1
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2024. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Li G, Huang Y, Han W, Wei L, Huang H, Zhu Y, Xiao Q, Wang Z, Huang W, Duan R. Eg5 UFMylation promotes spindle organization during mitosis. Cell Death Dis 2024; 15:544. [PMID: 39085203 PMCID: PMC11291904 DOI: 10.1038/s41419-024-06934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
UFMylation is a highly conserved ubiquitin-like post-translational modification that catalyzes the covalent linkage of UFM1 to its target proteins. This modification plays a critical role in the maintenance of endoplasmic reticulum proteostasis, DNA damage response, autophagy, and transcriptional regulation. Mutations in UFM1, as well as in its specific E1 enzyme UBA5 and E2 enzyme UFC1, have been genetically linked to microcephaly. Our previous research unveiled the important role of UFMylation in regulating mitosis. However, the underlying mechanisms have remained unclear due to the limited identification of substrates. In this study, we identified Eg5, a motor protein crucial for mitotic spindle assembly and maintenance, as a novel substrate for UFMylation and identified Lys564 as the crucial UFMylation site. UFMylation did not alter its transcriptional level, phosphorylation level, or protein stability, but affected the mono-ubiquitination of Eg5. During mitosis, Eg5 and UFM1 co-localize at the centrosome and spindle apparatus, and defective UFMylation leads to diminished spindle localization of Eg5. Notably, the UFMylation-defective Eg5 mutant (K564R) exhibited shorter spindles, metaphase arrest, spindle checkpoint activation, and a failure of cell division in HeLa cells. Overall, Eg5 UFMylation is essential for proper spindle organization, mitotic progression, and cell proliferation.
Collapse
Affiliation(s)
- Guangxu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yuanjiang Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wenbo Han
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Liyi Wei
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Hongjing Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yingbao Zhu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Qiao Xiao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Zujia Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wen Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ranhui Duan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
3
|
Audrey A, Kok YP, Yu S, de Haan L, van de Kooij B, van den Tempel N, Chen M, de Boer HR, van der Vegt B, van Vugt MATM. RAD52-dependent mitotic DNA synthesis is required for genome stability in Cyclin E1-overexpressing cells. Cell Rep 2024; 43:114116. [PMID: 38625790 DOI: 10.1016/j.celrep.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.
Collapse
Affiliation(s)
- Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Lauren de Haan
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Bert van de Kooij
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - H Rudolf de Boer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| |
Collapse
|
4
|
Guo M, Li X, Li T, Liu R, Pang W, Luo J, Zeng W, Zheng Y. YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia†. Biol Reprod 2024; 110:48-62. [PMID: 37812443 DOI: 10.1093/biolre/ioad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023] Open
Abstract
Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.
Collapse
Affiliation(s)
- Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueliang Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Dong R, Abazarikia A, Luan Y, Yu SY, Kim SY. Molecular Mechanisms Determining Mammalian Oocyte Quality with the Treatment of Cancer Therapy. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:97-119. [PMID: 39030356 DOI: 10.1007/978-3-031-55163-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cancer is a global public health issue and remains one of the leading causes of death in the United States (Siegel et al. CA Cancer J Clin. 72:7-33, 2022). It is estimated in the US in 2022, about 935,000 new cases of cancer will be diagnosed in women, and the probability of developing invasive cancer is 5.8% for females younger than 50 years old (Siegel et al. CA Cancer J Clin. 72:7-33, 2022). However, advances in screening programs, diagnostic methods, and therapeutic options have greatly increased the five-year survival rate in reproductive-age women with a variety of cancers. Given the clinical consequences of gonadotoxic cancer therapies, young, female cancer survivors may face compromised fertility, premature ovarian insufficiency, early-onset menopause, and endocrine dysregulation (Bedoschi et al. Future Oncol. 12:2333-44, 2016). Gonadotoxic side effects may include decreased oocyte quality within surviving follicles, loss of ovarian follicles, and impaired ovarian function. In reproductive-age women, oocyte quality is an important element for successful clinical pregnancies and healthy offspring as poor-quality oocytes may be a cause of infertility (McClam et al. Biol Reprod. 106:328-37, 2022; Marteil et al. Reprod Biol. 9:203-24, 2009; Krisher. J Anim Sci. 82: E14-E23, 2004). Thus, it is critical to determine the quantity and quality of surviving follicles in the ovary after cancer treatment and to assess oocyte quality within those surviving follicles as these are markers for determining the capacity for ovarian function restoration and future fertility, especially for young cancer survivors (Xu et al. Nat Med. 17:1562-3, 2011). The long-term effects of cancer therapeutics on oocyte quality are influenced by factors including, but not limited to, individual patient characteristics (e.g. age, health history, comorbidities, etc.), disease type, or treatment regimen (Marci et al. Reprod Biol Endocrinol. 16:1-112, 2018). These effects may translate clinically into an impaired production of viable oocytes and compromised fertility (Garutti et al. ESMO Open. 6:100276, 2021).
Collapse
Affiliation(s)
- Rosemary Dong
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - Amirhossein Abazarikia
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- , Omaha, USA
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- , Omaha, USA.
| |
Collapse
|
6
|
Song H, Kim EH, Hong J, Gwon D, Kim JW, Bae GU, Jang CY. Hornerin mediates phosphorylation of the polo-box domain in Plk1 by Chk1 to induce death in mitosis. Cell Death Differ 2023; 30:2151-2166. [PMID: 37596441 PMCID: PMC10482915 DOI: 10.1038/s41418-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 08/20/2023] Open
Abstract
The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.
Collapse
Affiliation(s)
- Haiyu Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dasom Gwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
7
|
Tsuji K, Kikuchi E, Takashima Y, Shoji T, Takahashi H, Ito S, Morinaga D, Kashima M, Maeda M, Kitai H, Kikuchi J, Sakakibara-Konishi J, Konno S. Inhibition of non-homologous end joining mitigates paclitaxel resistance resulting from mitotic slippage in non-small cell lung cancer. Cell Cycle 2023; 22:1854-1864. [PMID: 37592765 PMCID: PMC10599168 DOI: 10.1080/15384101.2023.2243761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
Mitotic slippage, which enables cancer cells to bypass cell death by transitioning from mitosis to the G1 phase without undergoing normal cytokinesis, is one likely mechanism of paclitaxel (PTX) resistance. DNA double-strand breaks (DSBs) in the G1 phase are mainly repaired through non-homologous end joining (NHEJ). Therefore, inhibiting NHEJ could augment the PTX-induced cytotoxicity by impeding the repair of PTX-induced DSBs during the G1 phase following mitotic slippage. We aimed to evaluate the effects of NHEJ inhibition on mitotic slippage after PTX treatment in non-small cell lung cancer (NSCLC). H1299, A549, H1975, and H520 NSCLC cell lines were employed. In addition, A-196 and JQ1 were used as NHEJ inhibitors. H1299 cells were PTX-resistant and exhibited an increased frequency of mitotic slippage upon PTX treatment. NHEJ inhibitors significantly augmented the PTX-induced cytotoxicity, DSBs, and apoptosis in H1299 cells. The newly generated PTX-resistant cells were even more prone to mitotic slippage following PTX treatment and susceptible to the combined therapy. Docetaxel further demonstrated synergistic effects with the NHEJ inhibitor in PTX-resistant cells. NHEJ inhibition may overcome intrinsic or acquired PTX resistance resulting from mitotic slippage by synergistically increasing the cytotoxic effects of antimitotic drugs in NSCLC.
Collapse
Affiliation(s)
- Kosuke Tsuji
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Eiki Kikuchi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Kikuchi Medical–Respiratory Clinic, Sapporo, Japan
| | - Yuta Takashima
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuaki Shoji
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hirofumi Takahashi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shotaro Ito
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Morinaga
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Kashima
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Makie Maeda
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidenori Kitai
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Junko Kikuchi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Kikuchi Medical–Respiratory Clinic, Sapporo, Japan
- Department of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Jun Sakakibara-Konishi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Gelot C, Kovacs MT, Miron S, Mylne E, Haan A, Boeffard-Dosierre L, Ghouil R, Popova T, Dingli F, Loew D, Guirouilh-Barbat J, Del Nery E, Zinn-Justin S, Ceccaldi R. Polθ is phosphorylated by PLK1 to repair double-strand breaks in mitosis. Nature 2023; 621:415-422. [PMID: 37674080 PMCID: PMC10499603 DOI: 10.1038/s41586-023-06506-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Camille Gelot
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | | | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Emilie Mylne
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Alexis Haan
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Liza Boeffard-Dosierre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Tatiana Popova
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL Research University, Institut Curie, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Cochin, Paris, France
| | - Elaine Del Nery
- Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University, Institut Curie, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Raphael Ceccaldi
- INSERM U830, PSL Research University, Institut Curie, Paris, France.
| |
Collapse
|
9
|
Zheng H, Huang S, Wei G, Sun Y, Li C, Si X, Chen Y, Tang Z, Li X, Chen Y, Liao W, Liao Y, Bin J. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther 2022; 30:3477-3498. [PMID: 35791879 PMCID: PMC9637749 DOI: 10.1016/j.ymthe.2022.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) derived from oxygen-dependent mitochondrial metabolism are the essential drivers of cardiomyocyte (CM) cell-cycle arrest in adulthood. Mitochondria-localized circular RNAs (circRNAs) play important roles in regulating mitochondria-derived ROS production, but their functions in cardiac regeneration are still unknown. Herein, we investigated the functions and underlying mechanism of mitochondria-localized circSamd4 in cardiac regeneration. We found that circSamd4 was selectively expressed in fetal and neonatal CMs. The transcription factor Nrf2 controlled circSamd4 expression by binding to the promoter of circSamd4 host gene. CircSamd4 overexpression reduced while circSamd4 silenced increased mitochondrial oxidative stress and subsequent oxidative DNA damage. Moreover, circSamd4 overexpression induced CM proliferation and prevented CM apoptosis, which reduced the size of the fibrotic area and improved cardiac function after myocardial infarction (MI). Mechanistically, circSamd4 reduced oxidative stress generation and maintained mitochondrial dynamics by inducing the mitochondrial translocation of the Vcp protein, which downregulated Vdac1 expression and prevented the mitochondrial permeability transition pore (mPTP) from opening. Our findings suggest that circSamd4 is a novel therapeutic target for heart failure after MI.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, Guizhou Medical University, Affiliated Hospital, 550004 Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
10
|
Carroll KR, Katz JD. Restoring tolerance to β-cells in Type 1 diabetes: Current and emerging strategies. Cell Immunol 2022; 380:104593. [PMID: 36081179 DOI: 10.1016/j.cellimm.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) results from insulin insufficiency due to islet death and dysfunction following T cell-mediated autoimmune attack. The technical feasibility of durable, functional autologous islet restoration is progressing such that it presents the most likely long-term cure for T1D but cannot succeed without the necessary counterpart of clinically effective therapeutic strategies that prevent grafted islets' destruction by pre-existing anti-islet T cells. While advances have been made in broad immunosuppression to lower off-target effects, the risk of opportunistic infections and cancers remains a concern, especially for well-managed T1D patients. Current immunomodulatory strategies in development focus on autologous Treg expansion, treatments to decrease antigen presentation and T effector (Teff) activation, and broad depletion of T cells with or without hematopoietic stem cell transplants. Emerging strategies harnessing the intensified DNA damage response present in expanding T cells, exacerbating their already high sensitivity to apoptosis to abate autoreactive Teff cells.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, United States
| | - Jonathan D Katz
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| |
Collapse
|
11
|
Audrey A, de Haan L, van Vugt MATM, de Boer HR. Processing DNA lesions during mitosis to prevent genomic instability. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 36040211 PMCID: PMC9444068 DOI: 10.1042/bst20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Failure of cells to process toxic double-strand breaks (DSBs) constitutes a major intrinsic source of genome instability, a hallmark of cancer. In contrast with interphase of the cell cycle, canonical repair pathways in response to DSBs are inactivated in mitosis. Although cell cycle checkpoints prevent transmission of DNA lesions into mitosis under physiological condition, cancer cells frequently display mitotic DNA lesions. In this review, we aim to provide an overview of how mitotic cells process lesions that escape checkpoint surveillance. We outline mechanisms that regulate the mitotic DNA damage response and the different types of lesions that are carried over to mitosis, with a focus on joint DNA molecules arising from under-replication and persistent recombination intermediates, as well as DNA catenanes. Additionally, we discuss the processing pathways that resolve each of these lesions in mitosis. Finally, we address the acute and long-term consequences of unresolved mitotic lesions on cellular fate and genome stability.
Collapse
Affiliation(s)
- Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Lauren de Haan
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - H Rudolf de Boer
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| |
Collapse
|
12
|
D’Orazi G, Cirone M. Interconnected Adaptive Responses: A Way Out for Cancer Cells to Avoid Cellular Demise. Cancers (Basel) 2022; 14:cancers14112780. [PMID: 35681760 PMCID: PMC9179898 DOI: 10.3390/cancers14112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Different from normal cells, cancer cells must hyperactivate a variety of integrated responses in order to survive their basal stress or its exacerbation caused by exposure to anti-cancer agents. As cancer cells become particularly dependent on these adaptive responses, namely UPR, DDR autophagy, anti-oxidant and heat shock responses, this turns out to be an Achille’s heel, which allows them to be selectively killed while sparing normal unstressed cells. Better knowledge of the cross-talk between these adaptive processes and their impact on the immune system is needed to design more effective anti-cancer therapies, as reviewed in this paper.
Collapse
Affiliation(s)
- Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy;
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University of Rome LA Sapienza, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Akbas E, Unal F, Yuzbasioglu D. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol 2022; 45:2471-2482. [PMID: 35184618 DOI: 10.1080/01480545.2021.1957913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gadobutrol and gadoversetamide are gadolinium-based contrast agents (GBCAs) widely used during magnetic resonance imaging examination. In this study, the genotoxicity of two GBCAs, gadobutrol and gadoversetamide, was investigated by using different endpoints: chromosome aberration (CAs), sister chromatid exchange (SCEs), and micronucleus (MNi). Human peripheral lymphocytes (PBLs) were treated with five concentrations (7 000, 14 000, 28 000, 56 000, and 112 000 μg/mL) of both agents. While a few concentrations of gadobutrol significantly increased abnormal cell frequency and CA/Cell, nearly all the concentrations of gadoversetamide significantly elevated the same aberrations. Similarly, the effect of gadoversetamide on the formation of SCEs was higher than those of gadobutrol. Only one concentration of gadoversetamide significantly increased MN% but no gadobutrol. The comet assay was applied for the only gadobutrol which induced a significant increase in tail intensity at the highest concentration only. On the other hand, significantly decreased mitotic index (MI) was observed following both substances, again gadoversetamide was slightly higher than those of the gadobutrol. The results revealed that both the contrast agents are likely to induce genotoxic risk in PBLs. However, different concentrations and treatment periods should be examined in vitro and specifically in vivo with different test systems for the safer usage of these contrast agents.
Collapse
Affiliation(s)
- Ece Akbas
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| |
Collapse
|
14
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Rodriguez-Muñoz M, Serrat M, Soler D, Genescà A, Anglada T. Breakage of CRISPR/Cas9-Induced Chromosome Bridges in Mitotic Cells. Front Cell Dev Biol 2021; 9:745195. [PMID: 34650988 PMCID: PMC8505897 DOI: 10.3389/fcell.2021.745195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Chromosomal instability, the most frequent form of plasticity in cancer cells, often proceeds through the formation of chromosome bridges. Despite the importance of these bridges in tumor initiation and progression, debate remains over how and when they are resolved. In this study, we investigated the behavior and properties of chromosome bridges to gain insight into the potential mechanisms underlying bridge-induced genome instability. We report that bridges may break during mitosis or may remain unbroken until the next interphase. During mitosis, we frequently observed discontinuities in the bridging chromatin, and our results strongly suggest that a substantial fraction of chromosome bridges are broken during this stage of the cell cycle. This notion is supported by the observation that the chromatin flanking mitotic bridge discontinuities is often decorated with the phosphorylated form of the histone H2AX, a marker of DNA breaks, and by MDC1, an early mediator of the cell response to DNA breaks. Also, free 3′OH DNA ends were detected in more than half of the bridges during the final stages of cell division. However, even if detected, the DNA ends of broken bridges are not repaired in mitosis. To investigate whether mitotic bridge breakage depends on mechanical stress, we used experimental models in which chromosome bridges with defined geometry are formed. Although there was no association between spindle pole separation or the distance among non-bridge kinetochores and bridge breakage, we found a direct correlation between the distance between bridge kinetochores and bridge breakage. Altogether, we conclude that the discontinuities observed in bridges during mitosis frequently reflect a real breakage of the chromatin and that the mechanisms responsible for chromosome bridge breakage during mitosis may depend on the separation between the bridge kinetochores. Considering that previous studies identified mechanical stress or biochemical digestion as possible causes of bridge breakage in interphase cells, a multifactorial model emerges for the breakage of chromosome bridges that, according to our results, can occur at different stages of the cell cycle and can obey different mechanisms.
Collapse
Affiliation(s)
- Marina Rodriguez-Muñoz
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Martina Serrat
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Soler
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
16
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
17
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
18
|
Liang J, Niu Z, Zhang B, Yu X, Zheng Y, Wang C, Ren H, Wang M, Ruan B, Qin H, Zhang X, Gu S, Sai X, Tai Y, Gao L, Ma L, Chen Z, Huang H, Wang X, Sun Q. p53-dependent elimination of aneuploid mitotic offspring by entosis. Cell Death Differ 2021; 28:799-813. [PMID: 33110215 PMCID: PMC7862607 DOI: 10.1038/s41418-020-00645-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Entosis was proposed to promote aneuploidy and genome instability by cell-in-cell mediated engulfment in tumor cells. We reported here, in epithelial cells, that entosis coupled with mitotic arrest functions to counteract genome instability by targeting aneuploid mitotic progenies for engulfment and elimination. We found that the formation of cell-in-cell structures associated with prolonged mitosis, which was sufficient to induce entosis. This process was controlled by the tumor suppressor p53 (wild-type) that upregulates Rnd3 expression in response to DNA damages associated with prolonged metaphase. Rnd3-compartmentalized RhoA activities accumulated during prolonged metaphase to drive cell-in-cell formation. Remarkably, this prolonged mitosis-induced entosis selectively targets non-diploid progenies for internalization, blockade of which increased aneuploidy. Thus, our work uncovered a heretofore unrecognized mechanism of mitotic surveillance for entosis, which eliminates newly born abnormal daughter cells in a p53-dependent way, implicating in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Jianqing Liang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Bo Zhang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Xiaochen Yu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - He Ren
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Hongquan Qin
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
- Department of Pediatric Hematology and Oncology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Songzhi Gu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Xiaoyong Sai
- National Clinic Center of Geriatric & the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanhong Tai
- The 307 Hospital, 8 Dongda Street, Beijing, 100071, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Li Ma
- Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China.
| | - Xiaoning Wang
- National Clinic Center of Geriatric & the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing, 100071, China.
| |
Collapse
|
19
|
Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging (Albany NY) 2021; 13:5020-5033. [PMID: 33534781 PMCID: PMC7950276 DOI: 10.18632/aging.202412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of areas. However, TiO2 NPs possess cytotoxicity which involves oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key molecule preventing cells from oxidative stress damage. In the current study, we explored the effect of Nrf2 signaling pathway in TiO2 NPs-induced corneal endothelial cell injury. Firstly, we found TiO2 NPs inhibited proliferation and damaged morphology and mitochondria of mouse primary corneal endothelial cells. Moreover, TiO2 NPs-induced oxidative damage of mouse primary corneal endothelial cells was inhibited by antioxidant NAC by evaluating production of reactive oxygen species (ROS), malondialdehyde (MDA), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Next, flow cytometry analysis showed TiO2 NPs promoted apoptosis and cell cycle G2/M phase arrest of mouse primary corneal endothelial cells. Further investigation suggested that Nrf2 signaling pathway activation and the downregulation of ZO-1, β-catenin and Na-K-ATPase were involved in TiO2 NPs-induced mouse primary corneal endothelial cell injury. Our research highlighted the toxic effect of TiO2 NPs on corneas in vitro and in vivo, providing an alternative insight into TiO2 NPs-induced corneal endothelial cell injury.
Collapse
|
20
|
Blázquez-Castro A, Fernández-Piqueras J, Santos J. Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective. Front Bioeng Biotechnol 2020; 8:580937. [PMID: 33072730 PMCID: PMC7530750 DOI: 10.3389/fbioe.2020.580937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Light can be employed as a tool to alter and manipulate matter in many ways. An example has been the implementation of optical trapping, the so called optical tweezers, in which light can hold and move small objects with 3D control. Of interest for the Life Sciences and Biotechnology is the fact that biological objects in the size range from tens of nanometers to hundreds of microns can be precisely manipulated through this technology. In particular, it has been shown possible to optically trap and move genetic material (DNA and chromatin) using optical tweezers. Also, these biological entities can be severed, rearranged and reconstructed by the combined use of laser scissors and optical tweezers. In this review, the background, current state and future possibilities of optical tweezers and laser scissors to manipulate, rearrange and alter genetic material (DNA, chromatin and chromosomes) will be presented. Sources of undesirable effects by the optical procedure and measures to avoid them will be discussed. In addition, first tentative approaches at cellular-level genetic and organelle surgery, in which genetic material or DNA-carrying organelles are extracted out or introduced into cells, will be presented.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| | - Javier Santos
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
21
|
Induction of Redox-Mediated Cell Death in ER-Positive and ER-Negative Breast Cancer Cells by a Copper(II)-Phenolate Complex: An In Vitro and In Silico Study. Molecules 2020; 25:molecules25194504. [PMID: 33019623 PMCID: PMC7583785 DOI: 10.3390/molecules25194504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022] Open
Abstract
This research was aimed at finding the cytotoxic potential of the mixed ligand copper(II) complex [Cu(tdp)(phen)](ClO4)—where H(tdp) is the tetradentate ligand 2-[(2-(2-hydroxyethylamino)-ethylimino)methyl]phenol, and phen is 1,10-phenanthroline—to two genotypically different breast cancer cells, MCF-7 (p53+ and ER+) and MDA-MB-231 (p53- and ER-). The complex has been already shown to be cytotoxic to ME180 cervical carcinoma cells. The special focus in this study was the induction of cell death by apoptosis and necrosis, and its link with ROS. The treatment brought about nuclear fragmentation, phosphatidylserine externalization, disruption of mitochondrial trans-membrane potential, DNA damage, cell cycle arrest at sub-G1 phase, and increase of ROS generation, followed by apoptotic death of cells during early hours and a late onset of necrosis in the cells surviving the apoptosis. The efficacy of the complex against genotypically different breast cancer cells is attributed to a strong association through p53-mitochondrial redox—cell cycle junction. The ADMET properties and docking of the complex at the active site of Top1 are desirable attributes of a lead molecule for development into a therapeutic. Thus, it is shown that the copper(II)–phenolate complex[Cu(tdp)(phen)]+ offers potential to be developed into a therapeutic for breast cancers in general and ER-negative ones in particular.
Collapse
|
22
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 528] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:E200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
24
|
de Oliveira Galvão MF, Sadiktsis I, Batistuzzo de Medeiros SR, Dreij K. Genotoxicity and DNA damage signaling in response to complex mixtures of PAHs in biomass burning particulate matter from cashew nut roasting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113381. [PMID: 31662259 DOI: 10.1016/j.envpol.2019.113381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Approximately 3 billion people world-wide are exposed to air pollution from biomass burning. Herein, particulate matter (PM) emitted from artisanal cashew nut roasting, an important economic activity worldwide, was investigated. This study focused on: i) chemical characterization of polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-) PAHs; ii) intracellular levels of reactive oxygen species (ROS); iii) genotoxic effects and time- and dose-dependent activation of DNA damage signaling, and iv) differential expression of genes involved in xenobiotic metabolism, inflammation, cell cycle arrest and DNA repair, using A549 lung cells. Among the PAHs, chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene, and benz[a]anthracene showed the highest concentrations (7.8-10 ng/m3), while benzanthrone and 9,10-anthraquinone were the most abundant oxy-PAHs. Testing of PM extracts was based on B[a]P equivalent doses (B[a]Peq). IC50 values for viability were 5.7 and 3.0 nM B[a]Peq at 24 h and 48 h, respectively. At these low doses, we observed a time- and dose-dependent increase in intracellular levels of ROS, genotoxicity (DNA strand breaks) and DNA damage signaling (phosphorylation of the protein checkpoint kinase 1 - Chk1). In comparison, effects of B[a]P alone was observed at micromolar range. To our knowledge, no previous study has demonstrated an activation of pChk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro, in lung cells exposed to cashew nut roasting extracts. Sustained induction of expression of several important stress response mediators of xenobiotic metabolism (CYP1A1, CYP1B1), ROS and pro-inflammatory response (IL-8, TNF-α, IL-2, COX2), and DNA damage response (CDKN1A and DDB2) was also identified. In conclusion, our data show high potency of cashew nut roasting PM to induce cellular stress including genotoxicity, and more potently when compared to B[a]P alone. Our study provides new data that will help elucidate the toxic effects of low-levels of PAH mixtures from air PM generated by cashew nut roasting.
Collapse
Affiliation(s)
- Marcos Felipe de Oliveira Galvão
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Ioannis Sadiktsis
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
25
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Udroiu I, Sgura A. Quantitative relationships between acentric fragments and micronuclei: new models and implications for curve fitting. Int J Radiat Biol 2019; 96:197-205. [PMID: 31633434 DOI: 10.1080/09553002.2020.1683638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To examine the phenomena governing the quantitative relationships between acentric fragments and micronuclei and understand which formulas are useful for curve-fitting of experimental data of micronuclei.Materials and methods: A stochastic model, including the phenomena of inclusion, coalescence and culling out, was developed and applied to experimental data.Results: Probabilities for inclusion/exclusion of acentric fragments into daughter nuclei and for coalescence of many fragments into a single micronucleus were found to be not cell type-specific. The biological basis for this result is explained with the lack of DNA damage checkpoints between metaphase (when acentric fragments are scored) and telophase (when micronuclei are formed). The phenomenon of "culling out" cells with high numbers of acentric fragments is also described, along with its proposed biological mechanism.Conclusions: Apart from complex formulas that describe these phenomena, we discuss which simple formulas can best approximate them and when is the case to use them for curve fitting of micronuclei data.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Rome, Italy
| | - Antonella Sgura
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Rome, Italy
| |
Collapse
|
27
|
Affiliation(s)
- Matthias Galipaud
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| |
Collapse
|
28
|
Takashima Y, Kikuchi E, Kikuchi J, Suzuki M, Kikuchi H, Maeda M, Shoji T, Furuta M, Kinoshita I, Dosaka‐Akita H, Sakakibara‐Konishi J, Konno S. Bromodomain and extraterminal domain inhibition synergizes with WEE1‐inhibitor AZD1775 effect by impairing nonhomologous end joining and enhancing DNA damage in nonsmall cell lung cancer. Int J Cancer 2019; 146:1114-1124. [DOI: 10.1002/ijc.32515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yuta Takashima
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Eiki Kikuchi
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Junko Kikuchi
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Motofumi Suzuki
- Laboratory for Bioanalysis and Molecular ImagingGraduate School of Pharmaceutical Sciences, Hokkaido University Sapporo Japan
| | - Hajime Kikuchi
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
- First Department of MedicineJA Obihiro Kosei Hospital Obihiro Japan
| | - Makie Maeda
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Tetsuaki Shoji
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Megumi Furuta
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Hirotoshi Dosaka‐Akita
- Department of Medical Oncology, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Jun Sakakibara‐Konishi
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido University Sapporo Japan
| |
Collapse
|
29
|
Leimbacher PA, Jones SE, Shorrocks AMK, de Marco Zompit M, Day M, Blaauwendraad J, Bundschuh D, Bonham S, Fischer R, Fink D, Kessler BM, Oliver AW, Pearl LH, Blackford AN, Stucki M. MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Mol Cell 2019; 74:571-583.e8. [PMID: 30898438 PMCID: PMC6509287 DOI: 10.1016/j.molcel.2019.02.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/30/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.
Collapse
Affiliation(s)
- Pia-Amata Leimbacher
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Samuel E Jones
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ann-Marie K Shorrocks
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Mara de Marco Zompit
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Jordy Blaauwendraad
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Fink
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Andrew N Blackford
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Manuel Stucki
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland.
| |
Collapse
|
30
|
Elevated signature of a gene module coexpressed with CDC20 marks genomic instability in glioma. Proc Natl Acad Sci U S A 2019; 116:6975-6984. [PMID: 30877245 DOI: 10.1073/pnas.1814060116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma. The CDC20-M, containing 139 members involved in cell proliferation, DNA damage response, and chromosome segregation, was found to be consistently coexpressed in glioma transcriptomes. The coexpression of these genes was conserved across multiple species and organ systems, particularly in human neural stem and progenitor cells. CDC20-M expression was not correlated with the morphological subtypes, nor with the recently defined molecular subtypes of glioma. CDC20-M signature was an independent and robust predictor for poorer prognosis in over 1,000 patients from four large databases. Elevated CDC20-M signature enabled the identification of individual glioma samples with severe chromosome instability and mutation burden and of primary glioma cell lines with extensive mitotic errors leading to chromosome mis-segregation. AURKA, a core member of CDC20-M, was amplified in one-third of CDC20-M-high gliomas with gene-dosage-dependent expression. MLN8237, a Food and Drug Administration-approved AURKA inhibitor, selectively killed temozolomide-resistant primary glioma cells in vitro and prolonged the survival of a patient-derived xenograft mouse model with a high-CDC20-M signature. Our findings suggest that application of the CDC20-M signature may permit more selective use of adjuvant therapies for glioma patients and that dysregulated CDC20-M members may provide a therapeutic vulnerability in glioma.
Collapse
|
31
|
McMahon SJ. The linear quadratic model: usage, interpretation and challenges. ACTA ACUST UNITED AC 2018; 64:01TR01. [DOI: 10.1088/1361-6560/aaf26a] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Sublethal UV irradiation induces squamous differentiation via a p53-independent, DNA damage-mitosis checkpoint. Cell Death Dis 2018; 9:1094. [PMID: 30361544 PMCID: PMC6202398 DOI: 10.1038/s41419-018-1130-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
The epidermis is a self-renewal epithelium continuously exposed to the genotoxic effects of ultraviolet (UV) light, the main cause of skin cancer. Therefore, it needs robust self-protective mechanisms facing genomic damage. p53 has been shown to mediate apoptosis in sunburn cells of the epidermis. However, epidermal cells daily receive sublethal mutagenic doses of UV and massive apoptosis would be deleterious. We have recently unravelled an anti-oncogenic keratinocyte DNA damage-differentiation response to cell cycle stress. We now have studied this response to high or moderate single doses of UV irradiation. Whereas, as expected, high levels of UV induced p53-dependent apoptosis, moderate levels triggered squamous differentiation. UV-induced differentiation was not mediated by endogenous p53. Overexpression of the mitosis global regulator FOXM1 alleviated the proliferative loss caused by UV. Conversely, knocking-down the mitotic checkpoint protein Wee1 drove UV-induced differentiation into apoptosis. Therefore, the results indicate that mitosis checkpoints determine the response to UV irradiation. The differentiation response was also found in cells of head and neck epithelia thus uncovering a common regulation in squamous tissues upon chronic exposure to mutagens, with implications into homeostasis and disease.
Collapse
|
33
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
34
|
Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 2018; 13:1465-1487. [PMID: 29844520 PMCID: PMC6556379 DOI: 10.1038/nprot.2018.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene tagging with fluorescent proteins is essential for investigations of the dynamic properties of cellular proteins. CRISPR-Cas9 technology is a powerful tool for inserting fluorescent markers into all alleles of the gene of interest (GOI) and allows functionality and physiological expression of the fusion protein. It is essential to evaluate such genome-edited cell lines carefully in order to preclude off-target effects caused by (i) incorrect insertion of the fluorescent protein, (ii) perturbation of the fusion protein by the fluorescent proteins or (iii) nonspecific genomic DNA damage by CRISPR-Cas9. In this protocol, we provide a step-by-step description of our systematic pipeline to generate and validate homozygous fluorescent knock-in cell lines.We have used the paired Cas9D10A nickase approach to efficiently insert tags into specific genomic loci via homology-directed repair (HDR) with minimal off-target effects. It is time-consuming and costly to perform whole-genome sequencing of each cell clone to check for spontaneous genetic variations occurring in mammalian cell lines. Therefore, we have developed an efficient validation pipeline of the generated cell lines consisting of junction PCR, Southern blotting analysis, Sanger sequencing, microscopy, western blotting analysis and live-cell imaging for cell-cycle dynamics. This protocol takes between 6 and 9 weeks. With this protocol, up to 70% of the targeted genes can be tagged homozygously with fluorescent proteins, thus resulting in physiological levels and phenotypically functional expression of the fusion proteins.
Collapse
Affiliation(s)
- Birgit Koch
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- current address: Max Planck Insitute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | | | - Yin Cai
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- current address: Roche SIS, Maybachstr. 30, 71332 Waiblingen, Germany
| | - Nike Walther
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Jan Ellenberg
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
35
|
Magni M, Buscemi G, Zannini L. Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:1-9. [DOI: 10.1016/j.mrrev.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
|
36
|
Sladky V, Schuler F, Fava LL, Villunger A. The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance. J Cell Sci 2018; 130:3779-3787. [PMID: 29142064 DOI: 10.1242/jcs.203448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the pro-form of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that include RIPK1 (also known as RIP1) and IKBKG (also known as NEMO), PCNA and RFC5, as well as nucleolar components such as NPM1 or NCL. This promiscuity in protein binding is facilitated mainly by autoprocessing of the full-length protein into various fragments that contain different structural domains. As a result, multiple responses can be mediated by protein complexes that contain a PIDD1 domain. This suggests that PIDD1 acts as an integrator for multiple types of stress that need instant attention. Examples are various types of DNA lesion but also the presence of extra centrosomes that can foster aneuploidy and, ultimately, promote DNA damage. Here, we review the role of PIDD1 in response to DNA damage and also highlight novel functions of PIDD1, such as in centrosome surveillance and scheduled polyploidisation as part of a cellular differentiation program during organogenesis.
Collapse
Affiliation(s)
- Valentina Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.,Center for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Luong KV, Wang L, Roberts BJ, Wahl JK, Peng A. Cell fate determination in cisplatin resistance and chemosensitization. Oncotarget 2018; 7:23383-94. [PMID: 26993599 PMCID: PMC5029634 DOI: 10.18632/oncotarget.8110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Understanding the determination of cell fate choices after cancer treatment will shed new light on cancer resistance. In this study, we quantitatively analyzed the individual cell fate choice in resistant UM-SCC-38 head and neck cancer cells exposed to cisplatin. Our study revealed a highly heterogeneous pattern of cell fate choices in UM-SCC-38 cells, in comparison to that of the control, non-tumorigenic keratinocyte HaCaT cells. In both UM-SCC-38 and HaCaT cell lines, the majority of cell death occurred during the immediate interphase without mitotic entry, whereas significant portions of UM-SCC-38 cells survived the treatment via either checkpoint arrest or checkpoint slippage. Interestingly, checkpoint slippage occurred predominantly in cells treated in late S and G2 phases, and cells in M-phase were hypersensitive to cisplatin. Moreover, although the cisplatin-resistant progression of mitosis exhibited no delay in general, prolonged mitosis was correlated with the induction of cell death in mitosis. The finding thus suggested a combinatorial treatment using cisplatin and an agent that blocks mitotic exit. Consistently, we showed a strong synergy between cisplatin and the proteasome inhibitor Mg132. Finally, targeting the DNA damage checkpoint using inhibitors of ATR, but not ATM, effectively sensitized UM-SCC-38 to cisplatin treatment. Surprisingly, checkpoint targeting eliminated both checkpoint arrest and checkpoint slippage, and augmented the induction of cell death in interphase without mitotic entry. Taken together, our study, by profiling cell fate determination after cisplatin treatment, reveals new insights into chemoresistance and suggests combinatorial strategies that potentially overcome cancer resistance.
Collapse
Affiliation(s)
- Khanh V Luong
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Brett J Roberts
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - James K Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| |
Collapse
|
38
|
Chao HX, Poovey CE, Privette AA, Grant GD, Chao HY, Cook JG, Purvis JE. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle. Cell Syst 2017; 5:445-459.e5. [PMID: 29102360 PMCID: PMC5700845 DOI: 10.1016/j.cels.2017.09.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/26/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none.
Collapse
Affiliation(s)
- Hui Xiao Chao
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Cere E Poovey
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Ashley A Privette
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Hui Yan Chao
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Jeanette G Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA.
| |
Collapse
|
39
|
Nie ZW, Chen L, Jin QS, Gao YY, Wang T, Zhang X, Miao YL. Function and regulation mechanism of Chk1 during meiotic maturation in porcine oocytes. Cell Cycle 2017; 16:2220-2229. [PMID: 28933982 DOI: 10.1080/15384101.2017.1373221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Checkpoint 1 (Chk1), as an important member of DNA replication checkpoint and DNA damage response, has an important role during the G2/M stage of mitosis. In this study, we used porcine oocyte as a model to investigate the function of Chk1 during porcine oocyte maturation. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages, mainly localized in the cytoplasm at GV stage and moved to the spindle after germinal vesicle breakdown (GVBD). Chk1 depletion not only induced oocytes to be arrested at MI stage with abnormal chromosomes arrangement, but also inhibited the degradation of Cyclin B1 and decreased the expression of Mitotic Arrest Deficient 2-Like 1 (Mad2L1), one of spindle assembly checkpoint (SAC) proteins, and cadherin 1 (Cdh1), one of coactivation for anaphase-promoting complex/cyclosome (APC/C). Moreover, Chk1 overexpression delayed GVBD. These results demonstrated that Chk1 facilitated the timely degradation of Cyclin B1 at anaphase I (AI) and maintained the expression of Mad2L1 and Cdh1, which ensured that all chromosomes were accurately located in a line, and then oocytes passed metaphase I (MI) and AI and exited from the first meiotic division successfully. In addition, we proved that Chk1 had not function on GVBD of porcine oocytes, which suggested that maturation of porcine oocytes did not need the DNA damage checkpoint, which was different from the mouse oocyte maturation.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Li Chen
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Qiu-Shi Jin
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Ying-Ying Gao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Tao Wang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Xia Zhang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,c The Cooperative Innovation Center for Sustainable Pig Production , Huazhong Agricultural University , Wuhan , Hubel , China
| | - Yi-Liang Miao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China.,c The Cooperative Innovation Center for Sustainable Pig Production , Huazhong Agricultural University , Wuhan , Hubel , China
| |
Collapse
|
40
|
Topaktas M, Kafkas NE, Sadighazadi S, Istifli ES. In vitro cytogenetic toxicity of bezafibrate in human peripheral blood lymphocytes. Cytotechnology 2017; 69:579-589. [PMID: 28097454 PMCID: PMC5507839 DOI: 10.1007/s10616-017-0069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Bezafibrate (BF) is a peroxisome proliferator-activated receptor (PPAR) agonist used as a lipid-lowering agent to treat both the familial or acquired combined forms of hyperlipidemia. BF is the only available fibrate drug that acts on all PPAR subtypes of α, β, and δ. Although there are studies that indicate a genotoxic potential associated with the use of fibrates, to our knowledge, the genotoxicity of BF in human peripheral blood lymphocytes has not been studied. In the present study, the genotoxic potential of BF was evaluated using chromosome aberration (CA) and micronucleus (MN) assays in peripheral blood lymphocytes of healthy human subjects. In addition, a high performance liquid chromatography (HPLC) method was used to identify and quantitate the drug passage into the cells. Human peripheral blood lymphocytes were exposed to four different concentrations (100, 175, 250 and 325 μg/mL) of BF for 24- and 48-h treatment periods. As shown by HPLC, in spite of significant passage of BF into human peripheral blood lymphocytes in 24- and 48-h treatment periods, BF was not found to increase the CA and MN frequency. On the other hand, exposing cells to BF for 24- and 48-h treatment periods caused significant concentration-dependent decreases in the mitotic index (r = -0.995, p < 0.01 for 24-h; r = -0.992, p < 0.01 for 48-h) and nuclear division index (r = -0.990, p < 0.01 for 24-h; r = -0.981, p < 0.01 for 48-h). Our results suggest that BF has cytotoxic effect on cultured human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- M Topaktas
- Department of Biology, Faculty of Science and Letters, Cukurova University, 01330, Adana, Turkey
| | - N E Kafkas
- Department of Horticulture, Faculty of Agriculture, Cukurova University, 01330, Adana, Turkey
| | - S Sadighazadi
- Department of Biology, Institute of Basic and Applied Sciences, Cukurova University, 01330, Adana, Turkey
| | - E S Istifli
- Department of Biology, Faculty of Science and Letters, Cukurova University, 01330, Adana, Turkey.
| |
Collapse
|
41
|
Lindström A, Midtbö K, Arnesson LG, Garvin S, Shabo I. Fusion between M2-macrophages and cancer cells results in a subpopulation of radioresistant cells with enhanced DNA-repair capacity. Oncotarget 2017; 8:51370-51386. [PMID: 28881654 PMCID: PMC5584255 DOI: 10.18632/oncotarget.17986] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022] Open
Abstract
Cell fusion is a natural biological process in normal development and tissue regeneration. Fusion between cancer cells and macrophages results in hybrids that acquire genetic and phenotypic characteristics from both maternal cells. There is a growing body of in vitro and in vivo data indicating that this process also occurs in solid tumors and may play a significant role in tumor progression. However, investigations of the response of macrophage:cancer cell hybrids to radiotherapy have been lacking. In this study, macrophage:MCF-7 hybrids were generated by spontaneous in vitro cell fusion. After irradiation, both hybrids and their maternal MCF-7 cells were treated with 0 Gy, 2.5 Gy and 5 Gy γ-radiation and examined by clonogenic survival and comet assays at three time points (0 h, 24 h, and 48 h). Compared to maternal MCF-7 cells, the hybrids showed increased survival fraction and plating efficiency (colony formation ability) after radiation. The hybrids developed less DNA-damage, expressed significantly lower residual DNA-damage, and after higher radiation dose showed less heterogeneity in DNA-damage compared to their maternal MCF-7 cells. To our knowledge this is the first study that demonstrates that macrophage:cancer cell fusion generates a subpopulation of radioresistant cells with enhanced DNA-repair capacity. These findings provide new insight into how the cell fusion process may contribute to clonal expansion and tumor heterogeneity. Furthermore, our results provide support for cell fusion as a mechanism behind the development of radioresistance and tumor recurrence.
Collapse
Affiliation(s)
- Annelie Lindström
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Kristine Midtbö
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Lars-Gunnar Arnesson
- Division of Surgery, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Stina Garvin
- Department of Clinical Pathology, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Ivan Shabo
- Division of Surgery, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden.,Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 171 77, Stockholm, Sweden.,Department of Breast and Endocrine Surgery, Karolinska University Hospital, SE 171 76, Stockholm, Sweden
| |
Collapse
|
42
|
Oghabi Bakhshaiesh T, Majidzadeh-A K, Esmaeili R. Wip1: A candidate phosphatase for cancer diagnosis and treatment. DNA Repair (Amst) 2017; 54:63-66. [PMID: 28385459 DOI: 10.1016/j.dnarep.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 12/28/2022]
Abstract
The critical regulatory mechanisms in numerous cellular pathways including cell survival and DNA damage response mostly depend on phosphorylation and dephosphorylation of proteins. The serine/threonine phosphatase wild-type p53-induced phosphatase 1 (Wip1) is a growth-promoting phosphatase and its numerous downstream targets are important tumor suppressors. Here, we review the Wip1 activity and its relevance to cancer as an oncoprotein. Consecutive investigations about Wip1 and its relation to cancer is critical, as these studies ultimately contribute to the etiology of cancer. A number of innovative studies have recently investigated the importance of Wip1 as a new candidate for cancer diagnosis and prognosis. Accordingly, we discuss the present challenges of using Wip1 as a target for cancer treatment.
Collapse
Affiliation(s)
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
43
|
Pressly JD, Hama T, Brien SO, Regner KR, Park F. TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury. Sci Rep 2017; 7:43196. [PMID: 28256593 PMCID: PMC5335694 DOI: 10.1038/srep43196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia‐reperfusion injury (IRI), a common type of renal stressor. In Trip13Gt/Gthypomorph mice treated with unilateral renal IRI, persistent tubular epithelial cell damage was determined in the IRI-treated kidney throughout the 168 hours of experimental period compared to the contralateral kidneys. The damaged epithelial cells were associated with increased levels of DNA damage (ɣH2AX) and apoptotic markers (p53, cleaved caspase-7, and TUNEL-positive cells). Correspondingly, TRIP13 was found to directly interact with Tetratricopeptide Repeat Domain 5 (TTC5), a p53 co‐factor, and genetic knockdown of TRIP13 in murine inner medullary collecting duct cells in the presence of hydrogen peroxide showed increased activity of p53 at Serine 15. In all, these studies suggest that insufficient TRIP13 increased the susceptibility of damaged tubular epithelial cells to progress towards apoptotic cell death.
Collapse
Affiliation(s)
- Jeffrey D Pressly
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Taketsugu Hama
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Shannon O' Brien
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Kevin R Regner
- Medical College of Wisconsin, Department of Medicine, Division of Nephrology, Milwaukee, WI, USA
| | - Frank Park
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
44
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
45
|
Valente D, Costa-Amaral IC, Carvalho LVBD, Santos MVCD, Castro VSD, Rodrigues DDRF, Falco AD, Silva CB, Nogueira SM, Gonçalves ES, Moreira JC, André LC, Teixeira LR, Sarcinelli PDN, Sisenando HA, Oliveira MSD, Perini JA, Mattos RDCODC, Larentis AL. Utilização de biomarcadores de genotoxicidade e expressão gênica na avaliação de trabalhadores de postos de combustíveis expostos a vapores de gasolina. REVISTA BRASILEIRA DE SAÚDE OCUPACIONAL 2017. [DOI: 10.1590/2317-6369000124415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resumo Introdução: a avaliação de uma exposição mensura sua intensidade, frequência e duração, podendo detectar danos precoces que, se ignorados, podem evoluir para um quadro nocivo. Nos campos da saúde ambiental e ocupacional, os biomarcadores de genotoxicidade tem sido largamente utilizados para essa avaliação. Objetivo: identificar, descrever e discutir os principais bioindicadores de genotoxicidade e seu uso conjunto com técnicas de avaliação de expressão gênica em estudos de exposição ocupacional ao benzeno em postos de revenda de combustíveis (PRC). Métodos: revisão bibliográfica de trabalhos publicados entre 1995 e 2015. Resultados: as técnicas identificadas foram: ensaio cometa, estresse oxidativo, micronúcleos, aberrações cromossômicas, polimorfismos, adutos de DNA e proteínas, fatores epigenéticos e expressão gênica. Foi observado que testes de danos genéticos e epigenéticos são utilizados em frentistas de PRC que participam de programas de saúde do trabalhador ou de pesquisas, embora um baixo número de publicações sobre o tema tenha sido identificado. Esse fato talvez possa ser explicado pelos poucos países onde a profissão persiste e pelas limitações para o desenvolvimento de pesquisas nesses países. Conclusão: os bioindicadores de genotoxicidade e as técnicas de expressão gênica são úteis na detecção de dano precoce desta exposição ocupacional e devem ser avaliados em conjunto.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro, Brazil; Fiocruz, Brazil
| | | | | | | | | | | | | | | | | | | | - Jamila Alessandra Perini
- Fundação Oswaldo Cruz, Brazil; Centro Universitário Estadual da Zona Oeste, Brasil; Fiocruz, Brazil
| | | | | |
Collapse
|
46
|
Pressly JD, Park F. DNA repair in ischemic acute kidney injury. Am J Physiol Renal Physiol 2016; 312:F551-F555. [PMID: 27927651 DOI: 10.1152/ajprenal.00492.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury leading to an induction of oxidative stress, cellular dysfunction, and loss of renal function. DNA damage, including oxidative base modifications and physical DNA strand breaks, is a consequence of renal IRI. Like many other organs in the body, a redundant and highly conserved set of endogenous repair pathways have evolved to selectively recognize the various types of cellular DNA damage and combat its negative effects on cell viability. Severe damage to the DNA, however, can trigger cell death and elimination of the injured tubular epithelial cells. In this minireview, we summarize the state of the current field of DNA damage and repair in the kidney and provide some expected and, in some cases, unexpected effects of IRI on DNA damage and repair in the kidney. These findings may be applicable to other forms of acute kidney injury and could provide new opportunities for renal research.
Collapse
Affiliation(s)
- Jeffrey D Pressly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
47
|
An Z, Yu JR, Park WY. T0070907 inhibits repair of radiation-induced DNA damage by targeting RAD51. Toxicol In Vitro 2016; 37:1-8. [DOI: 10.1016/j.tiv.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022]
|
48
|
Olvera-García G, Aguilar-García T, Gutiérrez-Jasso F, Imaz-Rosshandler I, Rangel-Escareño C, Orozco L, Aguilar-Delfín I, Vázquez-Pérez JA, Zúñiga J, Pérez-Patrigeon S, Espinosa E. A transcriptome-based model of central memory CD4 T cell death in HIV infection. BMC Genomics 2016; 17:956. [PMID: 27875993 PMCID: PMC5120471 DOI: 10.1186/s12864-016-3308-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. METHODS Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. RESULTS Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. CONCLUSIONS Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.
Collapse
Affiliation(s)
- Gustavo Olvera-García
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Tania Aguilar-García
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Fany Gutiérrez-Jasso
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Iván Imaz-Rosshandler
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Lorena Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Irma Aguilar-Delfín
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Joel A Vázquez-Pérez
- Department of Virology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Joaquín Zúñiga
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Infectious Immunopathogenesis Laboratory, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga 15, Mexico City, Mexico
| | - Enrique Espinosa
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico.
| |
Collapse
|
49
|
Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci Rep 2016; 6:33290. [PMID: 27624453 PMCID: PMC5022028 DOI: 10.1038/srep33290] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R(2) > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity.
Collapse
|
50
|
Yu S, Yang F, Shen WH. Genome maintenance in the context of 4D chromatin condensation. Cell Mol Life Sci 2016; 73:3137-50. [PMID: 27098512 PMCID: PMC4956502 DOI: 10.1007/s00018-016-2221-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission.
Collapse
Affiliation(s)
- Sonia Yu
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Fan Yang
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|