1
|
Rossnerova A, Chvojkova I, Elzeinova F, Pelclova D, Klusackova P, Zdimal V, Ondrackova L, Bradna P, Roubickova A, Simova Z, Rossner P. Genetic alteration profiling in middle-aged women acutely exposed during the mechanical processing of dental nanocomposites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104462. [PMID: 38710242 DOI: 10.1016/j.etap.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic.
| | - Irena Chvojkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Lucie Ondrackova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| |
Collapse
|
2
|
The impact of extractable organic matter from gasoline and alternative fuel emissions on bronchial cell models (BEAS-2B, MucilAir™). Toxicol In Vitro 2022; 80:105316. [DOI: 10.1016/j.tiv.2022.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022]
|
3
|
Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, García-Cuellar CM. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117313. [PMID: 34022687 DOI: 10.1016/j.envpol.2021.117313] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio B, Primer Piso, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico.
| |
Collapse
|
4
|
Cervena T, Vojtisek-Lom M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Sima M, Beranek V, Pechout M, Macoun D, Klema J, Rossnerova A, Ciganek M, Topinka J, Rossner P. Ordinary Gasoline Emissions Induce a Toxic Response in Bronchial Cells Grown at Air-Liquid Interface. Int J Mol Sci 2020; 22:E79. [PMID: 33374749 PMCID: PMC7801947 DOI: 10.3390/ijms22010079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.
Collapse
Affiliation(s)
- Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Zuzana Novakova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Vit Beranek
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, 121 35 Prague, Czech Republic;
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (J.T.)
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (J.T.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| |
Collapse
|
5
|
Minina VI, Savchenko YA, Bakanova ML, Ryzhkova AV, Sokolova AO, Meyer AV, Tolochko TA, Voronina EN, Druzhinin VG, Glushkov AN. Chromosomal Instability and Genetic Polymorphism in Miners and Workers of Coal Thermal Power Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Cervena T, Vrbova K, Rossnerova A, Topinka J, Rossner P. Short-term and Long-term Exposure of the MucilAir™ Model to Polycyclic Aromatic Hydrocarbons. Altern Lab Anim 2019; 47:9-18. [PMID: 31237164 DOI: 10.1177/0261192919841484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells grown in monocultures are widely used to model lung tissue. As a result of these culture conditions, these cells exhibit poor morphological similarity to those present in in vivo lung tissue. MucilAir™, a 3-D in vitro model comprising human basal, goblet and ciliated cells, represents a fully differentiated respiratory epithelium that can be used as an alternative and a more realistic system. The aim of our study was to compare the effects of short-term and long-term exposure to two polycyclic aromatic hydrocarbons (PAHs) - benzo[a]pyrene (B[a]P) and 3-nitrobenzanthrone (3-NBA) - using MucilAir as a model of human lung tissue. Two concentrations (0.1 μM and 1 μM) were tested at three time points (24 hours, 7 days and 28 days). Several aspects were assessed: cytotoxicity (lactate dehydrogenase (LDH) release), integrity of the cell layer (transepithelial electrical resistance (TEER)), induction of oxidative stress (reactive oxygen species production) and changes in the expression of selected genes involved in PAH metabolism (CYP1A1 and AKR1C2) and the antioxidant response (ALDH3A1, SOD1, SOD2, GPX1, CAT, HMOX1 and TXNRD1). The results showed that exposure to B[a]P caused a spike in LDH release at day 5. Exposure to 3-NBA caused a number of spikes in LDH release, starting at day 5, and a decrease in TEER after 11 days. CYP1A1 gene expression was upregulated after the 7-day and 28-day B[a]P exposures, as well as after the 24-hour and 7-day 3-NBA exposures. HMOX1 and SOD1 were downregulated after both 24-hour PAH treatments. HMOX1 was upregulated after a 1-week exposure to 3-NBA. There were no significant changes in the messenger RNA (mRNA) levels of AKR1C2, ALDH3A1, TXNRD1, SOD2, GPX1 or CAT. These results illustrate the potential use of this 3-D in vitro lung tissue model in studying the effects of chronic exposure to PAHs.
Collapse
Affiliation(s)
- Tereza Cervena
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Vrbova
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Rossnerova
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Rossner
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Chen T, Jin H, Wang H, Yao Y, Aniagu S, Tong J, Jiang Y. Aryl hydrocarbon receptor mediates the cardiac developmental toxicity of EOM from PM 2.5 in P19 embryonic carcinoma cells. CHEMOSPHERE 2019; 216:372-378. [PMID: 30384306 DOI: 10.1016/j.chemosphere.2018.10.160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Ambient fine particulate matter (PM2.5) has been found to be associated with congenital heart defects, but the molecular mechanisms remain to be elucidated. Our previous study revealed that extractable organic matter (EOM) from PM2.5 exerted cardiac developmental toxicity in zebrafish embryos. The aim of the current study is to explore the effects of EOM on cardiac differentiation of P19 mouse embryonic carcinoma stem cells. We found that EOM at 10 μg/ml (a non-cytotoxic dose level) significantly reduced the proportion of cardiac muscle troponin (cTnT) positive cells and the percentage of spontaneously beating embryoid bodies, indicating a severe inhibition of cardiac differentiation. Immunofluorescence and qPCR data demonstrated that EOM increased the expression levels of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1A1 and diminished the expression level of β-catenin. Furthermore, EOM treatment significantly upregulated cell proliferation rate and elevated the percentage of γH2A.X positive cells without affecting apoptosis. It is worth noting that the EOM-induced changes in gene expression, cellular proliferation and DNA double strain breaks were attenuated by the AhR antagonist CH223191. In conclusion, our data indicate that AhR mediates the inhibitory effects of EOM (from PM2.5) on the cardiac differentiation of P19 cells.
Collapse
Affiliation(s)
- Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Jin
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Huimin Wang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yugang Yao
- Suzhou Environmental Monitor Center, Key Laboratory of Atmospheric Combined Pollution Monitoring, Environmental Protection Department of Jiangsu Province, Suzhou, China
| | - Stanley Aniagu
- Toxicology Division, Texas Commission on Environmental Quality, Austin, TX, USA
| | - Jian Tong
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016; 82:53-93. [DOI: 10.1016/j.yrtph.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
|
9
|
Serdar B, Brindley S, Dooley G, Volckens J, Juarez-colunga E, Gan R. Short-term markers of DNA damage among roofers who work with hot asphalt. Environ Health 2016; 15:99. [PMID: 27765036 PMCID: PMC5072307 DOI: 10.1186/s12940-016-0182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Roofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors. The overall goal of this project was to investigate the usefulness of phosphorylated histone H2AX (γH2AX) as a short-term biomarker of DNA damage among roofers. METHODS Blood, urine, and dermal wipe samples were collected from 20 roofers who work with hot asphalt before and after 6 h of work on Monday and Thursday of the same week (4 sampling periods). Particle-bound and gas-phase PAHs were collected using personal monitors during work hours. γH2AX was quantified in peripheral lymphocytes using flow cytometry and 8-hydroxy-2-deoxyguanosine (8-OHdG) was assessed in urine using ELISA. General linear mixed models were used to evaluate associations between DNA damage and possible predictors (such as sampling period, exposure levels, work- and life-style factors). Differences in mean biomarker and DNA damage levels were tested via ANOVA contrasts. RESULTS Exposure measurements did not show an association with any of the urinary biomarkers or the measures of DNA damage. Naphthalene was the most abundant PAH in gas-phase, while benzo(e)pyrene was the most abundant particle-bound PAH. Post-shift levels of γH2AX and 8-OHdG were higher on both study days, when compared to pre-shift levels. Cigarette smoking was a predictor of γH2AX and urinary creatinine was a predictor of urinary 8-OHdG. Between-subject variance to total variance ratio was 35.3 % for γH2ax and 4.8 % for 8-OHdG. CONCLUSION γH2AX is a promising biomarker of DNA damage in occupational epidemiology studies. It has a lower within-subject variation than urinary 8-OHdG and can easily be detected in large scale groups. Future studies that explore the kinetics of H2AX phosphorylation in relation to chemical exposures may reveal the transient and persistent nature of this sensitive biomarker of early DNA damage.
Collapse
Affiliation(s)
- Berrin Serdar
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mail Stop B119-V20, 12850 East Montview Boulevard, Rm. V20-3126, Aurora, CO 80045 USA
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Greg Dooley
- Analytical Toxicology Laboratory, Center for Environmental Medicine, Colorado State University, Fort Collins, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, USA
| | - Elizabeth Juarez-colunga
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Ryan Gan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| |
Collapse
|