1
|
Chiaramonte A, Testi S, Pelosini C, Micheli C, Falaschi A, Ceccarini G, Santini F, Scarpato R. Oxidative and DNA damage in obese patients undergoing bariatric surgery: A one-year follow-up study. Mutat Res 2023; 827:111827. [PMID: 37352694 DOI: 10.1016/j.mrfmmm.2023.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
The pathogenesis of obesity and related comorbidities has long been associated with oxidative stress. The excess of adipose tissue contributes to the production of free radicals that sustain both a local and a systemic chronic inflammatory state, whereas its reduction can bring to an improvement in inflammation and oxidative stress. In our work, using the fluorescent lipid probe BODIPY® 581/591 C11 and the γH2AX foci assay, a well-known marker of DNA double strand breaks (DSB), we evaluated the extent of cell membrane oxidation and DNA damage in peripheral blood lymphocytes of normal weight (NW) controls and obese patients sampled before and after bariatric surgery. Compared to NW controls, we observed a marked increase in both the frequencies of oxidized cells or nuclei exhibiting phosphorylation of histone H2AX in preoperatory obese patients. After bariatric surgery, obese patients, resampled over one-year follow-up, improved oxidative damage and reduced the presence of DSB. In conclusion, the present study highlights the importance for obese patients undergoing bariatric surgery to also monitor these molecular markers during their postoperative follow-up.
Collapse
Affiliation(s)
- Anna Chiaramonte
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Serena Testi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital, Pisa, Italy
| | - Consuelo Micheli
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Aurora Falaschi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital, Pisa, Italy
| | - Roberto Scarpato
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Varun K, Zoltan K, Alba S, Manuel B, Elisabeth K, Dimitrios T, Jan B G, Maik B, Khurrum S, Berend I, Stephen H, Thomas F, Julia S, Peter N, Stefan K. Elevated markers of DNA damage and senescence are associated with the progression of albuminuria and restrictive lung disease in patients with type 2 diabetes. EBioMedicine 2023; 90:104516. [PMID: 36934657 PMCID: PMC10025008 DOI: 10.1016/j.ebiom.2023.104516] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the cascade involving DNA damage, senescence, and senescence-associated secretory phenotype (SASP) in experimental diabetes and in a four-year follow-up study in patients with pre-diabetes and type 2 diabetes. METHODS Kidney, lung, and liver were studied in 4 months diabetic db/db mice and age-matched controls for the presence of DNA damage and fibrosis. DNA damage (comet-tail-length and ɤH2Ax-positivity in white blood cells), urinary p21-excretion, and plasma IL-6 and TGF-β1 were determined from 115 healthy participants, 34 patients with pre-diabetes and 221 with type 2 diabetes. Urinary albumin-creatinine-ratio, lung function, and transient elastography of the liver were performed in a prospective follow-up study over 4 years. FINDINGS db/db mice showed an increased nuclear ɤH2AX signal in all tissues as compared to the background control. Markers for DNA damage, senescence, and SASP were increased in patients with diabetes. The presence of nephropathy, restrictive lung disease (RLD), and increased liver stiffness was in a cross-sectional design associated with increased markers for DNA damage, senescence, and SASP. The progression of nephropathy over 4 years was predicted by increased DNA damage, senescence, and SASP, while the progression of RLD was associated with increased DNA damage and IL-6 only. The progression of liver stiffness was not associated with any of these parameters. HbA1c was not predictive for progression. INTERPRETATION In db/db mice, the cascade of DNA damage is associated with diabetes-related complications. In patients with diabetes, the progression of complications in the kidney and lung is predicted by markers reflecting DNA damage, and senescence-triggered organ fibrosis. FUNDING This work was supported by the German Research Foundation (DFG) in the CRC 1118 and CRC 1158, by the GRK DIAMICOM, by the German Center for Diabetes Research (DZD e.V.), and by the Ministry of Science, Research and the Arts, Baden-Württemberg (Kompetenznetzwerk Präventivmedizin).
Collapse
Affiliation(s)
- Kumar Varun
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Kender Zoltan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sulaj Alba
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Blume Manuel
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Kliemank Elisabeth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tsilingiris Dimitrios
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Groener Jan B
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medicover Neuroendokrinologie, Munich, Germany
| | - Brune Maik
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Shahzad Khurrum
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Isermann Berend
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Herzig Stephen
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Helmholtz Diabetes Center, Institute for Diabetes and Cancer, Helmholtz Center Munich, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Fleming Thomas
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Szendroedi Julia
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nawroth Peter
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Kopf Stefan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
Scarpato R, Colosimo V, Chiaramonte A, Di Bello D, Esposti V, Falaschi A, Ghirri P, Micheli C, Testi S. High level of γH2AX phosphorylation in the cord-blood cells of large-for-gestational-age (LGA) newborns. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503526. [PMID: 36031337 DOI: 10.1016/j.mrgentox.2022.503526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Newborns can experience adverse effects as a consequence of maternal or in utero exposure, altered growth of the fetus, or placental dysfunctions. Accurate characterization of gestational age allows monitoring of fetal growth, identification of deviations from the normal growth trajectory, and classification of babies as adapted, small, or large for gestational age (AGA, SGA, or LGA). The aim of this work was to evaluate nuclear and oxidative damage in umbilical cord-blood cells of newborns (sampled at birth), by applying the γH2AX assay and the fluorescent probe BODIPY581/591 C11, to detect DNA DSB and cell membrane oxidation, respectively. No statistically significant differences were observed in the proportion of oxidized cord-blood cells among the groups of newborns, although the LGA group showed the highest value. With regard to genome damage, elevated levels of γH2AX foci were detected in the cell nuclei from LGA newborns as compared to AGA or SGA babies, whose values did not differ from each other. Considering that the observed DNA damage, although still repairable, can represent a risk factor for obesity, metabolic diseases, or other pathologies, monitoring genome and cell integrity at birth can provide useful information for prevention of diseases later in life.
Collapse
Affiliation(s)
- Roberto Scarpato
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy.
| | - Valentina Colosimo
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Anna Chiaramonte
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Women-Child-Newborn Obstetrics and Gynaecology, Milano, Italy
| | - Domenica Di Bello
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Veronica Esposti
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Aurora Falaschi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Consuelo Micheli
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Serena Testi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Kudabayeva K, Bazargaliyev Y, Kosmuratova R. The relationship of double-stranded DNA breaks in blood lymphocytes and obesity without carbohydrate metabolism disorder. Mol Cell Biochem 2022; 477:2249-2255. [PMID: 35474045 DOI: 10.1007/s11010-022-04440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to investigate the effect of body mass index on DNA damage of lymphocytes in obese patients without carbohydrate metabolism disorder in the Kazakh population. Research design is based on a single-stage descriptive study. The sample included 239 patients aged 18-60 years. Among the participants, people with chronic decompensated diseases, with bad habits (smokers, drug users, drinkers) were excluded. Special attention was paid to the exclusion of diabetes mellitus to exclude the effect of hyperglycemia on DNA damage when forming the sample according to WHO criteria. The following were estimated: the diameter of the breaks (Foci dia, µm), the average number of γ-H2AX (n) foci detected per cell. The study of DNA damage of blood lymphocytes in individuals of the Kazakh population showed high rates of DSB with a BMI over 40 kg/m2. The number of breaks per cell in women is significantly higher than in men (p = 0.004). The median test revealed a significant difference in the number of DSBs between different age groups (χ2 = 10.39, p = 0.0155). Obesity is now gaining momentum, so the study of the effect of body mass index on lymphocyte DNA damage in obese patients without impaired carbohydrate metabolism gives valuable results in the treatment of this disease.
Collapse
Affiliation(s)
- Khatimya Kudabayeva
- Department of Internal Medicine, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030019, Aktobe, Republic of Kazakhstan.
| | - Yerlan Bazargaliyev
- Department of Internal Medicine, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030019, Aktobe, Republic of Kazakhstan
| | - Raikul Kosmuratova
- Department of Internal Medicine, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030019, Aktobe, Republic of Kazakhstan
| |
Collapse
|
5
|
Zhang S, Jiao X, Heger M, Gao S, He M, Xu N, Zhang J, Zhang M, Yu Y, Ding B, Ding X. A tumor microenvironment-responsive micelle co-delivered radiosensitizer Dbait and doxorubicin for the collaborative chemo-radiotherapy of glioblastoma. Drug Deliv 2022; 29:2658-2670. [PMID: 35975300 PMCID: PMC9387324 DOI: 10.1080/10717544.2022.2108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is rather recalcitrant to existing therapies and effective interventions are needed. Here we report a novel microenvironment-responsive micellar system (ch-K5(s-s)R8-An) for the co-delivery of the radiosensitizer Dbait and the chemotherapeutic doxorubicin (DOX) to glioblastoma. Accordingly, the ch-K5(s-s)R8-An/(Dbait-DOX) micelles plus radiotherapy (RT) treatment resulted in a high degree of apoptosis and DNA damage, which significantly reduced cell viability and proliferation capacity of U251 cells to 64.0% and 16.3%, respectively. The angiopep-2-modified micelles exhibited substantial accumulation in brain-localized U251 glioblastoma xenografts in mice compared to angiopep-2-lacking micelles. The ch-K5(s-s)R8-An/(Dbait-DOX) + RT treatment group exhibited the smallest tumor size and most profound tumor tissue injury in orthotopic U251 tumors, leading to an increase in median survival time of U251 tumor-bearing mice from 26 days to 56 days. The ch-K5(s-s)R8-An/(Dbait-DOX) micelles can be targeted to brain-localized U251 tumor xenografts and sensitize the tumor to chemotherapy and radiotherapy, thereby overcoming the inherent therapeutic challenges associated with malignant glioblastoma.
Collapse
Affiliation(s)
- Shuyue Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuxiu Jiao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shen Gao
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Mei He
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Xu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jigang Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjian Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yu
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xueying Ding
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ielciu I, Filip GA, Oniga I, Olah NK, Bâldea I, Olteanu D, Burtescu RF, Turcuș V, Sevastre-Berghian AC, Benedec D, Hanganu D. Oxidative Stress and DNA Lesion Reduction of a Polyphenolic Enriched Extract of Thymus marschallianus Willd. in Endothelial Vascular Cells Exposed to Hyperglycemia. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122810. [PMID: 34961280 PMCID: PMC8708594 DOI: 10.3390/plants10122810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 05/04/2023]
Abstract
The present study aimed to compare two polyphenolic-enriched extracts obtained from the Thymus marschallianus Willd. (Lamiaceae) species, harvested from culture (TMCE in doses of 0.66 μg GAE/mL and 0.066 μg GAE/mL) and from spontaneous flora (TMSE in doses of 0.94 μg GAE/mL and 0.094 μg GAE/mL) by assessing their biological effects on human umbilical vein endothelial cells (HUVECs) exposed to normoglycemic (137 mmol/L glucose) and hyperglycemic conditions (200 mmol/L glucose). Extracts were obtained by solid phase extraction (SPE) and analyzed by chromatographical (HPLC-DAD) and spectrophotometrical methods. Their effects on hyperglycemia were evaluated by the quantification of oxidative stress and NF-ĸB, pNF-ĸB, HIF-1α, and γ-H2AX expressions. The HPLC-DAD analysis highlighted significant amounts of rosmarinic acid (ranging between 0.18 and 1.81 mg/g dry extract), luteolin (ranging between 2.04 and 17.71 mg/g dry extract), kaempferol (ranging between 1.85 and 7.39 mg/g dry extract), and apigenin (ranging between 4.97 and 65.67 mg/g dry extract). Exposure to hyperglycemia induced oxidative stress and the activation of NF-ĸ increased the expression of HIF-1α and produced DNA lesions. The polyphenolic-enriched extracts proved a significant reduction of oxidative stress and γ-H2AX formation and improved the expression of HIF-1α, suggesting their protective role on endothelial cells in hyperglycemia. The tested extracts reduced the total NF-ĸB expression and diminished its activation in hyperglycemic conditions. The obtained results bring evidence for the use of the polyphenolic-enriched extracts of T. marschallianus as adjuvants in hyperglycemia.
Collapse
Affiliation(s)
- Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
- Correspondence: (G.A.F.); (I.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (D.B.); (D.H.)
- Correspondence: (G.A.F.); (I.O.)
| | - Neli-Kinga Olah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Vasile Goldiş” Western University of Arad, 310414 Arad, Romania;
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania;
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
| | - Diana Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
| | | | - Violeta Turcuș
- Department of Botany, Faculty of Medicine, “Vasile Goldiş” Western University of Arad, 310414 Arad, Romania;
| | - Alexandra C. Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (D.B.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (D.B.); (D.H.)
| |
Collapse
|
7
|
Micheli C, Parma A, Tani C, Di Bello D, Falaschi A, Chiaramonte A, Testi S, Mosca M, Scarpato R. UCTD and SLE patients show increased levels of oxidative and DNA damage together with an altered kinetics of DSB repair. Mutagenesis 2021; 36:429-436. [PMID: 34559237 DOI: 10.1093/mutage/geab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Immunological tolerance is a critical feature of the immune system; its loss might lead to an abnormal response of lymphocytes causing autoimmune diseases. One of the most important groups belonging to autoimmune disorders is the connective tissue diseases (CTD). CTD are classified among systemic rheumatic diseases and include pathologies such as systemic lupus erythematosus (SLE), and undifferentiated CTD (UCTD). In this study, we evaluated oxidative and genome damage in peripheral blood lymphocytes from patients with SLE and UCTD, further classified on the basis of disease activity and the presence/absence of a serological profile. Oxidative damage was evaluated in cell membrane using the fluorescent fatty acid analogue BODIPY 581/591 C11. The percentage of oxidised lymphocytes in both SLE and UCTD patients was higher than in the control group, and the oxidative stress correlated positively with both disease activity and autoantibody profile. The γH2AX focus assay was used to quantify the presence of spontaneous double strand breaks (DSBs), and to assess the abilities of DSBs repair system after T cells were treated with mitomycin C (MMC). Subjects with these autoimmune disorders showed a higher number of γH2AX foci than healthy controls, but no correlation with diseases activity and presence of serological profile was observed. In addition, patients displayed an altered response to MMC-induced DSBs, which led their peripheral cells to greatly increase apoptosis. Taken together our results confirmed an interplay among oxidative stress, DNA damage and impaired DNA repair, which are directly correlated to the aggressiveness and clinical progression of the diseases. We propose the evaluation of these molecular markers to better characterize SLE and UCTD, aiming to improve the treatment plan and the quality of the patients' life.
Collapse
Affiliation(s)
- Consuelo Micheli
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Alice Parma
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Chiara Tani
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Domenica Di Bello
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Aurora Falaschi
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Anna Chiaramonte
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Serena Testi
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Roberto Scarpato
- Dipartimento di Biologia, Unità di Genetica, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| |
Collapse
|
8
|
Kopf S, Kumar V, Kender Z, Han Z, Fleming T, Herzig S, Nawroth PP. Diabetic Pneumopathy-A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Front Endocrinol (Lausanne) 2021; 12:765201. [PMID: 34899603 PMCID: PMC8655305 DOI: 10.3389/fendo.2021.765201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with diabetes are over-represented among the total cases reported with "idiopathic" pulmonary fibrosis (IPF). This raises the question, whether this is an association only or whether diabetes itself can cause pulmonary fibrosis. Recent studies in mouse models of type 1 and type 2 diabetes demonstrated that diabetes causes pulmonary fibrosis. Both types of diabetes trigger a cascade, starting with increased DNA damage, an impaired DNA repair, and leading to persistent DNA damage signaling. This response, in turn, induces senescence, a senescence-associated-secretory phenotype (SASP), marked by the release of pro-inflammatory cytokines and growth factors, finally resulting in fibrosis. Restoring DNA repair drives fibrosis into remission, thus proving causality. These data can be translated clinically to patients with type 2 diabetes, characterized by long-term diabetes and albuminuria. Hence there are several arguments, to substitute the term "idiopathic" pulmonary fibrosis (IPF) in patients with diabetes (and exclusion of other causes of lung diseases) by the term "diabetes-induced pulmonary fibrosis" (DiPF). However, future studies are required to establish this term and to study whether patients with diabetes respond to the established therapies similar to non-diabetic patients.
Collapse
Affiliation(s)
- Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
| | - Peter P. Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
- *Correspondence: Peter P. Nawroth,
| |
Collapse
|
9
|
Ruze R, Xiong YC, Li JW, Zhong MW, Xu Q, Yan ZB, Zhu JK, Cheng YG, Hu SY, Zhang GY. Sleeve gastrectomy ameliorates endothelial function and prevents lung cancer by normalizing endothelin-1 axis in obese and diabetic rats. World J Gastroenterol 2020; 26:2599-2617. [PMID: 32523314 PMCID: PMC7265138 DOI: 10.3748/wjg.v26.i20.2599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous evidence has implied that obesity is an independent risk factor for developing cancer. Being closely related to obesity, type 2 diabetes mellitus provides a suitable environment for the formation and metastasis of tumors through multiple pathways. Although bariatric surgeries are effective in preventing and lowering the risk of various types of cancer, the underlying mechanisms of this effect are not clearly elucidated.
AIM To uncover the role and effect of sleeve gastrectomy (SG) in preventing lung cancer in obese and diabetic rats.
METHODS SG was performed on obese and diabetic Wistar rats, and the postoperative transcriptional and translational alterations of the endothelin-1 (ET-1) axis in the lungs were compared to sham-operated obese and diabetic rats and age-matched healthy controls to assess the improvements in endothelial function and risk of developing lung cancer at the postoperative 4th, 8th, and 12th weeks. The risk was also evaluated using nuclear phosphorylation of H2A histone family member X as a marker of DNA damage (double-strand break).
RESULTS Compared to obese and diabetic sham-operated rats, SG brought a significant reduction to body weight, food intake, and fasting blood glucose while improving oral glucose tolerance and insulin sensitivity. In addition, ameliorated levels of gene and protein expression in the ET-1 axis as well as reduced DNA damage indicated improved endothelial function and a lower risk of developing lung cancer after the surgery.
CONCLUSION Apart from eliminating metabolic disorders, SG improves endothelial function and plays a protective role in preventing lung cancer via normalized ET-1 axis and reduced DNA damage.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Ya-Cheng Xiong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Jian-Wen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ming-Wei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Zhi-Bo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jian-Kang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Yu-Gang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - San-Yuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Guang-Yong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, China
| |
Collapse
|
10
|
Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, Bandapalli OR, Gorbunova V, Seluanov A, Mall MA, Herzig S, Nawroth PP. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J 2020; 39:e103477. [PMID: 32338774 PMCID: PMC7265245 DOI: 10.15252/embj.2019103477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 11/09/2022] Open
Abstract
Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Aparamita Pandey
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Manuel Hoeffgen
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Hopp Children's Cancer Center, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany.,Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| |
Collapse
|
11
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
12
|
Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 2019; 9:381-396. [PMID: 30972284 PMCID: PMC6437633 DOI: 10.1016/j.apsb.2018.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy (RT). However, there is no effective drug delivery system to effectively overcome the blood-brain barrier (BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles (ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1 (LRP1) that is overexpressed on brain capillary endothelial cells (BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2 (MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size (80-160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration (CMC) with positive surface charge, ranging from 15 to 40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Arg, arginine
- BBB, blood–brain barrier
- BBTB, blood—brain tumor barriers
- CMC, critical micelle concentration
- Cell-penetrating peptides
- DTSSP, 3,3′-dithiobis(sulfosuccinimidylpropionate)
- DTT, dithiothreitol
- FBS, fetal bovine serum
- GBM, glioblastoma multiforme
- GSH, glutathione
- Gene delivery
- Glioma-targeting
- KnR8, cholesterol-polylysine-polyarginine peptide, n = 3, 5, 7
- Lys, lysine
- MMP-2, matrix metalloproteinase 2
- MWCO, molecular weight cutoff
- Microenvironment-responsive micelles
- PDI, polydispersity index
- PE, plating efficiency
- PEI, polyethylenimine
- RT, radiotherapy
- Radiosensitizer
- ch-Kn(s-s)R8-An, the disulfide cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- ch-KnR8-An, the non-cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- pDNA, plasmid DNA
Collapse
Affiliation(s)
- Xiuxiu Jiao
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Yuan Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jianxia Meng
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Mei He
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Charles Jian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Wenqian Geng
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| |
Collapse
|
13
|
Sun Y, Xiaoyan H, Yun L, Chaoqun L, Jialing W, Liu Y, Yingqi Z, Peipei Y, Junjun P, Yuanming L. Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis. Asian Pac J Cancer Prev 2019; 20:145-155. [PMID: 30678426 PMCID: PMC6485580 DOI: 10.31557/apjcp.2019.20.1.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the three major gynecologic cancers in the world. The aim of this study is to find the
relationship between ovarian cancer and diabetes mellitus by using the genetic screening technique. By GEO database
query and related online tools of analysis, we analyzed 185 cases of ovarian cancer and 10 control samples from
GSE26712, and a total of 379 different genes were identified, including 104 up-regulated genes and 275 down-regulated
genes. The up-regulated genes were mainly enriched in biological processes, including cell adhesion, transcription of
nucleic acid and biosynthesis, and negative regulation of cell metabolism. The down-regulated genes were enriched in
cell proliferation, migration, angiogenesis and macromolecular metabolism. Protein-protein interaction was analyzed
by network diagram and module synthesis analysis. The top ten hub genes (CDC20, H2AFX, ENO1, ACTB, ISG15,
KAT2B, HNRNPD, YWHAE, GJA1 and CAV1) were identified, which play important roles in critical signaling
pathways that regulate the process of oxidation-reduction reaction and carboxylic acid metabolism. CTD analysis
showed that the hub genes were involved in 1,128 distinct diseases (bonferroni-corrected P<0.05). Further analysis by
drawing the Kaplan-Meier survival curve indicated that CDC20 and ISG15 were statistically significant (P<0.05). In
conclusion, glycometabolism was related to ovarian cancer and genes and proteins in glycometabolism could serve as
potential targets in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, Guilin Medical University School of Public Health, Guilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Salimi M, Eskandari E. Association of Elevated Peripheral Blood Micronucleus Frequency and Bmi-1 mRNA Expression with Metastasis in
Iranian Breast Cancer Patients. Asian Pac J Cancer Prev 2018; 19:2723-2730. [PMID: 30360597 PMCID: PMC6291066 DOI: 10.22034/apjcp.2018.19.10.2723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: In order to find cytogenetic and molecular metastasis biomarkers detectable in peripheral blood the spontaneous genomic instability expressed as micronuclei and Bmi-1 expression in peripheral blood of breast cancer (BC) patients were studied in different stages of the disease compared with unaffected first-degree relatives (FDRs) and normal control. Methods: The Cytokinesis Block Micronuclei Cytome (CBMN cyt) and nested real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays, were respectively used to measure genomic instability and Bmi-1 gene expression in 160 Iranian individuals comprised of BC patients in different stages of the disease, unaffected FDRs and normal control groups. Result: The frequency of micronuclei and Bmi-1 expression were dramatically higher in distant metastasis compared with non-metastatic BC. In spite of micronucleus frequency with no association with lymph node (LN) involvement and hormone receptor status, the Bmi-1 expression level was higher in LN positive and triple negative patients. Conclusion: Our results indicate that increased genomic instability expressed as micronuclei and higher Bmi-1 expression in peripheral blood are associated with metastasis in breast cancer. Therefore implementation of micronucleus assay and Bmi-1 expression analysis in blood as possible cytogenetic and molecular biomarkers in clinical level may potentially enhance the quality of management of patients with breast cancer.
Collapse
Affiliation(s)
- Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | | |
Collapse
|
15
|
Azzarà A, Chiaramonte A, Filomeni E, Pinto B, Mazzoni S, Piaggi S, Angela Guzzardi M, Bruschi F, Iozzo P, Scarpato R. Increased level of DNA damage in some organs of obese Zucker rats by γ-H2AX analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:477-484. [PMID: 28714549 DOI: 10.1002/em.22115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
In a recent study, we showed that lymphocytes of obese Italian children/adolescents displayed levels of double strand breaks (DSB), assayed as serine 139-phosphorylated histone H2AX (γ-H2AX), about eightfold higher than normal weight controls, and that 30% of this damage-generated micronuclei. These findings suggested that obese children could be at increased risk of obesity-mediated cancer later in life. We therefore aimed to assess the level of γ-H2AX in a genetic animal model of obesity (Zucker rat) to identify a genotoxic/carcinogenic risk in some organs. The DSB marker was studied in 3- to 4-week-old rats and in 9- to 13-week-old rats. Paraffin-embedded sections of heart, thyroid, liver, pancreas, lung, kidney, esophagus, and gut from the fa-/fa- (obese) and the fa+/fa- (lean) control animals were processed for immunohistochemistry detection of γ-H2AX. Pancreas (0.0624 ± 0.0195), lung (0.1197 ± 0.0217), esophagus (0.1230 ± 0.0351), kidney (0.1546 ± 0.0149), and gut (0.1724 ± 0.0352) of 9- to 13-week-old obese rats showed a higher proportion of γ-H2AX-positive nuclei, than their lean counterparts (0.0092 ± 0.0033, 0.0416 ± 0.0185, 0.0368 ± 0.0088, 0.0686 ± 0.0318, and 0.0703 ± 0.0239, respectively). No difference was seen in the 3- to 4-week-old age group with regard to obesity, indicating that the DNA damage increased with older age of the rats. We hypothesize that the organs of the obese animals showing high levels of DSB could represent target tissues for the development of obesity-related cancers. Environ. Mol. Mutagen. 58:477-484, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessia Azzarà
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Via Derna 1, Pisa, 56126, Italy
| | - Anna Chiaramonte
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Via Derna 1, Pisa, 56126, Italy
| | - Erika Filomeni
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Via Derna 1, Pisa, 56126, Italy
| | - Barbara Pinto
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Via Savi 10, Pisa, 56126, Italy
| | - Stefano Mazzoni
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Via Savi 10, Pisa, 56126, Italy
| | - Simona Piaggi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Via Savi 10, Pisa, 56126, Italy
| | | | - Fabrizio Bruschi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Via Savi 10, Pisa, 56126, Italy
| | - Patricia Iozzo
- CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi, 1, Pisa, 56124, Italy
| | - Roberto Scarpato
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Via Derna 1, Pisa, 56126, Italy
| |
Collapse
|
16
|
Bai Y, Xu Y, Chang J, Wang X, Zhao Y, Yu Z. Bioactives from stems and leaves of mung beans ( Vigna radiata L.). J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
17
|
Salimi M, Broumand B, Mozdarani H. Association of elevated frequency of micronuclei in peripheral blood lymphocytes of type 2 diabetes patients with nephropathy complications. Mutagenesis 2016; 31:627-633. [DOI: 10.1093/mutage/gew029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
18
|
Dong D, Yu J, Wu Y, Fu N, Villela NA, Yang P. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress. Biochem Biophys Res Commun 2015; 467:407-12. [PMID: 26427872 DOI: 10.1016/j.bbrc.2015.09.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 01/28/2023]
Abstract
DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Noah Fu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Natalia Arias Villela
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev Diabet Stud 2015; 12:134-56. [PMID: 26676666 DOI: 10.1900/rds.2015.12.134] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Runa Lindblom
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin Higgins
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melinda Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
21
|
Al-Anati L, Viluksela M, Strid A, Bergman Å, Andersson PL, Stenius U, Högberg J. Hydroxyl metabolite of PCB 180 induces DNA damage signaling and enhances the DNA damaging effect of benzo[a]pyrene. Chem Biol Interact 2015; 239:164-73. [PMID: 26148434 DOI: 10.1016/j.cbi.2015.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/16/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) and their hydroxyl metabolites (OH-PCBs) are ubiquitous environmental contaminants in human tissues and blood. The toxicological impact of these metabolites is poorly understood. In this study rats were exposed to ultrapure PCB180 (10-1000mg/kgbw) for 28days and induction of genotoxic stress in liver was investigated. DNA damage signaling proteins (pChk1Ser317 and γH2AXSer319) were increased dose dependently in female rats. This increase was paralleled by increasing levels of the metabolite 3'-OH-PCB180. pChk1 was the most sensitive marker. In in vitro studies HepG2 cells were exposed to 1μM of PCB180 and 3'-OH-PCB180 or the positive control benzo[a]pyrene (BaP, 5μM). 3'-OH-PCB180, but not PCB180, induced CYP1A1 mRNA and γH2AX. CYP1A1 mRNA induction was seen at 1h, and γH2AX at 3h. The anti-oxidant N-Acetyl-l-Cysteine (NAC) completely prevented, and 17β-estradiol amplified the γH2AX induction by 3'-OH-PCB180. As 3'-OH-PCB180 induced CYP1A1, a major BaP-metabolizing and activating enzyme, interactions between 3'-OH-PCB180 and BaP was also studied. The metabolite amplified the DNA damage signaling response to BaP. In conclusion, metabolism of PCB180 to its hydroxyl metabolite and the subsequent induction of CYP1A1 seem important for DNA damage induced by PCB180 in vivo. Amplification of the response with estradiol may explain why DNA damage was only seen in female rats.
Collapse
Affiliation(s)
- Lauy Al-Anati
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Matti Viluksela
- Chemicals and Health Unit, National Institute for Health and Welfare (THL), P.O. Box 95, FI-70701 Kuopio, Finland; Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Anna Strid
- Analytical and Toxicological Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE 106-91 Stockholm, Sweden
| | - Åke Bergman
- Analytical and Toxicological Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE 106-91 Stockholm, Sweden; Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| | | | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|