1
|
Maremonti MI, Causa F. A computational model for single cell Lamin-A structural organization after microfluidic compression. Biotechnol Bioeng 2024; 121:3551-3562. [PMID: 39020522 DOI: 10.1002/bit.28810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
In recent years, nuclear mechanobiology gained a lot of attention for the study of cell responses to external cues like adhesive forces, applied compression, and/or shear-stresses. In details, the Lamin-A protein-as major constituent of the cell nucleus structure-plays a crucial role in the overall nucleus mechanobiological response. However, modeling and analysis of Lamin-A protein organization upon rapid compression conditions in microfluidics are still difficult to be performed. Here, we introduce the possibility to control an applied microfluidic compression on single cells, deforming them up to the nucleus level. In a wide range of stresses (~1-102 kPa) applied on healthy and cancer cells, we report increasing Lamin-A intensities which scale as a power law with the applied compression. Then, an increase up to two times of the nuclear viscosity is measured in healthy cells, due to the modified Lamin-A organization. This is ascribable to the increasing assembly of Lamin-A filament-like branches which increment both in number and elongation (up to branches four-time longer). Moreover, the solution of a computational model of differential equations is presented as a powerful tool for a single cell prediction of the Lamin-A assembly as a function of the applied compression.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", Naples, Italy
| | - Filippo Causa
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Chen R, Buchmann S, Kroth A, Arias-Loza AP, Kohlhaas M, Wagner N, Grüner G, Nickel A, Cirnu A, Williams T, Maack C, Ergün S, Frantz S, Gerull B. Mechanistic Insights of the LEMD2 p.L13R Mutation and Its Role in Cardiomyopathy. Circ Res 2023; 132:e43-e58. [PMID: 36656972 DOI: 10.1161/circresaha.122.321929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.
Collapse
Affiliation(s)
- Ruping Chen
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Simone Buchmann
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Amos Kroth
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Anahi-Paula Arias-Loza
- Department of Nuclear Medicine, Comprehensive Heart Failure Center (A.-P.A.-L.), University Hospital Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Gianna Grüner
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Alexandra Cirnu
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Tatjana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Stefan Frantz
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Comprehensive Heart Failure Center (S.F.), University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| |
Collapse
|
5
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Maremonti MI, Panzetta V, Dannhauser D, Netti PA, Causa F. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses. J R Soc Interface 2022; 19:20210880. [PMID: 35440204 PMCID: PMC9019521 DOI: 10.1098/rsif.2021.0880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell nucleus plays a critical role in mechanosensing and mechanotransduction processes, by adaptive changes of its envelope composition to external biophysical stimuli such as substrate rigidity and tensile forces. Current measurement approaches lack precise control in stress application on nuclei, thus significantly impairing a complete mechanobiological study of cells. Here, we present a contactless microfluidic approach capable to exert a wide range of viscoelastic compression forces (10–103 µN)—as an alternative to adhesion-related techniques—to induce cell-specific mechano-structural and biomolecular changes. We succeed in monitoring substantial nuclear modifications in Lamin A/C expression and coverage, diffusion processes of probing molecules, YAP shuttling, chromatin re-organization and cGAS pathway activation. As a result, high compression forces lead to a nuclear reinforcement (e.g. up to +20% in Lamin A/C coverage) or deconstruction (e.g. down to −45% in Lamin A/C coverage with a 30% reduction of chromatin condensation state parameter) up to cell death. We demonstrate how wide-range compression on suspended cells can be used as a tool to investigate nuclear mechanobiology and to define specific nuclear signatures for cell mechanical phenotyping.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Naples, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - David Dannhauser
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
7
|
Strom AR, Biggs RJ, Banigan EJ, Wang X, Chiu K, Herman C, Collado J, Yue F, Ritland Politz JC, Tait LJ, Scalzo D, Telling A, Groudine M, Brangwynne CP, Marko JF, Stephens AD. HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. eLife 2021; 10:e63972. [PMID: 34106828 PMCID: PMC8233041 DOI: 10.7554/elife.63972] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.
Collapse
Affiliation(s)
- Amy R Strom
- Howard Hughes Medical Institute, Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ronald J Biggs
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Katherine Chiu
- Biology Department, University of Massachusetts AmherstAmherstUnited States
| | - Cameron Herman
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Jimena Collado
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | | | - Leah J Tait
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - David Scalzo
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Agnes Telling
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Mark Groudine
- The Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Clifford P Brangwynne
- Howard Hughes Medical Institute, Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Andrew D Stephens
- Biology Department, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|