1
|
Gomes AR, Tavares-da-Silva EJ, Costa SC, Varela CL, Abrantes AM, Gonçalves AC, Alves R, Botelho MF, Roleira FMF, Pires AS. Steroidal epoxides as anticancer agents in lung, prostate and breast cancers: The case of 1,2-epoxysteroids. Biochem Pharmacol 2024; 225:116266. [PMID: 38710333 DOI: 10.1016/j.bcp.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.
Collapse
Affiliation(s)
- Ana R Gomes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal.
| | - Saúl C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal
| | - Carla L Varela
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Ana M Abrantes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Ana C Gonçalves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, Portugal
| | - Raquel Alves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, Portugal
| | - Maria F Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal
| | - Ana S Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal.
| |
Collapse
|
2
|
Cortés-Gutiérrez EI, Ceyca-Contreras JP, Gómez-Ruiz EP, Rios E, García-Vielma C, García-Salas JA. DNA Damage in Bat Blood Leukocytes Using a Chromatin Dispersion Test (CDT): Biomarker of Environmental Genotoxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:59. [PMID: 38602569 DOI: 10.1007/s00128-024-03885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Environmental pollutants produce adverse effects on organisms and ecosystems. Biomonitoring and biomarkers offer a reasonable approach to make these assessments. Induced genetic changes can be using as a biomarker in organisms that react to a given compound in the ecosystem. Monitoring environmental genotoxicity necessitates the choice of model animals known as "sentinels or biological monitors" and the suitability of validated tests for DNA damage evaluation. We aimed to estimate the DNA damage produced by thermal stress in the leukocytes of the Mexican free-tailed bat (Tadarida brasiliensis). The DNA damage in bat leukocytes exposed to different temperatures (35 °C, 45 °C, and 55 °C) was evaluated by the adapted chromatin dispersion test (CDT) and the results were confirmed by the alkaline comet test. The CDT permitted a clear representation of leukocytes with fragmented DNA and of nonfragmented DNA. In addition, we detected nuclear anomalies in relation to cell death cellular swelling, nuclear fragmentation, and chromatin lysis. The alkaline comet assay revealed that the halos of diffuse chromatin include fragmented DNA. The assay of the method employing the CDT is well established, precise, and cost-effective for the routine quantitative analysis of DNA damage on the effect of the leukocytes of bats exposed to thermal stress. This could also apply as a sensitive screening tool for the evaluation of genotoxicity in environmental protection programs.
Collapse
Affiliation(s)
- Elva I Cortés-Gutiérrez
- Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México.
| | - Juan P Ceyca-Contreras
- Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México.
| | - Emma P Gómez-Ruiz
- Parque Ecológico Chipinque, A.B.P., San Pedro Garza García, NL, México
| | - Evelyn Rios
- Laboratorio de Mastozoología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Catalina García-Vielma
- Department of Genetics, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Juan A García-Salas
- Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México
| |
Collapse
|
3
|
Ayyar S, Beerman I. Detection of DNA Damage in Hematopoietic Stem Cells. Methods Mol Biol 2023; 2567:11-28. [PMID: 36255692 DOI: 10.1007/978-1-0716-2679-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-cell gel electrophoresis (SCGE or Comet assay) and the Fast Halo assay, also known as the Halo assay, are powerful tools to generate DNA damage measurements with single-cell resolution. Though these techniques are prone to have variability, they can be robust tools for quantifying DNA damage when planned and executed carefully. Here, we present both assays and highlight each technique's advantages and challenges in measuring DNA damage in cells with limiting cell number, such as hematopoietic stem cells (HSCs). The Comet assay is highly sensitive at the cost of increased variability. The Halo assay attenuates some of the effects of variability present in the Comet assay but does not eliminate them entirely and is less sensitive. Overall, the Comet and Halo assays are powerful means of directly measuring DNA damage. We recommend the below methods for detecting damage in hematopoietic stem cells, but the methods can easily be adjusted for measuring damage in any type of single cells in suspension.
Collapse
Affiliation(s)
- Saipriya Ayyar
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
4
|
Hexokinase 2 Inhibition and Biological Effects of BNBZ and Its Derivatives: The Influence of the Number and Arrangement of Hydroxyl Groups. Int J Mol Sci 2022; 23:ijms23052616. [PMID: 35269760 PMCID: PMC8910004 DOI: 10.3390/ijms23052616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Hexokinase 2 (HK2), an enzyme of the sugar kinase family, plays a dual role in glucose metabolism and mediating cancer cell apoptosis, making it an attractive target for cancer therapy. While positive HK2 expression usually promotes cancer cells survival, silencing or inhibiting this enzyme has been found to improve the effectiveness of anti-cancer drugs and even result in cancer cell death. Previously, benitrobenrazide (BNBZ) was characterized as a potent HK2 inhibitor with good anti-cancer activity in mice, but the effect of its trihydroxy moiety (pyrogallol-like) on inhibitory activity and some cellular functions has not been fully understood. Therefore, the main goal of this study was to obtain the parent BNBZ (2a) and its three dihydroxy derivatives 2b–2d and to conduct additional physicochemical and biological investigations. The research hypothesis assumed that the HK2 inhibitory activity of the tested compounds depends on the number and location of hydroxyl groups in their chemical structure. Among many studies, the binding affinity to HK2 was determined and two human liver cancer cell lines, HepG2 and HUH7, were used and exposed to chemicals at various times: 24 h, 48 h and 72 h. The study showed that the modifications to the structures of the new BNBZ derivatives led to significant changes in their activities. It was also found that these compounds tend to aggregate and exhibit toxic effects. They were found to contribute to: (a) DNA damage, (b) increased ROS production, and (c) disruption of cell cycle progression. It was observed that, HepG2, occurred much more sensitive to the tested chemicals than the HUH7 cells; However, regardless of the used cell line it seems that the increase in the expression of HK2 in cancer cells compared to normal cells which have HK2 at a very low level, is a serious obstacle in anti-cancer therapy and efforts to find the effective inhibitors of this enzyme should be intensified.
Collapse
|
5
|
Cortés-Gutiérrez EI, Dávila-Rodríguez MI, García-Salas JA, Ceyca-Contreras JP. Thermal stress induces pyknosis in pigeon erythrocytes: digital image analysis. Biomarkers 2021; 26:726-731. [PMID: 34612776 DOI: 10.1080/1354750x.2021.1990409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pyknosis or hypercondensation of chromatin is informative in the understanding of nucleosomal packing in translationally inactive chromatin and in the compression of cell death. However, mechanisms that result in the formation of avian erythrocytes with variant nuclear morphology are poorly understood.Purpose: In this work, we evaluated pyknosis in pigeon erythrocytes treated with thermal stress using Digital Image Analysis (DIA).Materials and methods: Pigeon erythrocytes were treated at thermal stress (33 °C, 43 °C, and 53 °C), and nuclear modifications were analyzed by DIA.Results: Our results showed that thermal stress induced DNA condensation. Based on DNA fluorescent staining and compaction, four subclasses with progressively more pyknotic nuclei each could be distinguished. Alkaline comet assay showed that the presence of pyknotic nuclei was associated with the DNA fragmentation typical of apoptosis. DIA analysis showed a decrease of nuclear area and a significant increase of fluorescence intensity with respect to non-pyknotic nucleus. Additionally we observed nuclear dissolution events associated with swell and loose membrane integrity.Conclusion: These findings can contribute to the evaluation of health and metabolic status in diagnostic cytology, especially in neoplastic conditions and infection by microorganisms.
Collapse
Affiliation(s)
| | | | - Juan A García-Salas
- Faculty of Biological Sciences, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | |
Collapse
|
6
|
Zilio N, Ulrich HD. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. FEBS J 2020; 288:3948-3961. [PMID: 32965079 DOI: 10.1111/febs.15568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Mapping the genome-wide distribution of DNA lesions is key to understanding damage signalling and DNA repair in the context of genome and chromatin structure. Analytical tools based on high-throughput next-generation sequencing have revolutionized our progress with such investigations, and numerous methods are now available for various base lesions and modifications as well as for DNA double-strand breaks. Considering that single-strand breaks are by far the most common type of lesion and arise not only from exposure to exogenous DNA-damaging agents, but also as obligatory intermediates of DNA replication, recombination and repair, it is surprising that our insight into their genome-wide patterns, that is the 'SSBreakome', has remained rather obscure until recently, due to a lack of suitable mapping technology. Here we briefly review classical methods for analysing single-strand breaks and discuss and compare in detail a series of recently developed high-resolution approaches for the genome-wide mapping of these lesions, their advantages and limitations and how they have already provided valuable insight into the impact of this type of damage on the genome.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| |
Collapse
|
7
|
Cortés-Gutiérrez EI, García-Salas JA, Dávila-Rodríguez MI, Ceyca-Contreras JP, Cortez-Reyes M, Fernández JL, Gosálvez J. Detection of DNA damage in pigeon erythrocytes using a chromatin dispersion assay. Toxicol Mech Methods 2019; 30:228-235. [PMID: 31805813 DOI: 10.1080/15376516.2019.1701596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The monitoring of environmental genotoxicity requires the selection of model organisms as 'sentinels' as well as the development of sensitive and reliable tests for the assessment of DNA damage. The aims of this study were to quantify genomic DNA strand breakage in the erythrocytes of Columba livia induced by thermal stress using the modified chromatin dispersion test and to validate the results by alkaline comet assay and DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). The chromatin dispersion test allowed for clear visualization of erythrocyte cells with DNA damage and of cells with no DNA damage. DNA damage increased significantly with increase in temperature. Additionally, we observed nuclear abnormalities associated with apoptosis, such as karyorrhexis (nuclear disintegration) and karyolysis (nuclear dissolution). These results were validated by alkaline comet assay and DBD-FISH. In conclusion, this procedure is a reliable, precise, and inexpensive morphological bioassay for routine quantitative analysis of DNA breakage in pigeon erythrocytes induced by thermal stress. This method could also be useful as a practical screening tool for genotoxicity testing in environmental care.
Collapse
Affiliation(s)
| | - Juan A García-Salas
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Monterrey, México
| | | | | | - Michel Cortez-Reyes
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Monterrey, México
| | - José L Fernández
- Genetics Unit, Complejo Hospitalario Universitario A Coruña-INIBIC, La Coruña, Spain
| | - Jaime Gosálvez
- Department of Biology, Genetic Unit, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
8
|
Dwivedi DK, Jena GB. NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:705-716. [PMID: 31834465 DOI: 10.1007/s00210-019-01773-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is much higher in diabetic and obese individuals. Combined exposure of high-fat diet (HFD) and single low-dose streptozotocin (STZ) was used to induce type II diabetes-associated NAFLD, as it better replicates the human pathology of fatty liver. Glibenclamide (GLB) is a potent NLRP3 inflammasome inhibitor and possesses anti-inflammatory and anti-oxidant properties. So it was pertinent to investigate its hepatoprotective potential against NAFLD in rat. HFD was provided to rat for 17 consecutive weeks and glibenclamide (GLB; 0.5 and 2.5 mg/kg/day, orally) was administered for the last 12 consecutive weeks. Establishment of NAFLD was clearly indicated by significant increase in liver weight, glucose, triglyceride, cholesterol, % glycosylated haemoglobin and insulin levels, and GLB intervention reduced the same. GLB restored HFD-induced significant increase in ROS, MDA and decrease in GSH. Histopathological studies revealed the macro- and micro-vascular steatosis and mild degree of inflammation in HFD-fed rat compared with control, and GLB intervention reduced the same. HFD exposure significantly increased the DNA damage and apoptosis compared with control, and GLB intervention reduced the same. Immunohistochemical and immunoblotting findings showed that GLB improved the hepatic expressions of inflammatory markers (NLRP3, ASC, caspase-1, IL-1β, NF-κB), anti-oxidant markers (SOD, catalase) and insulin signalling markers (p-AKT, p-GSK-3β, p-IRS). Hepatoprotective effects of GLB was mediated by decreasing the levels of glucose, triglycerides, cholesterol, DNA damage, apoptosis and inflammatory markers, and by improving the anti-oxidant status and insulin signalling pathway in HFD fed rat.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India
| | - G B Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
9
|
Cortés-Gutiérrez EI, García-Salas JA, Dávila-Rodríguez MI, Ceyca-Contreras JP, González-Ramírez EG. Evaluation of oxidative DNA damage in pigeon erythrocytes using DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). Biotech Histochem 2019; 94:600-605. [PMID: 31441668 DOI: 10.1080/10520295.2019.1618495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) enables detection and quantification of DNA breakage in the entire genome or within specific DNA sequences in single cells. We used this method to visualize and evaluate DNA damage in pigeon erythrocytes that were induced by elevated temperature and hydrogen peroxide. We also examined morphological changes in the cell nuclei. DBD-FISH demonstrated a significant increase of DNA damage in a temperature dependent manner, which resulted in nuclear abnormalities associated with apoptotic cells. These cells gave strong nuclear fluorescent signals that indicated cell death.
Collapse
Affiliation(s)
- E I Cortés-Gutiérrez
- Faculty of Biological Sciences, Laboratory of Ornithology, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - J A García-Salas
- Faculty of Biological Sciences, Laboratory of Ornithology, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - M I Dávila-Rodríguez
- Department of Genetics, Center for Biomedical Research of the Northeast, Instituto Mexicano del Seguro Social, Monterrey, México
| | - J P Ceyca-Contreras
- Faculty of Biological Sciences, Laboratory of Ornithology, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - E G González-Ramírez
- Faculty of Biological Sciences, Laboratory of Ornithology, Universidad Autonoma de Nuevo Leon, Monterrey, México
| |
Collapse
|
10
|
Deuterium Incorporation Protects Cells from Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6528106. [PMID: 31396304 PMCID: PMC6668601 DOI: 10.1155/2019/6528106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
In the cold environments of the interstellar medium, a variety of molecules in which a hydrogen (H) atom has been replaced by its heavier isotope deuterium (D) can be found. From its emergence, life had to counteract the toxic action of many agents, which posed a constant threat to its development and propagation. Oxygen-reactive species are archaic toxicants that lead to protein damage and genomic instability. Most of the oxidative lesions involve cleavage of C-H bonds and H abstraction. According to free radical chemistry principles, the substitution of D for H in oxidation-sensitive positions of cellular components should confer protection against the oxidative attack without compromising the chemical identity of the compounds. Here, we show that deuterated nucleosides and proteins protect from oxidative damage. Our data suggest a new, subtle but likely role of D in terrestrial life's evolution in that its inclusion in critical biomolecules might have facilitated their resistance during the infinite generations of life entities, cells, and organisms.
Collapse
|
11
|
Saltarelli R, Palma F, Gioacchini AM, Calcabrini C, Mancini U, De Bellis R, Stocchi V, Potenza L. Phytochemical composition, antioxidant and antiproliferative activities and effects on nuclear DNA of ethanolic extract from an Italian mycelial isolate of Ganoderma lucidum. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:464-473. [PMID: 30513345 DOI: 10.1016/j.jep.2018.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Curtis) P. Karst. (also known as Linghzhi and Reishi) is the most appreciated and revered medicinal mushroom across many Asian countries, but its properties have also attracted interest in Western countries. Indeed, in the West, it is now commercially available as a dietary supplement in preparations mainly made from spores, fruiting bodies and mycelia. It is employed in both nutraceutical and pharmacological formulations either for its immuno-modulating anti-inflammatory properties or as an effective adjuvant therapy in the treatment of several chronic diseases as well as in cancer treatment. AIM OF THE STUDY The aim of this investigation was to show the phytochemical composition and antioxidant and antiproliferative activities of an ethanolic extract from an Italian mycelial isolate of Ganoderma lucidum and to assess its effects on nuclear DNA. MATERIALS AND METHODS LC/ESI-MS and tandem mass spectrometry MSMS were used to obtain structural identification of ethanolic G. lucidum extract constituents. Antioxidant activities were determined by the DPPH method, chelating effect on Fe2+ and lipoxygenase inhibition while cytotoxic activities using the MTT assay. Effects on nuclear DNA were evaluated using the DNA nicking assay in a cell-free system and the fast halo assay performed on oxidatively injured human U937 cells; apoptosis induction was investigated using the non-denaturing fast halo assay and DNA laddering detection. RESULTS This extract was rich in several bioactive compounds, mainly phenolic and triterpenic acids. It showed antioxidant activity and protective effects in oxidatively injured DNA in cell-free analyses and antiproliferative, genotoxic, and proapoptotic effects in the cell model. CONCLUSIONS Italian G. lucidum mycelium isolate appears to be a source of various natural compounds that may have applications as chemopreventive agents or functional foods.
Collapse
Affiliation(s)
- Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| | - Anna Maria Gioacchini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| | - Cinzia Calcabrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy; Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy.
| | - Umberto Mancini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| | - Roberta De Bellis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi, 2, 61029 Urbino, PU, Italy.
| |
Collapse
|
12
|
Kumar Y, Phaniendra A, Periyasamy L. Bixin Triggers Apoptosis of Human Hep3B Hepatocellular Carcinoma Cells: An Insight to Molecular and IN SILICO Approach. Nutr Cancer 2018; 70:971-983. [PMID: 30204479 DOI: 10.1080/01635581.2018.1490445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and is known to be resistant to conventional chemotherapy. The use of herbal medicine and supplements has increased over recent decades following side effects and resistant to conventional chemotherapy. The seeds of Bixa orellana L. commonly known as annatto have recently gained scientific attention due to presence of a carotenoid bixin for its substantial anticancer properties. However, molecular mechanisms underlying bixin-induced apoptosis are still unclear. Treatment of bixin significantly decreased the number of Hep3B cells and morphological study revealed the change in cellular and nuclear morphology that trigger the events of apoptosis confirmed by annexin V/PI staining. Further DCFDA and rhodamine 123 spectrofluorimetry study showed elevation in reactive oxygen species (ROS) production and loss of mitochondrial membrane potential (MMP), respectively. ROS production caused DNA damage and apoptosis was marked by cell cycle arrest, up-regulation of Bax and FasL protein as well as cleavage of caspase-9, caspase-8 and caspase-3 protein. Docking study with pro-apoptotic molecule Bax and surface Fas ligand exhibited energetically favourable binding interaction. Collectively, these results suggest that bixin capable of modulating the extrinsic and intrinsic molecules of apoptosis indicating its potential for development of promising candidate for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yogesh Kumar
- a Department of Biochemistry and Molecular Biology, School of Life Sciences , Pondicherry University , Kalapet , India
| | - Alugoju Phaniendra
- a Department of Biochemistry and Molecular Biology, School of Life Sciences , Pondicherry University , Kalapet , India
| | - Latha Periyasamy
- a Department of Biochemistry and Molecular Biology, School of Life Sciences , Pondicherry University , Kalapet , India
| |
Collapse
|
13
|
Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: Measurement strategies for two genomes. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Calcabrini C, De Bellis R, Mancini U, Cucchiarini L, Stocchi V, Potenza L. Protective Effect of Juglans regia L. Walnut Extract Against Oxidative DNA Damage. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:192-197. [PMID: 28401378 DOI: 10.1007/s11130-017-0609-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Walnuts (Juglans regia L.) are relevant components of the Mediterranean diet providing important macronutrients, micronutrients and other bioactive constituents including unsaturated fatty acids, proteins, fiber, vitamins, minerals, phytosterols and polyphenols. Although the walnut beneficial effects in human health are widely recognized by a lot of epidemiologic studies very little is known regarding its effect on damaged DNA. The aim of the present study was to investigate the effect of Juglans regia L. ethanolic extract from kernel on the induction of DNA strand breaks by thiol/Fe3+/O2 mixed function oxidase, tert-butyl hydroperoxide or UVC radiations in acellular and cellular models. Plasmid DNA cleavage and fast Halo assay were used to monitor oxidative damage to DNA. Both approaches showed protection of oxidatively injured DNA. These results agree with a lot of scientific proofs which recommend walnut as dietary adjunct in health promotion and prevention as well as in treatment of lifestyle-related oxidative diseases.
Collapse
Affiliation(s)
- Cinzia Calcabrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi 2, I-61029, Urbino, PU, Italy
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, I 47921, Rimini, RN, Italy
| | - Roberta De Bellis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi 2, I-61029, Urbino, PU, Italy
| | - Umberto Mancini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi 2, I-61029, Urbino, PU, Italy
| | - Luigi Cucchiarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi 2, I-61029, Urbino, PU, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi 2, I-61029, Urbino, PU, Italy
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via A. Saffi 2, I-61029, Urbino, PU, Italy.
| |
Collapse
|
15
|
Sestili P, Calcabrini C, Diaz AR, Fimognari C, Stocchi V. The Fast-Halo Assay for the Detection of DNA Damage. Methods Mol Biol 2017; 1644:75-93. [PMID: 28710754 DOI: 10.1007/978-1-4939-7187-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The need for express screening of the DNA damaging potential of chemicals has progressively increased over the past 20 years due to the wide number of new synthetic molecules to be evaluated, as well as the adoption of more stringent chemical regulations such as the EU REACH and risk reduction politics. In this regard, DNA diffusion assays such as the microelectrophoretic comet assay paved the way for rapid genotoxicity testing. A more significant simplification and speeding up of the experimental processes was achieved with the fast halo assay (FHA) described in the present chapter. FHA operates at the single cell level and relies on radial dispersion of the fragments of damaged DNA from intact nuclear DNA. The fragmented DNA is separated by diffusion in an alkaline solvent and is stained, visualized, and finally quantified using computer-assisted image analysis programs. This permits the rapid assessment of the extent of DNA breakage caused by different types of DNA lesions. FHA has proven to be sensitive, reliable, and flexible. This is currently one of the simplest, cheapest, and quickest assays for studying DNA damage and repair in living cells. It does not need expensive reagents or electrophoretic equipment and requires only 40 min to prepare samples for computer-based quantification. This technique can be particularly useful in rapid genotoxicity assessments and in high-throughput genotoxicity screenings.
Collapse
Affiliation(s)
- Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy.
| | - Cinzia Calcabrini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum - Università di Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Anna Rita Diaz
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum - Università di Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Vilberto Stocchi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy
| |
Collapse
|
16
|
Single cell HaloChip assay on paper for point-of-care diagnosis. Anal Bioanal Chem 2016; 408:7753-7759. [DOI: 10.1007/s00216-016-9872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 01/27/2023]
|
17
|
Maurya DK. HaloJ: an ImageJ program for semiautomatic quantification of DNA damage at single-cell level. Int J Toxicol 2014; 33:362-6. [PMID: 25201898 DOI: 10.1177/1091581814549961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Halo assay is a fast and more economic technique, it is not popular compared to comet assay for the measurement of DNA damage. One of the reasons behind this was nonavailability of suitable user-friendly program. Currently, most of the researchers were analyzing halo images manually using image analysis software (Scion Image or ImageJ). To address this problem, I have developed a semiautomatic halo analysis ImageJ program, HaloJ, and applied in the assessment of DNA damage at the single-cell level. In this article, we have shown that data obtained from the HaloJ program have a very good correlation with the data obtained using comet assay analysis program such as Comet Assay Software Project. To the best of our knowledge, this will be the first program to quantify DNA damage of halo images. This program will be of great use for researchers working on the DNA damage and repair, radiation biology, toxicology, cancer biology, and so on.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Fimognari C, Turrini E, Sestili P, Calcabrini C, Carulli G, Fontanelli G, Rousseau M, Cantelli-Forti G, Hrelia P. Antileukemic activity of sulforaphane in primary blasts from patients affected by myelo- and lympho-proliferative disorders and in hypoxic conditions. PLoS One 2014; 9:e101991. [PMID: 25019218 PMCID: PMC4096754 DOI: 10.1371/journal.pone.0101991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Sulforaphane is a dietary isothiocyanate found in cruciferous vegetables showing antileukemic activity. With the purpose of extending the potential clinical impact of sulforaphane in the oncological field, we investigated the antileukemic effect of sulforaphane on blasts from patients affected by different types of leukemia and, taking into account the intrinsically hypoxic nature of bone marrow, on a leukemia cell line (REH) maintained in hypoxic conditions. In particular, we tested sulforaphane on patients with chronic lymphocytic leukemia, acute myeloid leukemia, T-cell acute lymphoblastic leukemia, B-cell acute lymphoblastic leukemia, and blastic NK cell leukemia. Sulforaphane caused a dose-dependent induction of apoptosis in blasts from patients diagnosed with acute lymphoblastic or myeloid leukemia. Moreover, it was able to cause apoptosis and to inhibit proliferation in hypoxic conditions on REH cells. As to its cytotoxic mechanism, we found that sulforaphane creates an oxidative cellular environment that induces DNA damage and Bax and p53 gene activation, which in turn helps trigger apoptosis. On the whole, our results raise hopes that sulforaphane might set the stage for a novel therapeutic principle complementing our growing armature against malignancies and advocate the exploration of sulforaphane in a broader population of leukemic patients.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Cinzia Calcabrini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Giovanni Carulli
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Fontanelli
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Rousseau
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Cantelli-Forti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 762:30-8. [DOI: 10.1016/j.mrgentox.2013.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/23/2013] [Accepted: 11/02/2013] [Indexed: 01/31/2023]
|
20
|
Sestili P, Fimognari C. Alkaline nuclear dispersion assays for the determination of DNA damage at the single cell level. Methods Mol Biol 2014; 1094:49-70. [PMID: 24162979 DOI: 10.1007/978-1-62703-706-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Over the past three decades the development of methods for visualizing at the cell level the extent of DNA breakage significantly contributed to genotoxicity testing: their availability greatly improved the knowledge in the field of genetic toxicology. These procedures are based on the separation and visualization of DNA fragments resulting from cleavage of nuclear DNA. The separation process can be obtained either electrically (comet assay, linear migration of DNA fragments) or chemically (alkaline dispersion assays, radial diffusion of DNA fragments). Once separated and stained, intact and fragmented DNA can be observed with fluorescence or light microscope. Appropriate computer-assisted image analysis allows quantitative determination of the extent of DNA breakage. These procedures have been proven to be sensitive, flexible, and reliable, and, as compared to former methods, they are simpler, are less time and money consuming, and have the unique capability of detecting DNA damage at the single cell level. This last feature has the additional advantage of allowing the identification of cellular subpopulations characterized by different sensitivity to the damaging agent. The fast halo assay (FHA) is currently the simplest and quickest nuclear dispersion assay; recent modifications of FHA have further improved the assay and pave the way to a full exploitation of its analytical potential. In this chapter the development, procedures, applications, and limits of these dispersion assays, with a particular focus on FHA, will be illustrated.
Collapse
Affiliation(s)
- Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | | |
Collapse
|
21
|
Fraternale D, Ricci D, Calcabrini C, Guescini M, Martinelli C, Sestili P. Cytotoxic Activity of Essential Oils of Aerial Parts and Ripe Fruits of Echinophora spinosa (Apiaceae). Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The cytotoxic effects of the essential oils obtained from the flowering aerial parts (APO) and ripe fruits (RFO) of Echinophora spinosa L. (Apiaceae) from central Italy toward human U937 promonocytoid cells were studied; the contribution of each of the major constituents to the whole cytotoxic activity of either APO or RFO was also characterized. The major components of APO were β-phellandrene (34.7%), myristicin (16.5%), p-cymene (16.3%), δ3-carene (12.6%), α-pinene (6.7%) and α-phellandrene (6.2%); those of RFO p-cymene (50.2%), myristicin (15.3%), α-pinene (15.1%) and α-phellandrene (8.1%). Both oils tested were toxic to U937 cells, but RFO was much more cytotoxic: indeed, the IC50 values calculated from the linear regression curves of RFO and APO were 14.5 ± 0.85 and 43.4 ± 2.81 μg/mL, respectively. α-Pinene and α-phellandrene were identified as the most toxically relevant constituents: however, they did not completely account for the toxic effects of genuine APO and RFO. Interestingly, we found that p-cymene, although per se devoid of toxicity within the tested range of concentrations, was capable of significantly sensitizing U937 cells to the cytotoxic activity of α-pinene and α-phellandrene, and that specific mixtures of these three terpenes were as toxic as genuine APO and RFO.
Collapse
Affiliation(s)
- Daniele Fraternale
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Donata Ricci
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Cinzia Calcabrini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Michele Guescini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Chiara Martinelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| |
Collapse
|
22
|
Minarini A, Milelli A, Tumiatti V, Rosini M, Lenzi M, Ferruzzi L, Turrini E, Hrelia P, Sestili P, Calcabrini C, Fimognari C. Exploiting RNA as a new biomolecular target for synthetic polyamines. Gene 2013; 524:232-40. [DOI: 10.1016/j.gene.2013.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 01/07/2023]
|
23
|
Shiga toxin 1, as DNA repair inhibitor, synergistically potentiates the activity of the anticancer drug, mafosfamide, on raji cells. Toxins (Basel) 2013; 5:431-44. [PMID: 23430607 PMCID: PMC3640543 DOI: 10.3390/toxins5020431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin 1 (Stx1), produced by pathogenic Escherichia coli, targets a restricted subset of human cells, which possess the receptor globotriaosylceramide (Gb3Cer/CD77), causing hemolytic uremic syndrome. In spite of the high toxicity, Stx1 has been proposed in the treatment of Gb3Cer/CD77-expressing lymphoma. Here, we demonstrate in a Burkitt lymphoma cell model expressing this receptor, namely Raji cells, that Stx1, at quasi-non-toxic concentrations (0.05–0.1 pM), inhibits the repair of mafosfamide-induced DNA alkylating lesions, synergistically potentiating the cytotoxic activity of the anticancer drug. Conversely, human promyelocytic leukemia cells HL-60, which do not express Gb3Cer/CD77, were spared by the toxin as previously demonstrated for CD34+ human progenitor cells, and hence, in this cancer model, no additive nor synergistic effects were observed with the combined Stx1/mafosfamide treatment. Our findings suggest that Stx1 could be used to improve the mafosfamide-mediated purging of Gb3Cer/CD77+ tumor cells before autologous bone marrow transplantation.
Collapse
|
24
|
Abstract
The molecular level damage to DNA is important due to DNA's susceptibility to free radical attacks and crucial roles in maintaining cell functions. Although a panel of techniques can be used to detect DNA damages, most of them are limited due to low sensitivity, low throughput, incompatibility for automated data analysis, and labor-intensive operations. We have developed a cell array based DNA damage assay in which mammalian cells are attached on an array of microfabricated patterns through electrostatic interactions. After trapping patterned cells inside gels, damaged DNA fragment can diffuse out of the nucleus and form a halo around each cell inside gels. The halo array can be observed fluorescently after labeling DNA with ethidium bromide. DNA damages can be determined sensitively at the single cell level, accurately due to the symmetric shape of the halo, and automatically due to the spatial registry of each cell and the nonoverlapping halos surrounding cells. The HaloChip can be used to detect DNA damages caused by chemicals and ultraviolet and X-ray irradiations with high efficiency. A major advantage of HaloChip is the ability to increase throughout by spatially encoding multiple dosing conditions on the same chip. Most importantly, the method can be used to measure variations in response to DNA damaging agents within the same cell population. Compared with halo assay or comet assay alone, this method allows automated analysis of a million cells without an overlapping issue. Compared with the microwell array based comet assay, this method can selectively capture and analyze cells, and the results can be easily analyzed to provide precise information on DNA damage. This method can be used in a broad range of clinical, epidemiological, and experimental settings.
Collapse
Affiliation(s)
- Yong Qiao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | | | | | | |
Collapse
|
25
|
Galaz-Leiva S, Pérez-Rodríguez G, Blázquez-Castro A, Stockert JC. A simplified chromatin dispersion (nuclear halo) assay for detecting DNA breakage induced by ionizing radiation and chemical agents. Biotech Histochem 2011; 87:208-17. [DOI: 10.3109/10520295.2011.604163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
26
|
Merhi M, Dombu CY, Brient A, Chang J, Platel A, Le Curieux F, Marzin D, Nesslany F, Betbeder D. Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int J Pharm 2011; 423:37-44. [PMID: 21801821 DOI: 10.1016/j.ijpharm.2011.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/31/2023]
Abstract
We used well-characterized and positively charged nanoparticles (NP(+)) to investigate the importance of cell culture conditions, specifically the presence of serum and proteins, on NP(+) physicochemical characteristics, and the consequences for their endocytosis and genotoxicity in bronchial epithelial cells (16HBE14o-). NP(+) surface charge was significantly reduced, proportionally to NP(+)/serum and NP(+)/BSA ratios, while NP(+) size was not modified. Microscopy studies showed high endocytosis of NP(+) in 16HBE14o-, and serum/proteins impaired this internalization in a dose-dependent manner. Toxicity studies showed no cytotoxicity, even for very high doses of NP(+). No genotoxicity was observed with classic comet assay while primary oxidative DNA damage was observed when using the lesion-specific repair enzyme, formamidopyrimidine DNA-glycosylase (FPG). The micronucleus test showed NP(+) genotoxicity only for very high doses that cannot be attained in vivo. The low toxicity of these NP(+) might be explained by their high exocytosis from 16HBE14o- cells. Our results confirm the importance of serum and proteins on nanoparticles endocytosis and genotoxicity.
Collapse
|
27
|
Mondal NK, Bhattacharya P, Ray MR. Assessment of DNA damage by comet assay and fast halo assay in buccal epithelial cells of Indian women chronically exposed to biomass smoke. Int J Hyg Environ Health 2011; 214:311-8. [DOI: 10.1016/j.ijheh.2011.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/18/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
28
|
Chaudhary P, Shukla SK, Sharma RK. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:473953. [PMID: 20008078 PMCID: PMC3136531 DOI: 10.1093/ecam/nep212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/09/2009] [Indexed: 11/13/2022]
Abstract
Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg−1 body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | | | | |
Collapse
|
29
|
Potenza L, Martinelli C, Polidori E, Zeppa S, Calcabrini C, Stocchi L, Sestili P, Stocchi V. Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells. Bioelectromagnetics 2011; 31:630-9. [PMID: 20623760 DOI: 10.1002/bem.20591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs). Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real-time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression. HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h. Compared to control samples (unexposed cultures) the SMF-exposed cells did not show a statistically significant change in their viability. Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species. Twenty-four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis. No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure. The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lucia Potenza
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hernández AM, Rodríguez N, González JE, Reyes E, Rondón T, Griñán T, Macías A, Alfonso S, Vázquez AM, Pérez R. Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. THE JOURNAL OF IMMUNOLOGY 2011; 186:3735-44. [PMID: 21300821 DOI: 10.4049/jimmunol.1000609] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1E10 is a murine anti-idiotypic mAb specific for an idiotypic mAb that reacts with NeuGc-containing gangliosides, sulfatides, and Ags expressed in some human tumors. In melanoma, breast, and lung cancer patients, this anti-idiotypic Ab was able to induce a specific Ab response against N-glycosylated gangliosides, attractive targets for cancer immunotherapy as these glycolipids are not naturally expressed in humans. A clinical study with nonsmall cell lung cancer patients showed encouraging clinical benefits. Immunological studies performed in 20 of these patients suggested a correlation between the induction of Abs against NeuGcGM3 and longer survival times. The induced anti-NeuGcGM3 Abs recognized and directly killed tumor cells expressing the Ag, by a mechanism independent of complement activation. In the present work, we show that this cytotoxicity differs from apoptosis because it is temperature independent, no chromatin condensation or caspase 3 induction are detected, and the DNA fragmentation induced has a different pattern than the one characteristic for apoptosis. It is a very quick process and involves cytosqeleton reorganization. The Abs induce cellular swelling and the formation of big membrane lesions that allow the leakage of cytoplasm and the loss of the cell membrane integrity. All of these characteristics resemble a process of oncotic necrosis. To our knowledge, this is the first report of the active induction in cancer patients of NeuGcGM3-specific Abs able to induce complement independent oncotic necrosis to tumor cells. These results contribute to reinforcing the therapeutic potential of anti-idiotypic vaccines and the importance of NeuGcGM3 ganglioside as antitumor target.
Collapse
Affiliation(s)
- Ana María Hernández
- Department of Antibody Engineering, Center of Molecular Immunology, Havana 11600, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
32
|
Sultan A, Nesslany F, Violet M, Bégard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S, Colin M, Bonnefoy E, Buée L, Galas MC. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 2010; 286:4566-75. [PMID: 21131359 DOI: 10.1074/jbc.m110.199976] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tau, a neuronal protein involved in neurodegenerative disorders such as Alzheimer disease, which is primarily described as a microtubule-associated protein, has also been observed in the nuclei of neuronal and non-neuronal cells. However, the function of the nuclear form of Tau in neurons has not yet been elucidated. In this work, we demonstrate that acute oxidative stress and mild heat stress (HS) induce the accumulation of dephosphorylated Tau in neuronal nuclei. Using chromatin immunoprecipitation assays, we demonstrate that the capacity of endogenous Tau to interact with neuronal DNA increased following HS. Comet assays performed on both wild-type and Tau-deficient neuronal cultures showed that Tau fully protected neuronal genomic DNA against HS-induced damage. Interestingly, HS-induced DNA damage observed in Tau-deficient cells was completely rescued after the overexpression of human Tau targeted to the nucleus. These results highlight a novel role for nuclear Tau as a key player in early stress response.
Collapse
Affiliation(s)
- Audrey Sultan
- Inserm UMR837, Alzheimer and Tauopathies, 1 rue Michel Polonovski, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sestili P, Paolillo M, Lenzi M, Colombo E, Vallorani L, Casadei L, Martinelli C, Fimognari C. Sulforaphane induces DNA single strand breaks in cultured human cells. Mutat Res 2010; 689:65-73. [PMID: 20510253 DOI: 10.1016/j.mrfmmm.2010.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/29/2010] [Accepted: 05/19/2010] [Indexed: 05/29/2023]
Abstract
Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 microM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of SFR in anticancer drug protocols.
Collapse
Affiliation(s)
- Piero Sestili
- Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, PU, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mello MLS, Moraes AS, Vidal BC. Extended chromatin fibers and chromatin organization. Biotech Histochem 2010; 86:213-25. [DOI: 10.3109/10520290903549022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Saandeep K, Vikram A, Tripathi DN, Ramarao P, Jena G. Influence of Hyperglycaemia on Chemical-Induced Toxicity: Study with Cyclophosphamide in Rat. Basic Clin Pharmacol Toxicol 2009; 105:236-42. [DOI: 10.1111/j.1742-7843.2009.00433.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Vivek Kumar PR, Cheriyan VD, Seshadri M. Could a strong alkali deproteinization replace the standard lysis step in alkaline single cell gel electrophoresis (comet) assay (pH>13)? Mutat Res 2009; 678:65-70. [PMID: 19563911 DOI: 10.1016/j.mrgentox.2009.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 06/10/2009] [Accepted: 06/20/2009] [Indexed: 11/28/2022]
Abstract
The alkaline version of single cell gel electrophoresis (comet) assay is widely used for evaluating DNA damage at the individual cell level. The standard alkaline method of the comet assay involves deproteinization of cells embedded in agarose gel using a high salt-detergent lysis buffer, followed by denaturation of DNA and electrophoresis using a strong alkali at pH>13 [N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell. Res. 175 (1988) 184-191]. However, a recent report showed that a strong alkali treatment results in simultaneous deproteinization of cells and denaturation of genomic DNA [P. Sestili, C. Martinelli, V. Stocchi, The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single cell-level, Mutat. Res. 607 (2006) 205-214]. This study was carried out to test whether the strong alkali deproteinization of cells could replace the high salt-detergent lysis step used in the standard method of the alkaline comet assay. Peripheral blood lymphocytes from 3 healthy individuals were irradiated with gamma rays at doses varying between 0 and 10 Gy. Following irradiation, the comet assay was performed according to the standard alkaline method (pH>13) and a modified method. In the modified method, agarose embedded cells were treated with a strong alkali (0.3M NaOH, 0.02 M Trizma and 1mM EDTA, pH>13) for 20 min to allow deproteinization of cells and denaturation of DNA. This was followed by electrophoresis using the same alkali solution to obtain comets. DNA damage expressed in terms of comet tail length, percentage of DNA in comet tail and tail moment obtained by the standard alkaline method and the modified method were compared. In both methods, DNA damage showed a good correlation with the dose of gamma ray. The results indicate a satisfactory sensitivity of the modified method in detecting radiation-induced DNA damage in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- P R Vivek Kumar
- Low Level Radiation Research Laboratory, Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Kollam 691 001, Kerala, India
| | | | | |
Collapse
|
37
|
Kadioglu E, Sardas S, Erturk S, Ozatamer O, Karakaya AE. Determination of DNA damage by alkaline halo and comet assay in patients under sevoflurane anesthesia. Toxicol Ind Health 2009; 25:205-12. [DOI: 10.1177/0748233709106445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we report data on the possible genotoxic effect of inhalation anesthetic sevoflurane (SVF) by comparing two techniques, comet and alkaline halo assay, in peripheral blood lymphocytes (PBL) of patients before, during, and after anesthesia and in controls. DNA single strand breaks were detected in PBL of malignant breast cancer diagnosed patients (stage II–III), who were undergoing mastectomy. Blood samples were taken before the induction of anesthesia, at 120 min of SVF anesthesia, and on the postoperative fifth day. The nuclear spreading factor (NSF) for each cell was assessed by alkaline halo assay, and the total comet score (TCS) was evaluated by comet assay. A statistically significant increase ( P < 0.0001) was observed in the mean NSF at 120 min of anesthesia (38.24 ± 14.14) as compared with samples before anesthesia (12.33 ± 6.14), and the mean NSF was significantly decreased after the postoperative fifth day (17.89 ± 9.44). Similar results were obtained by the comet assay with significant increase ( P < 0.0001) in DNA damage at 120 min of anesthesia (79.66 ± 15.28) as compared with samples before anesthesia (36.30 ± 11.39). The DNA damage was almost with the preoperative damage rates after the fifth day of anesthesia (43.40 ± 12.19). In conclusion, the study points out a reversible genotoxic effect of SVF and the similar DNA damage levels obtained by comet and alkaline halo assay indicate that although halo assay has a completely different principle, it can conveniently be utilized for the assessment of DNA single strand breakage in individual mammalian cells with its experimental advantages.
Collapse
Affiliation(s)
- E Kadioglu
- Department of Toxicology, Gazi University, Faculty of Pharmacy, Ankara, Turkey
| | - S Sardas
- Department of Toxicology, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - S Erturk
- Department of Anaesthesiology and Intensive Care, Ankara University, Faculty of Medicine, Ankara, Turkey
| | - O Ozatamer
- Department of Anaesthesiology and Intensive Care, Ankara University, Faculty of Medicine, Ankara, Turkey
| | - AE Karakaya
- Department of Toxicology, Gazi University, Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
38
|
Padmanabhan S, Tripathi DN, Vikram A, Ramarao P, Jena GB. Methotrexate-induced cytotoxicity and genotoxicity in germ cells of mice: intervention of folic and folinic acid. Mutat Res 2009; 673:43-52. [PMID: 19110071 DOI: 10.1016/j.mrgentox.2008.11.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/23/2008] [Accepted: 11/29/2008] [Indexed: 05/27/2023]
Abstract
Methotrexate (MTX) is an anti-metabolite widely used in the treatment of neoplastic disorders, rheumatoid arthritis and psoriasis. The basis for its therapeutic efficacy is the inhibition of dihydrofolate reductase (DHFR), a key enzyme in the folic acid (FA) metabolism. FA is a water-soluble vitamin which is involved in the synthesis of purines and pyrimidines, the essential precursors of DNA. Folinic acid (FNA) is the reduced form of FA that circumvents the inhibition of DHFR. Folate supplementation during MTX therapy for psoriasis and inflammatory arthritis reduces both toxicity and side effects without compromising the efficacy. Further, FNA supplementation reduces the common side effects of MTX in the treatment of juvenile idiopathic arthritis. FA and FNA are reported to have protective effects on MTX-induced genotoxicity in the somatic cells; however their protective effects on the germ cells have not been much explored. Previously, we evaluated the cytotoxic and genotoxic effects of MTX in the germ cells of mice. In the present study, we have intervened FA and FNA for the protection of germ cell toxicity induced by MTX in male swiss mice. The animals were pre-treated with FA at the doses of 50, 100 and 200 microg/kg for 4 consecutive days per week and on day five; MTX was administered at the dose of 20mg/kg once. FNA was administered at the doses of 2.5, 5 and 10 mg/kg, 6 h (h) after single administration of MTX at the dose of 20 mg/kg. The dosing regimen was continued up to 10 weeks. The germ cell toxicity was evaluated using testes weight (wt), sperm count, sperm head morphology, sperm comet assay, histology, TUNEL and halo assay in testis. The results clearly demonstrate that prior administration of FA and post-treatment with FNA reduces the germ cell toxicity induced by MTX as evident from the decreased sperm head abnormalities, seminiferous tubule damage, sperm DNA damage, TUNEL positive cells and increased sperm counts. In the present study, we report that FA and FNA ameliorate the germ cell toxicity of MTX in mice.
Collapse
Affiliation(s)
- S Padmanabhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | | | | | | | | |
Collapse
|
39
|
Abstract
The detection of breaks in mammalian cell DNA and the measurement of their repair represent primary endpoints for genotoxicity testing. Over the past three decades many techniques sensitive to the presence of DNA breaks have been developed: their availability significantly increased the knowledge in the area of genetic toxicology. In general, these techniques have evolved to become more sensitive and flexible as well as less complicated. The fast-halo assay (FHA) is a very recent method to detect DNA-strand breakage induced either by various genotoxic agents or secondary to apoptotic DNA cleavage, and to study the repair of primary DNA breaks at the single-cell level. In FHA, damaged DNA is separated from intact one by means of solvent gradient, stained with ethidium bromide and visualized under a fluorescence microscope. The level of DNA breaks is then determined with an image analysis software. FHA is as sensitive, reliable, and flexible as the well-established comet assay, but it has the advantage of being, as compared to any other existing method, the most rapid and less expensive one. Taken collectively, these unique features render FHA the ideal method to perform a large number of genotoxicity tests on mammalian cells in a particularly cost-effective and time-saving manner.
Collapse
Affiliation(s)
- Piero Sestili
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
40
|
Cytotoxic and genotoxic effects of methotrexate in germ cells of male Swiss mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 655:59-67. [DOI: 10.1016/j.mrgentox.2008.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 05/30/2008] [Accepted: 07/05/2008] [Indexed: 12/17/2022]
|
41
|
Grazeffe VS, Tallarico LDF, Pinheiro ADS, Kawano T, Suzuki MF, Okazaki K, Pereira CADB, Nakano E. Establishment of the comet assay in the freshwater snail Biomphalaria glabrata (Say, 1818). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:58-63. [DOI: 10.1016/j.mrgentox.2008.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|
42
|
Cavazzoni A, Alfieri RR, Carmi C, Zuliani V, Galetti M, Fumarola C, Frazzi R, Bonelli M, Bordi F, Lodola A, Mor M, Petronini PG. Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines. Mol Cancer Ther 2008; 7:361-70. [DOI: 10.1158/1535-7163.mct-07-0477] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Guidi C, Potenza L, Sestili P, Martinelli C, Guescini M, Stocchi L, Zeppa S, Polidori E, Annibalini G, Stocchi V. Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. Biochim Biophys Acta Gen Subj 2008; 1780:16-26. [DOI: 10.1016/j.bbagen.2007.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 01/26/2023]
|
44
|
Hirano R, Interthal H, Huang C, Nakamura T, Deguchi K, Choi K, Bhattacharjee MB, Arimura K, Umehara F, Izumo S, Northrop JL, Salih MAM, Inoue K, Armstrong DL, Champoux JJ, Takashima H, Boerkoel CF. Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation? EMBO J 2007; 26:4732-43. [PMID: 17948061 DOI: 10.1038/sj.emboj.7601885] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 09/19/2007] [Indexed: 01/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) cleaves the phosphodiester bond between a covalently stalled topoisomerase I (Topo I) and the 3' end of DNA. Stalling of Topo I at DNA strand breaks is induced by endogenous DNA damage and the Topo I-specific anticancer drug camptothecin (CPT). The H493R mutation of Tdp1 causes the neurodegenerative disorder spinocerebellar ataxia with axonal neuropathy (SCAN1). Contrary to the hypothesis that SCAN1 arises from catalytically inactive Tdp1, Tdp1-/- mice are indistinguishable from wild-type mice, physically, histologically, behaviorally, and electrophysiologically. However, compared to wild-type mice, Tdp1-/- mice are hypersensitive to CPT and bleomycin but not to etoposide. Consistent with earlier in vitro studies, we show that the H493R Tdp1 mutant protein retains residual activity and becomes covalently trapped on the DNA after CPT treatment of SCAN1 cells. This result provides a direct demonstration that Tdp1 repairs Topo I covalent lesions in vivo and suggests that SCAN1 arises from the recessive neomorphic mutation H493R. This is a novel mechanism for disease since neomorphic mutations are generally dominant.
Collapse
Affiliation(s)
- Ryuki Hirano
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brigotti M, Carnicelli D, Ravanelli E, Vara AG, Martinelli C, Alfieri RR, Petronini PG, Sestili P. Molecular damage and induction of proinflammatory cytokines in human endothelial cells exposed to Shiga toxin 1, Shiga toxin 2, and alpha-sarcin. Infect Immun 2007; 75:2201-7. [PMID: 17296757 PMCID: PMC1865781 DOI: 10.1128/iai.01707-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of human endothelial cells with Shiga toxin 1 and 2 leads to the upregulation of genes encoding proinflammatory molecules involved in the pathogenesis of hemolytic-uremic syndrome. The paradoxical effect of inhibitors of mRNA translation, such as Shiga toxins, that at the same time induce protein expression was investigated by studying the relationship between their enzymatic activity (abstraction of adenine from nucleic acids) and the induction of interleukin-8 and granulocyte-macrophage colony-stimulating factor in human endothelial cells. As a positive control, the fungal toxin alpha-sarcin, acting on the same rRNA sequence targeted by Shiga toxins with a different mechanism (RNase activity), was used. The three toxins caused ribosomal lesions that, in turn, induced the activation of p38 stress kinase with kinetics that paralleled the inhibition of translation. Alpha-sarcin was devoid of activity on DNA. Shiga toxin 2 targeted nuclear DNA with more rapid kinetics than did Shiga toxin 1. Since the fungal ribotoxin was fully effective in the induction of proinflammatory proteins, we conclude that damage to ribosomes is indispensable and sufficient to activate protein expression via induction of the stress-kinase cascade. However, gene upregulation events induced by Shiga toxin 2 were much more efficient than those triggered by Shiga toxin 1, although the two toxins impaired translation to the same extent and had overlapping time courses of stress kinase activation. Regulations independent of the ribotoxic stress were assumed to operate in intoxicated cells. We hypothesized that the two bacterial toxins recognize different DNA sequences inducing different regulating effects on gene expression.
Collapse
Affiliation(s)
- Maurizio Brigotti
- Dipartimento di Patologia Sperimentale, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hatz S, Lambert JDC, Ogilby PR. Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci 2007; 6:1106-16. [PMID: 17914485 DOI: 10.1039/b707313e] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet molecular oxygen, O(2)(a(1)Delta(g)), has been detected from single neurons and HeLa cells in time-resolved optical experiments by its 1270 nm phosphorescence (a(1)Delta(g)--> X(3)Sigma(-)(g)) upon irradiation of a photosensitizer incorporated into the cell. The cells were maintained in a buffered medium and their viability was assessed by live/dead assays. To facilitate the detection of singlet oxygen, intracellular H(2)O was replaced with D(2)O by an osmotic de- and rehydration process. The effect of this insult on the cells was likewise assessed. The data indicate that, in the complicated transition from a "live" to "dead" cell, the majority of our cells have the metabolic activity and morphology characteristic of a live cell. Quenching experiments demonstrate that the singlet oxygen lifetime in our cells is principally determined by interactions with intracellular water and not by interactions with other cell constituents. The data indicate that in a viable, metabolically-functioning, and H(2)O-containing cell, the lifetime of singlet oxygen is approximately 3 micros. This is consistent with our previous reports, and confirms that the singlet oxygen lifetime in a cell is much longer than hitherto believed. This implies that, in a cell, singlet oxygen is best characterized as a selective rather than reactive intermediate. This is important when considering roles played by singlet oxygen as a signaling agent and as a component in events that result in cell death. The data reported herein also demonstrate that spatially-resolved optical probes can be used to monitor selected events in the light-induced, singlet-oxygen-mediated death of a single cell.
Collapse
Affiliation(s)
- Sonja Hatz
- Department of Chemistry University of Aarhus, DK-8000, Arhus, Denmark
| | | | | |
Collapse
|