria Biroccio
- Area of Translational Research, Regina Elena National Cancer Institute, Rome, Italy
| | - Madalena Tarsounas
- Department of Oncology, Genome Stability and Tumorigenesis Group, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Klages-Mundt NL, Li L. Formation and repair of DNA-protein crosslink damage. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1065-1076. [PMID: 29098631 DOI: 10.1007/s11427-017-9183-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
DNA is constantly exposed to a wide array of genotoxic agents, generating a variety of forms of DNA damage. DNA-protein crosslinks (DPCs)-the covalent linkage of proteins with a DNA strand-are one of the most deleterious and understudied forms of DNA damage, posing as steric blockades to transcription and replication. If not properly repaired, these lesions can lead to mutations, genomic instability, and cell death. DPCs can be induced endogenously or through environmental carcinogens and chemotherapeutic agents. Endogenously, DPCs are commonly derived through reactions with aldehydes, as well as through trapping of various enzymatic intermediates onto the DNA. Proteolytic cleavage of the protein moiety of a DPC is a general strategy for removing the lesion. This can be accomplished through a DPC-specific protease and and/or proteasome-mediated degradation. Nucleotide excision repair and homologous recombination are each involved in repairing DPCs, with their respective roles likely dependent on the nature and size of the adduct. The Fanconi anemia pathway may also have a role in processing DPC repair intermediates. In this review, we discuss how these lesions are formed, strategies and mechanisms for their removal, and diseases associated with defective DPC repair.
Collapse
Affiliation(s)
- Naeh L Klages-Mundt
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Molecular Mechanisms of Acetaldehyde-Mediated Carcinogenesis in Squamous Epithelium. Int J Mol Sci 2017; 18:ijms18091943. [PMID: 28891965 PMCID: PMC5618592 DOI: 10.3390/ijms18091943] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Acetaldehyde is a highly reactive compound that causes various forms of damage to DNA, including DNA adducts, single- and/or double-strand breaks (DSBs), point mutations, sister chromatid exchanges (SCEs), and DNA-DNA cross-links. Among these, DNA adducts such as N²-ethylidene-2'-deoxyguanosine, N²-ethyl-2'-deoxyguanosine, N²-propano-2'-deoxyguanosine, and N²-etheno-2'-deoxyguanosine are central to acetaldehyde-mediated DNA damage because they are associated with the induction of DNA mutations, DNA-DNA cross-links, DSBs, and SCEs. Acetaldehyde is produced endogenously by alcohol metabolism and is catalyzed by aldehyde dehydrogenase 2 (ALDH2). Alcohol consumption increases blood and salivary acetaldehyde levels, especially in individuals with ALDH2 polymorphisms, which are highly associated with the risk of squamous cell carcinomas in the upper aerodigestive tract. Based on extensive epidemiological evidence, the International Agency for Research on Cancer defined acetaldehyde associated with the consumption of alcoholic beverages as a "group 1 carcinogen" (definite carcinogen) for the esophagus and/or head and neck. In this article, we review recent advances from studies of acetaldehyde-mediated carcinogenesis in the squamous epithelium, focusing especially on acetaldehyde-mediated DNA adducts. We also give attention to research on acetaldehyde-mediated DNA repair pathways such as the Fanconi anemia pathway and refer to our studies on the prevention of acetaldehyde-mediated DNA damage.
Collapse
|
23
|
White AJ, DeRoo LA, Weinberg CR, Sandler DP. Lifetime Alcohol Intake, Binge Drinking Behaviors, and Breast Cancer Risk. Am J Epidemiol 2017; 186:541-549. [PMID: 28486582 DOI: 10.1093/aje/kwx118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023] Open
Abstract
The prevalence of binge drinking in the United States is rising. While alcohol is a risk factor for breast cancer, less is known about the impact of episodic heavy drinking. In 2003-2009, women aged 35-74 years who were free of breast cancer were enrolled in the Sister Study (n = 50,884). Residents of the United States or Puerto Rico who had a sister with breast cancer were eligible. Multivariable Cox regression was used to estimate adjusted hazard ratios and 95% confidence intervals for breast cancer. During follow-up (mean = 6.4 years), 1,843 invasive breast cancers were diagnosed. Increased breast cancer risk was observed for higher lifetime alcohol intake (for ≥230 drinks/year vs. <60 drinks/year, hazard ratio (HR) = 1.35, 95% confidence interval (CI): 1.15, 1.58). Relative to low-level drinkers (<60 drinks/year), hazard ratios were increased for ever binge drinking (HR = 1.29, 95% CI: 1.15, 1.45) or blacking out (HR = 1.39, 95% CI: 1.17, 1.64). Compared with low-level drinkers who never binged, moderate drinkers (60-229 drinks/year) who binged had a higher risk (HR = 1.25, 95% CI: 1.08, 1.44). There was evidence of effect modification between moderate lifetime drinking and binging (relative excess risk due to interaction = 0.33, 95% CI: 0.10, 0.57). Our findings support the established association between lifetime alcohol intake and breast cancer and provide evidence for an increased risk associated with heavy episodic drinking, especially among moderate lifetime drinkers.
Collapse
|
24
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
25
|
Noguchi C, Grothusen G, Anandarajan V, Martínez-Lage García M, Terlecky D, Corzo K, Tanaka K, Nakagawa H, Noguchi E. Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast. Cell Cycle 2016; 16:45-58. [PMID: 27687866 DOI: 10.1080/15384101.2016.1237326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde. We demonstrate that Atd1 functions as a major acetaldehyde detoxification enzyme that prevents accumulation of Rad52-DNA repair foci, while Atd2 and Atd3 have minor roles in acetaldehyde detoxification. We found that acetaldehyde causes DNA damage at the replication fork and activates the cell cycle checkpoint to coordinate cell cycle arrest with DNA repair. Our investigation suggests that acetaldehyde-mediated DNA adducts include interstrand-crosslinks and DNA-protein crosslinks. We also demonstrate that acetaldehyde activates multiple DNA repair pathways. Nucleotide excision repair and homologous recombination, which are both epistatically linked to the Fanconi anemia pathway, have major roles in acetaldehyde tolerance, while base excision repair and translesion synthesis also contribute to the prevention of acetaldehyde-dependent genomic instability. We also show the involvement of Wss1-related metalloproteases, Wss1 and Wss2, in acetaldehyde tolerance. These results indicate that acetaldehyde causes cellular stresses that require cells to coordinate multiple cellular processes in order to prevent genomic instability. Considering that acetaldehyde is a human carcinogen, our genetic studies serve as a guiding investigation into the mechanisms of acetaldehyde-dependent genomic instability and carcinogenesis.
Collapse
Affiliation(s)
- Chiaki Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Grant Grothusen
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Vinesh Anandarajan
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Marta Martínez-Lage García
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Daniel Terlecky
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Krysten Corzo
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Katsunori Tanaka
- b Department of Bioscience , School of Science and Technology, Kwansei Gakuin University , Sanda , Japan
| | - Hiroshi Nakagawa
- c Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine , PA , USA
| | - Eishi Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| |
Collapse
|
26
|
Lopez-Martinez D, Liang CC, Cohn MA. Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol Life Sci 2016; 73:3097-114. [PMID: 27094386 PMCID: PMC4951507 DOI: 10.1007/s00018-016-2218-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Interstrand crosslinks (ICLs) are a highly toxic form of DNA damage. ICLs can interfere with vital biological processes requiring separation of the two DNA strands, such as replication and transcription. If ICLs are left unrepaired, it can lead to mutations, chromosome breakage and mitotic catastrophe. The Fanconi anemia (FA) pathway can repair this type of DNA lesion, ensuring genomic stability. In this review, we will provide an overview of the cellular response to ICLs. First, we will discuss the origin of ICLs, comparing various endogenous and exogenous sources. Second, we will describe FA proteins as well as FA-related proteins involved in ICL repair, and the post-translational modifications that regulate these proteins. Finally, we will review the process of how ICLs are repaired by both replication-dependent and replication-independent mechanisms.
Collapse
Affiliation(s)
- David Lopez-Martinez
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
27
|
Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. ACTA ACUST UNITED AC 2015; 11:65-77. [PMID: 25581056 DOI: 10.2217/whe.14.62] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcohol consumption by adult women is consistently associated with risk of breast cancer. Several questions regarding alcohol and breast cancer need to be addressed. Menarche to first pregnancy represents a window of time when breast tissue is particularly susceptible to carcinogens. Youth alcohol consumption is common in the USA, largely in the form of binge drinking and heavy drinking. Whether alcohol intake acts early in the process of breast tumorigenesis is unclear. This review aims to focus on the influences of timing and patterns of alcohol consumption and the effect of alcohol on intermediate risk markers. We also review possible mechanisms underlying the alcohol-breast cancer association.
Collapse
Affiliation(s)
- Ying Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA
| | | | | |
Collapse
|
28
|
Castro GD, Castro JA. Alcohol drinking and mammary cancer: Pathogenesis and potential dietary preventive alternatives. World J Clin Oncol 2014; 5:713-29. [PMID: 25300769 PMCID: PMC4129535 DOI: 10.5306/wjco.v5.i4.713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is associated with an increased risk of breast cancer, increasing linearly even with a moderate consumption and irrespectively of the type of alcoholic beverage. It shows no dependency from other risk factors like menopausal status, oral contraceptives, hormone replacement therapy, or genetic history of breast cancer. The precise mechanism for the effect of drinking alcohol in mammary cancer promotion is still far from being established. Studies by our laboratory suggest that acetaldehyde produced in situ and accumulated in mammary tissue because of poor detoxicating mechanisms might play a role in mutational and promotional events. Additional studies indicated the production of reactive oxygen species accompanied of decreases in vitamin E and GSH contents and of glutathione transferase activity. The resulting oxidative stress might also play a relevant role in several stages of the carcinogenic process. There are reported in literature studies showing that plasmatic levels of estrogens significantly increased after alcohol drinking and that the breast cancer risk is higher in receptor ER-positive individuals. Estrogens are known that they may produce breast cancer by actions on ER and also as chemical carcinogens, as a consequence of their oxidation leading to reactive metabolites. In this review we introduce our working hypothesis integrating the acetaldehyde and the oxidative stress effects with those involving increased estrogen levels. We also analyze potential preventive actions that might be accessible. There remains the fact that alcohol drinking is just one of the avoidable causes of breast cancer and that, at present, the suggested acceptable dose for prevention of this risk is of one drink per day.
Collapse
|
29
|
Low-dose formaldehyde delays DNA damage recognition and DNA excision repair in human cells. PLoS One 2014; 9:e94149. [PMID: 24722772 PMCID: PMC3983121 DOI: 10.1371/journal.pone.0094149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/13/2014] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. METHODOLOGY/PRINCIPAL FINDINGS The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 μM) formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. CONCLUSIONS/SIGNIFICANCE A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks.
Collapse
|
30
|
Kirsch-Volders M, Bonassi S, Knasmueller S, Holland N, Bolognesi C, Fenech MF. Commentary: Critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals—A HUMN project perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 759:49-58. [DOI: 10.1016/j.mrrev.2013.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 11/16/2022]
|
31
|
Simino J, Sung YJ, Kume R, Schwander K, Rao DC. Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9. Front Genet 2013; 4:277. [PMID: 24376456 PMCID: PMC3860258 DOI: 10.3389/fgene.2013.00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/22/2013] [Indexed: 01/11/2023] Open
Abstract
Alcohol consumption is a known risk factor for hypertension, with recent candidate studies implicating gene-alcohol interactions in blood pressure (BP) regulation. We used 6882 (predominantly) Caucasian participants aged 20-80 years from the Framingham SNP Health Association Resource (SHARe) to perform a genome-wide analysis of SNP-alcohol interactions on BP traits. We used a two-step approach in the ABEL suite to examine genetic interactions with three alcohol measures (ounces of alcohol consumed per week, drinks consumed per week, and the number of days drinking alcohol per week) on four BP traits [systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure]. In the first step, we fit a linear mixed model of each BP trait onto age, sex, BMI, and antihypertensive medication while accounting for the phenotypic correlation among relatives. In the second step, we conducted 1 degree-of-freedom (df) score tests of the SNP main effect, alcohol main effect, and SNP-alcohol interaction using the maximum likelihood estimates (MLE) of the parameters from the first step. We then calculated the joint 2 df score test of the SNP main effect and SNP-alcohol interaction using MixABEL. The effect of SNP rs10826334 (near SLC16A9) on SBP was significantly modulated by both the number of alcoholic drinks and the ounces of alcohol consumed per week (p-values of 1.27E-08 and 3.92E-08, respectively). Each copy of the G-allele decreased SBP by 3.79 mmHg in those consuming 14 drinks per week vs. a 0.461 mmHg decrease in non-drinkers. Index SNPs in 20 other loci exhibited suggestive (p-value ≤ 1E-06) associations with BP traits by the 1 df interaction test or joint 2 df test, including 3 rare variants, one low-frequency variant, and SNPs near/in genes ESRRG, FAM179A, CRIPT-SOCS5, KAT2B, ADCY2, GLI3, ZNF716, SLIT1, PDE3A, KERA-LUM, RNF219-AS1, CLEC3A, FBXO15, and IGSF5. SNP-alcohol interactions may enhance discovery of novel variants with large effects that can be targeted with lifestyle modifications.
Collapse
Affiliation(s)
- Jeannette Simino
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | | | | | | | | |
Collapse
|
32
|
Albertini RJ. Vinyl acetate monomer (VAM) genotoxicity profile: Relevance for carcinogenicity. Crit Rev Toxicol 2013; 43:671-706. [DOI: 10.3109/10408444.2013.827151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene 2013; 32:5338-46. [PMID: 23318456 PMCID: PMC3898318 DOI: 10.1038/onc.2012.627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022]
Abstract
Uveal melanoma (UM) is unique among cancers in displaying reduced endogenous levels of sister chromatid exchange (SCE). Here we demonstrate that FANCD2 expression is reduced in UM and that ectopic expression of FANCD2 increased SCE. Similarly, FANCD2-deficient fibroblasts (PD20) derived from Fanconi anaemia patients displayed reduced spontaneous SCE formation relative to their FANCD2-complemented counterparts, suggesting that this observation is not specific to UM. In addition, spontaneous RAD51 foci were reduced in UM and PD20 cells compared with FANCD2-proficient cells. This is consistent with a model where spontaneous SCEs are the end product of endogenous recombination events and implicates FANCD2 in the promotion of recombination-mediated repair of endogenous DNA damage and in SCE formation during normal DNA replication. In both UM and PD20 cells, low SCE was reversed by inhibiting DNA-PKcs (DNA-dependent protein kinase, catalytic subunit). Finally, we demonstrate that both PD20 and UM are sensitive to acetaldehyde, supporting a role for FANCD2 in repair of lesions induced by such endogenous metabolites. Together, these data suggest FANCD2 may promote spontaneous SCE by influencing which double-strand break repair pathway predominates during normal S-phase progression.
Collapse
|
34
|
Kotova N, Vare D, Schultz N, Gradecka Meesters D, Stepnik M, Grawe J, Helleday T, Jenssen D. Genotoxicity of alcohol is linked to DNA replication-associated damage and homologous recombination repair. Carcinogenesis 2012; 34:325-30. [DOI: 10.1093/carcin/bgs340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
The impact of FANCD2 deficiency on formaldehyde-induced toxicity in human lymphoblastoid cell lines. Arch Toxicol 2012; 87:189-96. [PMID: 22872141 DOI: 10.1007/s00204-012-0911-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022]
Abstract
Formaldehyde (FA), a major industrial chemical and ubiquitous environmental pollutant, has recently been classified by the International Agency for Research on Cancer as a human leukemogen. The major mode of action of FA is thought to be the formation of DNA-protein cross-links (DPCs). Repair of DPCs may be mediated by the Fanconi anemia pathway; however, data supporting the involvement of this pathway are limited, particularly in human hematopoietic cells. Therefore, we assessed the role of FANCD2, a critical component of the Fanconi anemia pathway, in FA-induced toxicity in human lymphoblast cell models of FANCD2 deficiency (PD20 cells) and FANCD2 sufficiency (PD20-D2 cells). After treatment of the cells with 0-150 μM FA for 24 h, DPCs were increased in a dose-dependent manner in both cell lines, with greater increases in FANCD2-deficient PD20 cells. FA also induced cytotoxicity, micronuclei, chromosome aberrations, and apoptosis in a dose-dependent manner in both cell lines, with greater increases in cytotoxicity and apoptosis in PD20 cells. Increased levels of γ-ATR and γ-H2AX in both cell lines suggested the recognition of FA-induced DNA damage; however, the induction of BRCA2 was compromised in FANCD2-deficient PD20 cells, potentially reducing the capacity to repair DPCs. Together, these findings suggest that FANCD2 protein and the Fanconi anemia pathway are essential to protect human lymphoblastoid cells against FA toxicity. Future studies are needed to delineate the role of this pathway in mitigating FA-induced toxicity, particularly in hematopoietic stem cells, the target cells in leukemia.
Collapse
|
36
|
Assessment of DNA damage using chromosomal aberrations assay in lymphocytes of waterpipe smokers. Int J Occup Med Environ Health 2012. [PMID: 22729491 DOI: 10.2478/s13382–012-0027–5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the genotoxicity of waterpipe smoking in the lymphocytes of waterpipe smokers using chromosomal aberrations (CAs) assay. MATERIALS AND METHODS Fifty waterpipe smokers and 18 healthy non-smokers volunteered to participate in the study. Additionally, 18 heavy cigarette smokers were recruited for comparison. Chromosomal aberrations (CAs) assay was used to evaluate DNA damage in the lymphocytes. RESULTS The results showed that similarly to cigarette smoking, waterpipe smoking significantly increased the frequencies of CAs (p < 0.01). In addition, the frequencies of CAs increased with more waterpipe use. CONCLUSIONS Waterpipe smoking causes DNA damage to lymphocytes and the damage increases with more waterpipe use.
Collapse
|
37
|
Alsatari ES, Azab M, Khabour OF, Alzoubi KH, Sadiq MF. Assessment of DNA damage using chromosomal aberrations assay in lymphocytes of waterpipe smokers. Int J Occup Med Environ Health 2012; 25:218-24. [PMID: 22729491 PMCID: PMC3724222 DOI: 10.2478/s13382-012-0027-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the genotoxicity of waterpipe smoking in the lymphocytes of waterpipe smokers using chromosomal aberrations (CAs) assay. MATERIALS AND METHODS Fifty waterpipe smokers and 18 healthy non-smokers volunteered to participate in the study. Additionally, 18 heavy cigarette smokers were recruited for comparison. Chromosomal aberrations (CAs) assay was used to evaluate DNA damage in the lymphocytes. RESULTS The results showed that similarly to cigarette smoking, waterpipe smoking significantly increased the frequencies of CAs (p < 0.01). In addition, the frequencies of CAs increased with more waterpipe use. CONCLUSIONS Waterpipe smoking causes DNA damage to lymphocytes and the damage increases with more waterpipe use.
Collapse
Affiliation(s)
- Enas S Alsatari
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
38
|
Grogan D, Jinks-Robertson S. Formaldehyde-induced mutagenesis in Saccharomyces cerevisiae: molecular properties and the roles of repair and bypass systems. Mutat Res 2011; 731:92-8. [PMID: 22197481 DOI: 10.1016/j.mrfmmm.2011.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Although DNA-protein cross-links (DPCs) pose a significant threat to genome stability, they remain a poorly understood class of DNA lesions. To define genetic impacts of DPCs on eukaryotic cells in molecular terms, we used a sensitive Saccharomyces cerevisiae frameshift-detection assay to analyze mutagenesis by formaldehyde (HCHO), and its response to nucleotide excision repair (NER) and translesion DNA synthesis (TLS). Brief exposure to HCHO was mutagenic for NER-defective rad14 strains but not for a corresponding RAD14 strain, nor for a rad14 strain lacking both Polζ and Polη TLS polymerases. This confirmed that HCHO-generated DNA lesions can trigger error-prone TLS and are substrates for the NER pathway. Sequencing revealed that HCHO-induced single-base-pair insertions occurred primarily at one hotspot; most of these insertions were also complex, changing an additional base-pair nearby. Most of the HCHO-induced mutations required both Polζ and Polη, providing a striking example of cooperativity between these two TLS polymerases during bypass of a DNA lesion formed in vivo. The similar molecular properties of HCHO-induced and spontaneous complex +1 insertions detected by this system suggest that DPCs which form in vivo during normal metabolism may contribute characteristic events to the spectra of spontaneous mutations in NER-deficient cells.
Collapse
Affiliation(s)
- Dennis Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221-0006, USA.
| | | |
Collapse
|
39
|
|
40
|
DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 2011; 711:13-27. [PMID: 21419140 DOI: 10.1016/j.mrfmmm.2011.03.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 12/16/2022]
Abstract
DNA damage plays a major role in various pathophysiological conditions including carcinogenesis, aging, inflammation, diabetes and neurodegenerative diseases. Oxidative stress and cell processes such as lipid peroxidation and glycation induce the formation of highly reactive endogenous aldehydes that react directly with DNA, form aldehyde-derived DNA adducts and lead to DNA damage. In occasion of persistent conditions that influence the formation and accumulation of aldehyde-derived DNA adducts the resulting unrepaired DNA damage causes deregulation of cell homeostasis and thus significantly contributes to disease phenotype. Some of the most highly reactive aldehydes produced endogenously are 4-hydroxy-2-nonenal, malondialdehyde, acrolein, crotonaldehyde and methylglyoxal. The mutagenic and carcinogenic effects associated with the elevated levels of these reactive aldehydes, especially, under conditions of stress, are attributed to their capability of causing directly modification of DNA bases or yielding promutagenic exocyclic adducts. In this review, we discuss the current knowledge on DNA damage induced by endogenously produced reactive aldehydes in relation to the pathophysiology of human diseases.
Collapse
|
41
|
Enoch SJ, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2011; 40:728-48. [PMID: 20722585 DOI: 10.3109/10408444.2010.494175] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The need to assess the ability of a chemical to act as a mutagen or a genotoxic carcinogen (collectively termed genotoxicity) is one of the primary requirements in regulatory toxicology. Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. A key step in the development of chemical categories for genotoxicity is defining the organic chemistry associated with the formation of a covalent bond between DNA and an exogenous chemical. This organic chemistry is typically defined as structural alerts. To this end, this article has reviewed the literature defining the structural alerts associated with covalent DNA binding. Importantly, this review article also details the mechanistic organic chemistry associated with each of the structural alerts. This information is extremely important in terms of meeting regulatory requirements for the acceptance of the chemical category approach. The structural alerts and associated mechanistic chemistry have been incorporated into the Organisation for Economic Co-operation and Development (OECD) (Q)SAR Application Toolbox.
Collapse
Affiliation(s)
- S J Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, England, UK
| | | |
Collapse
|
42
|
Noda T, Takahashi A, Kondo N, Mori E, Okamoto N, Nakagawa Y, Ohnishi K, Zdzienicka MZ, Thompson LH, Helleday T, Asada H, Ohnishi T. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage. Biochem Biophys Res Commun 2010; 404:206-10. [PMID: 21111709 DOI: 10.1016/j.bbrc.2010.11.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/20/2010] [Indexed: 01/20/2023]
Abstract
The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA(-/-), FANCC(-/-), FANCA(-/-)C(-/-), FANCD2(-/-) and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical γH2AX-staining assay. Although the sensitivity of FANCA(-/-), FANCC(-/-) and FANCA(-/-)C(-/-) cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2(-/-) cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, γH2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex.
Collapse
Affiliation(s)
- Taichi Noda
- Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marietta C, Thompson LH, Lamerdin JE, Brooks PJ. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis. Mutat Res 2009; 664:77-83. [PMID: 19428384 DOI: 10.1016/j.mrfmmm.2009.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/27/2009] [Accepted: 03/27/2009] [Indexed: 02/01/2023]
Abstract
According to a recent IARC Working Group report, alcohol consumption is causally related to an increased risk of cancer of the upper aerodigestive tract, liver, colorectum, and female breast [R. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, V. Bouvard, A. Altieri, V. Cogliano, Carcinogenicity of alcoholic beverages, Lancet Oncol. 8 (2007) 292-293]. Several lines of evidence indicate that acetaldehyde (AA), the first product of alcohol metabolism, plays a very important role in alcohol-related carcinogenesis, particularly in the esophagus. We previously proposed a model for alcohol-related carcinogenesis in which AA, generated from alcohol metabolism, reacts in cells to generate DNA lesions that form interstrand crosslinks (ICLs) [J.A. Theruvathu, P. Jaruga, R.G. Nath, M. Dizdaroglu, P.J. Brooks, Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde, Nucleic Acids Res. 33 (2005) 3513-3520]. Since the Fanconi anemia-breast cancer associated (FANC-BRCA) DNA damage response network plays a crucial role in protecting cells against ICLs, in the present work we tested this hypothesis by exposing cells to AA and monitoring activation of this network. We found that AA exposure results in a concentration-dependent increase in FANCD2 monoubiquitination, which is dependent upon the FANC core complex. AA also stimulated BRCA1 phosphorylation at Ser1524 and increased the level of gammaH2AX, with both modifications occurring in a dose-dependent manner. However, AA did not detectably increase the levels of hyperphosphorylated RPA34, a marker of single-stranded DNA exposure at replication forks. These results provide the initial description of the AA-DNA damage response, which is qualitatively similar to the cellular response to mitomycin C, a known DNA crosslinking agent. We discuss the mechanistic implications of these results, as well as their possible relationship to alcohol-related carcinogenesis in different human tissues.
Collapse
Affiliation(s)
- Cheryl Marietta
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S32, Rockville, MD 20852, United States
| | | | | | | |
Collapse
|